Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126351

RESUMO

N6-methyladenine (6mA) DNA modification has recently been described in metazoans, including in Drosophila, for which the erasure of this epigenetic mark has been ascribed to the ten-eleven translocation (TET) enzyme. Here, we re-evaluated 6mA presence and TET impact on the Drosophila genome. Using axenic or conventional breeding conditions, we found traces of 6mA by LC-MS/MS and no significant increase in 6mA levels in the absence of TET, suggesting that this modification is present at very low levels in the Drosophila genome but not regulated by TET. Consistent with this latter hypothesis, further molecular and genetic analyses showed that TET does not demethylate 6mA but acts essentially in an enzymatic-independent manner. Our results call for further caution concerning the role and regulation of 6mA DNA modification in metazoans and underline the importance of TET non-enzymatic activity for fly development.


Assuntos
Adenina , Metilação de DNA , Proteínas de Drosophila , Drosophila , Animais , Cromatografia Líquida , DNA/genética , Drosophila/genética , Espectrometria de Massas em Tandem
2.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36528802

RESUMO

Accurate prediction of deoxyribonucleic acid (DNA) modifications is essential to explore and discern the process of cell differentiation, gene expression and epigenetic regulation. Several computational approaches have been proposed for particular type-specific DNA modification prediction. Two recent generalized computational predictors are capable of detecting three different types of DNA modifications; however, type-specific and generalized modifications predictors produce limited performance across multiple species mainly due to the use of ineffective sequence encoding methods. The paper in hand presents a generalized computational approach "DNA-MP" that is competent to more precisely predict three different DNA modifications across multiple species. Proposed DNA-MP approach makes use of a powerful encoding method "position specific nucleotides occurrence based 117 on modification and non-modification class densities normalized difference" (POCD-ND) to generate the statistical representations of DNA sequences and a deep forest classifier for modifications prediction. POCD-ND encoder generates statistical representations by extracting position specific distributional information of nucleotides in the DNA sequences. We perform a comprehensive intrinsic and extrinsic evaluation of the proposed encoder and compare its performance with 32 most widely used encoding methods on $17$ benchmark DNA modifications prediction datasets of $12$ different species using $10$ different machine learning classifiers. Overall, with all classifiers, the proposed POCD-ND encoder outperforms existing $32$ different encoders. Furthermore, combinedly over 5-fold cross validation benchmark datasets and independent test sets, proposed DNA-MP predictor outperforms state-of-the-art type-specific and generalized modifications predictors by an average accuracy of 7% across 4mc datasets, 1.35% across 5hmc datasets and 10% for 6ma datasets. To facilitate the scientific community, the DNA-MP web application is available at https://sds_genetic_analysis.opendfki.de/DNA_Modifications/.


Assuntos
Epigênese Genética , Aprendizado de Máquina , Software , Nucleotídeos , DNA/genética
3.
Protein Cell ; 12(10): 756-768, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34405377

RESUMO

N6-methyladenine (N6-mA, m6dA, or 6mA), a prevalent DNA modification in prokaryotes, has recently been identified in higher eukaryotes, including mammals. Although 6mA has been well-studied in prokaryotes, the function and regulatory mechanism of 6mA in eukaryotes are still poorly understood. Recent studies indicate that 6mA can serve as an epigenetic mark and play critical roles in various biological processes, from transposable-element suppression to environmental stress response. Here, we review the significant advances in methodology for 6mA detection and major progress in understanding the regulation and function of this non-canonical DNA methylation in eukaryotes, predominantly mammals.


Assuntos
Adenina/análogos & derivados , Reparo do DNA , DNA/metabolismo , Epigênese Genética , Genoma , Adenina/metabolismo , Aminopirina N-Desmetilase/genética , Aminopirina N-Desmetilase/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , DNA/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Regulação da Expressão Gênica , Heterocromatina/química , Heterocromatina/metabolismo , Humanos , Immunoblotting , Mamíferos , Espectrometria de Massas
4.
5.
DNA Repair (Amst) ; 78: 81-90, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30991231

RESUMO

N6-methyladenine (6mA), as a newly reported epigenetic marker, plays significant roles in regulation of various biological processes in eukaryotes. However, the effect of 6mA on human DNA replication remain elusive. In this work, we used Y-family human DNA polymerase η as a model to investigate the kinetics of bypass of 6mA by hPol η. We found 6mA and its intermediate hypoxanthine (I) on template partially inhibited DNA replication by hPol η. dTMP incorporation opposite 6mA and dCMP incorporation opposite I can be considered as correct incorporation. However, both 6mA and I reduced correct incorporation efficiency, next-base extension efficiency, and the priority in extension beyond correct base pair. Both dTMP incorporation opposite 6mA and dCTP opposite I showed fast burst phases. However, 6mA and I reduced the burst incorporation rates (kpol) and increased the dissociation constant (Kd,dNTP), compared with that of dTMP incorporation opposite unmodified A. Biophysical binding assays revealed that both 6mA and I on template reduced the binding affinity of hPol η to DNA in binary or ternary complex compared with unmodified A. All the results explain the inhibition effects of 6mA and I on DNA replication by hPol η, providing new insight in the effects of epigenetically modified 6mA on human DNA replication.


Assuntos
Adenina/análogos & derivados , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Epigênese Genética , Adenina/metabolismo , Humanos , Cinética , Nucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA