Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Virus Evol ; 10(1): veae067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310091

RESUMO

Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.

2.
Viruses ; 16(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339934

RESUMO

The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, thereby maintaining overall viral fitness. The lack of molecular details on structure, dynamics and binding energetics of the latest FLiRT and FLuQE variants with the ACE2 receptor and antibodies provides a considerable challenge that is explored in this study. We combined AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that protect and restore ACE2-binding affinity while conferring beneficial immune escape. To examine immune escape mechanisms, we performed structure-based mutational profiling of the spike protein binding with several classes of antibodies that displayed impaired neutralization against BA.2.86, JN.1, KP.2 and KP.3. The results confirmed the experimental data that JN.1, KP.2 and KP.3 harboring the L455S and F456L mutations can significantly impair the neutralizing activity of class 1 monoclonal antibodies, while the epistatic effects mediated by F456L can facilitate the subsequent convergence of Q493E changes to rescue ACE2 binding. Structural and energetic analysis provided a rationale to the experimental results showing that BD55-5840 and BD55-5514 antibodies that bind to different binding epitopes can retain neutralizing efficacy against all examined variants BA.2.86, JN.1, KP.2 and KP.3. The results support the notion that evolution of Omicron variants may favor emergence of lineages with beneficial combinations of mutations involving mediators of epistatic couplings that control balance of high ACE2 affinity and immune evasion.


Assuntos
Enzima de Conversão de Angiotensina 2 , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , Epistasia Genética , Evasão da Resposta Imune , Anticorpos Antivirais/imunologia , Conformação Proteica
3.
Elife ; 122024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268701

RESUMO

MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild-type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase ⍺C-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a ß5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.


Assuntos
Proteínas Proto-Oncogênicas c-met , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Humanos , Domínios Proteicos/genética , Mutação , Motivos de Aminoácidos , Análise Mutacional de DNA
4.
Cell ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39326416

RESUMO

Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.

5.
Comput Biol Med ; 182: 109101, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243518

RESUMO

The COVID-19 pandemic has driven substantial evolution of the SARS-CoV-2 virus, yielding subvariants that exhibit enhanced infectiousness in humans. However, this adaptive advantage may not universally extend to zoonotic transmission. In this work, we hypothesize that viral adaptations favoring animal hosts do not necessarily correlate with increased human infectivity. In addition, we consider the potential for gain-of-function mutations that could facilitate the virus's rapid evolution in humans following adaptation in animal hosts. Specifically, we identify the SARS-CoV-2 receptor-binding domain (RBD) mutations that enhance human-animal cross-transmission. To this end, we construct a multitask deep learning model, MT-TopLap trained on multiple deep mutational scanning datasets, to accurately predict the binding free energy changes upon mutation for the RBD to ACE2 of various species, including humans, cats, bats, deer, and hamsters. By analyzing these changes, we identified key RBD mutations such as Q498H in SARS-CoV-2 and R493K in the BA.2 variant that are likely to increase the potential for human-animal cross-transmission.

6.
Genetics ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319420

RESUMO

The Cytochrome P450s (CYPs) enzyme family metabolizes ∼80% of small molecule drugs. Variants in CYPs can substantially alter drug metabolism, leading to improper dosing and severe adverse drug reactions. Due to low sequence conservation, predicting variant effects across CYPs is challenging. Even closely related CYPs like CYP2C9 and CYP2C19, which share 92% amino acid sequence identity, display distinct phenotypic properties. Using Variant Abundance by Massively Parallel sequencing (VAMP-seq), we measured the steady-state protein abundance of 7,660 single amino acid variants in CYP2C19 expressed in cultured human cells. Our findings confirmed critical positions and structural features essential for CYP function and revealed how variants at conserved positions influence abundance. We jointly analyzed 4,670 variants whose abundance was measured in both CYP2C19 and CYP2C9, finding that the homologs have different variant abundances in substrate recognition sites within the hydrophobic core. We also measured the abundance of all single and some multiple WT amino acid exchanges between CYP2C19 and CYP2C9. While most exchanges had no effect, substitutions in substrate recognition site 4 (SRS4) reduced abundance in CYP2C19. Double and triple mutants showed distinct interactions, highlighting a region that points to differing thermodynamic properties between the two homologs. These positions are known contributors to substrate specificity, suggesting an evolutionary tradeoff between stability and enzymatic function. Finally, we analyzed 368 previously unannotated human variants, finding that 43% had decreased abundance. By comparing variant effects between these homologs, we uncovered regions underlying their functional differences, advancing our understanding of this versatile family of enzymes.

8.
Front Immunol ; 15: 1426795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108267

RESUMO

B cells surveil the body for foreign matter using their surface-expressed B cell antigen receptor (BCR), a tetrameric complex comprising a membrane-tethered antibody (mIg) that binds antigens and a signaling dimer (CD79AB) that conveys this interaction to the B cell. Recent cryogenic electron microscopy (cryo-EM) structures of IgM and IgG isotype BCRs provide the first complete views of their architecture, revealing that the largest interaction surfaces between the mIg and CD79AB are in their transmembrane domains (TMDs). These structures support decades of biochemical work interrogating the requirements for assembly of a functional BCR and provide the basis for explaining the effects of mutations. Here we report a focused saturating mutagenesis to comprehensively characterize the nature of the interactions in the mIg TMD that are required for BCR surface expression. We examined the effects of 600 single-amino-acid changes simultaneously in a pooled competition assay and quantified their effects by next-generation sequencing. Our deep mutational scanning results reflect a feature-rich TMD sequence, with some positions completely intolerant to mutation and others requiring specific biochemical properties such as charge, polarity or hydrophobicity, emphasizing the high value of saturating mutagenesis over, for example, alanine scanning. The data agree closely with published mutagenesis and the cryo-EM structures, while also highlighting several positions and surfaces that have not previously been characterized or have effects that are difficult to rationalize purely based on structure. This unbiased and complete mutagenesis dataset serves as a reference and framework for informed hypothesis testing, design of therapeutics to regulate BCR surface expression and to annotate patient mutations.


Assuntos
Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Humanos , Mutação , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD79/genética , Antígenos CD79/metabolismo , Antígenos CD79/imunologia , Membrana Celular/metabolismo , Camundongos
9.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091798

RESUMO

Multi-domain enzymes can be regulated by both inter-domain interactions and structural features intrinsic to the catalytic domain. The tyrosine phosphatase SHP2 is a quintessential example of a multi-domain protein that is regulated by inter-domain interactions. This enzyme has a protein tyrosine phosphatase (PTP) domain and two phosphotyrosine-recognition domains (N-SH2 and C-SH2) that regulate phosphatase activity through autoinhibitory interactions. SHP2 is canonically activated by phosphoprotein binding to the SH2 domains, which causes large inter-domain rearrangements, but autoinhibition can also be disrupted by disease-associated mutations. Many details of the SHP2 activation mechanism are still unclear, the physiologically-relevant active conformations remain elusive, and hundreds of human variants of SHP2 have not been functionally characterized. Here, we perform deep mutational scanning on both full-length SHP2 and its isolated PTP domain to examine mutational effects on inter-domain regulation and catalytic activity. Our experiments provide a comprehensive map of SHP2 mutational sensitivity, both in the presence and absence of inter-domain regulation. Coupled with molecular dynamics simulations, our investigation reveals novel structural features that govern the stability of the autoinhibited and active states of SHP2. Our analysis also identifies key residues beyond the SHP2 active site that control PTP domain dynamics and intrinsic catalytic activity. This work expands our understanding of SHP2 regulation and provides new insights into SHP2 pathogenicity.

10.
Immunity ; 57(9): 2061-2076.e11, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39013466

RESUMO

Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Febre Lassa , Vírus Lassa , Mutação , Vírus Lassa/imunologia , Vírus Lassa/genética , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Animais , Anticorpos Monoclonais/imunologia , Febre Lassa/imunologia , Febre Lassa/virologia , Internalização do Vírus , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Glicoproteínas/imunologia , Glicoproteínas/genética , Evasão da Resposta Imune/imunologia , Evasão da Resposta Imune/genética , Células HEK293
11.
Antiviral Res ; 229: 105961, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002800

RESUMO

Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A (H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A (H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38 T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.


Assuntos
Substituição de Aminoácidos , Antivirais , Dibenzotiepinas , Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1 , Morfolinas , Piridonas , Triazinas , Proteínas Virais , Replicação Viral , Dibenzotiepinas/farmacologia , Farmacorresistência Viral/genética , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos , Piridonas/farmacologia , Humanos , Morfolinas/farmacologia , Proteínas Virais/genética , Animais , Tiepinas/farmacologia , RNA Polimerase Dependente de RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Cães , Células Madin Darby de Rim Canino , Influenza Humana/virologia , Influenza Humana/tratamento farmacológico , Oxazinas/farmacologia
12.
Cell Host Microbe ; 32(8): 1397-1411.e11, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39032493

RESUMO

Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population and how this heterogeneity affects virus evolution. Here, we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of two H3N2 strains, A/Hong Kong/45/2019 and A/Perth/16/2009, affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that were fixed in influenza variants after 2020 cause greater escape from sera from younger individuals compared with adults. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups and suggest approaches to understand how this heterogeneous selection shapes viral evolution.


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Mutação , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Adulto , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Influenza Humana/virologia , Influenza Humana/imunologia , Fatores Etários , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Adolescente , Evolução Molecular , Idoso , Criança
13.
BMC Bioinformatics ; 25(1): 229, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956474

RESUMO

Adeno-associated viruses 2 (AAV2) are minute viruses renowned for their capacity to infect human cells and akin organisms. They have recently emerged as prominent candidates in the field of gene therapy, primarily attributed to their inherent non-pathogenic nature in humans and the safety associated with their manipulation. The efficacy of AAV2 as gene therapy vectors hinges on their ability to infiltrate host cells, a phenomenon reliant on their competence to construct a capsid capable of breaching the nucleus of the target cell. To enhance their infection potential, researchers have extensively scrutinized various combinatorial libraries by introducing mutations into the capsid, aiming to boost their effectiveness. The emergence of high-throughput experimental techniques, like deep mutational scanning (DMS), has made it feasible to experimentally assess the fitness of these libraries for their intended purpose. Notably, machine learning is starting to demonstrate its potential in addressing predictions within the mutational landscape from sequence data. In this context, we introduce a biophysically-inspired model designed to predict the viability of genetic variants in DMS experiments. This model is tailored to a specific segment of the CAP region within AAV2's capsid protein. To evaluate its effectiveness, we conduct model training with diverse datasets, each tailored to explore different aspects of the mutational landscape influenced by the selection process. Our assessment of the biophysical model centers on two primary objectives: (i) providing quantitative forecasts for the log-selectivity of variants and (ii) deploying it as a binary classifier to categorize sequences into viable and non-viable classes.


Assuntos
Mutação , Humanos , Proteínas do Capsídeo/genética , Dependovirus/genética , Parvovirinae/genética
14.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979347

RESUMO

The large-scale experimental measures of variant functional assays submitted to MaveDB have the potential to provide key information for resolving variants of uncertain significance, but the reporting of results relative to assayed sequence hinders their downstream utility. The Atlas of Variant Effects Alliance mapped multiplexed assays of variant effect data to human reference sequences, creating a robust set of machine-readable homology mappings. This method processed approximately 2.5 million protein and genomic variants in MaveDB, successfully mapping 98.61% of examined variants and disseminating data to resources such as the UCSC Genome Browser and Ensembl Variant Effect Predictor.

15.
BMC Genomics ; 25(1): 630, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914936

RESUMO

Deep Mutational Scanning (DMS) assays are powerful tools to study sequence-function relationships by measuring the effects of thousands of sequence variants on protein function. During a DMS experiment, several technical artefacts might distort non-linearly the functional score obtained, potentially biasing the interpretation of the results. We therefore tested several technical parameters in the deepPCA workflow, a DMS assay for protein-protein interactions, in order to identify technical sources of non-linearities. We found that parameters common to many DMS assays such as amount of transformed DNA, timepoint of harvest and library composition can cause non-linearities in the data. Designing experiments in a way to minimize these non-linear effects will improve the quantification and interpretation of mutation effects.


Assuntos
Mutação , Fluxo de Trabalho , Proteínas/metabolismo , Proteínas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mapeamento de Interação de Proteínas/métodos , Análise Mutacional de DNA/métodos , Ligação Proteica
16.
Mol Syst Biol ; 20(7): 825-844, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849565

RESUMO

Nonsense and missense mutations in the transcription factor PAX6 cause a wide range of eye development defects, including aniridia, microphthalmia and coloboma. To understand how changes of PAX6:DNA binding cause these phenotypes, we combined saturation mutagenesis of the paired domain of PAX6 with a yeast one-hybrid (Y1H) assay in which expression of a PAX6-GAL4 fusion gene drives antibiotic resistance. We quantified binding of more than 2700 single amino-acid variants to two DNA sequence elements. Mutations in DNA-facing residues of the N-terminal subdomain and linker region were most detrimental, as were mutations to prolines and to negatively charged residues. Many variants caused sequence-specific molecular gain-of-function effects, including variants in position 71 that increased binding to the LE9 enhancer but decreased binding to a SELEX-derived binding site. In the absence of antibiotic selection, variants that retained DNA binding slowed yeast growth, likely because such variants perturbed the yeast transcriptome. Benchmarking against known patient variants and applying ACMG/AMP guidelines to variant classification, we obtained supporting-to-moderate evidence that 977 variants are likely pathogenic and 1306 are likely benign. Our analysis shows that most pathogenic mutations in the paired domain of PAX6 can be explained simply by the effects of these mutations on PAX6:DNA association, and establishes Y1H as a generalisable assay for the interpretation of variant effects in transcription factors.


Assuntos
DNA , Fator de Transcrição PAX6 , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Humanos , DNA/genética , DNA/metabolismo , Sítios de Ligação , Ligação Proteica , Mutação , Técnicas do Sistema de Duplo-Híbrido , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Análise Mutacional de DNA
17.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38940340

RESUMO

Interpreting the wealth of rare genetic variants discovered in population-scale sequencing efforts and deciphering their associations with human health and disease present a critical challenge due to the lack of sufficient clinical case reports. One promising avenue to overcome this problem is deep mutational scanning (DMS), a method of introducing and evaluating large-scale genetic variants in model cell lines. DMS allows unbiased investigation of variants, including those that are not found in clinical reports, thus improving rare disease diagnostics. Currently, the main obstacle limiting the full potential of DMS is the availability of functional assays that are specific to disease mechanisms. Thus, we explore high-throughput functional methodologies suitable to examine broad disease mechanisms. We specifically focus on methods that do not require robotics or automation but instead use well-designed molecular tools to transform biological mechanisms into easily detectable signals, such as cell survival rate, fluorescence or drug resistance. Here, we aim to bridge the gap between disease-relevant assays and their integration into the DMS framework.


Assuntos
Ensaios de Triagem em Larga Escala , Animais , Humanos , Doença/genética , Variação Genética , Ensaios de Triagem em Larga Escala/métodos , Mutação/genética
18.
Cell ; 187(11): 2735-2745.e12, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723628

RESUMO

Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.


Assuntos
Vírus da Hepatite B , Transcrição Reversa , Humanos , Genoma Viral/genética , Vírus da Hepatite B/genética , Mutação , Ribossomos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Linhagem Celular
19.
Elife ; 122024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767330

RESUMO

A protein's genetic architecture - the set of causal rules by which its sequence produces its functions - also determines its possible evolutionary trajectories. Prior research has proposed that the genetic architecture of proteins is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has analyzed only the direct paths between two proteins of interest - excluding the vast majority of possible genotypes and evolutionary trajectories - and has considered only a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impact on the evolution of new functions. Here, we develop a new method based on ordinal logistic regression to directly characterize the global genetic determinants of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We use it to dissect the genetic architecture and evolution of a transcription factor's specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor's capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. They also massively expand the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.


Assuntos
Epistasia Genética , Evolução Molecular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , DNA/genética , DNA/metabolismo , Mutação , Ligação Proteica
20.
Mol Cell ; 84(10): 1932-1947.e10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38703769

RESUMO

Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.


Assuntos
Simulação de Dinâmica Molecular , Transportador 1 de Cátions Orgânicos , Conformação Proteica , Humanos , Transporte Biológico , Células HEK293 , Mutação , Mutação de Sentido Incorreto , Fator 1 de Transcrição de Octâmero , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Farmacogenética , Fenótipo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA