Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408543

RESUMO

Inhibition of Reactive Oxygen Species (ROS) is one of the strategies that Mycobacterium tuberculosis (Mtb) employs as its defence mechanism. In this study, the role of PPE15 (Rv1039c), a late-stage protein, has been investigated in modulating the cellular ROS. We discovered PPE15 to be a secretory protein that downregulates ROS generation in THP1 macrophages. Our in-silico analysis revealed the presence of a eukaryote-like SH3 (SH3e) domain in PPE15. The predicted SH3e-domain of PPE15 was found to interact with cytosolic components of NADPH Oxidase (NOX), p67phox and p47phox through molecular docking. In-vitro experiments using THP1 macrophages showed a diminished NADP/NADPH ratio, indicating reduced NOX activity. We also observed increased levels of p67phox and p47phox in the cytoplasmic fraction of PPE15 treated macrophages as compared to the plasma membrane fraction. To understand the role of the SH3e-domain in ROS modulation, this domain was deleted from the full-length PPE15 (PPE15-/-SH3). We observed an increase in cellular ROS and NADP/NADPH ratio in response to PPE15-/-SH3 protein. The interaction of PPE15-/-SH3 with p67phox or p47phox was also reduced in the cytoplasm, indicating migration of NOX subunits to the plasma membrane. Additionally, M. smegmatis expressing PPE15 was observed to be resistant to oxidative stress with significant intracellular survival in THP1 macrophages as compared to M. smegmatis expressing PPE15-/-SH3. These observations suggest that the SH3e-domain of PPE15 interferes with ROS generation by sequestering NOX components that inhibit NOX assembly at the cell membrane. Therefore, PPE15 acts like a molecular mimic of SH3-domain carrying eukaryotic proteins that can be employed by Mtb at late stages of infection for its survival. These findings give us new insights about the pathogen evading strategy of Mtb which may help in improving the therapeutics for TB treatment.


Assuntos
Mycobacterium tuberculosis , Espécies Reativas de Oxigênio/metabolismo , NADP/metabolismo , Domínios de Homologia de src , Simulação de Acoplamento Molecular , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Eucariotos
4.
Int J Gen Med ; 14: 9203-9209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880659

RESUMO

BACKGROUND: Reactive oxygen species (ROS) generated by NADPH oxidase has a pivotal role in the nonspecific innate immune response to invading microorganisms including M. tuberculosis (MTB). NCF2 and NOX2 were considered as important functional subunits of NADPH oxidase complex; hence, this study aimed to evaluate the NCF2, NOX2 mRNA expressions in PBMC of pulmonary tuberculosis (PTB) patients. METHODS: A total of 79 PTB patients and 73 controls were included in our study. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the NCF2, NOX2 mRNA levels, and receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic value of NCF2, NOX2 in PTB patients. RESULTS: When compared to controls, the NCF2, NOX2 mRNA levels were significantly increased in PBMC from PTB patients (P < 0.001). However, the NCF2, NOX2 mRNA levels were not associated with major clinical and laboratory data of PTB patients. Area under curve (AUC) of ROC curve analysis for NCF2 and NOX2 were 0.686 (95% CI: 0.601, 0.770) and 0.705 (95% CI: 0.623, 0.787), respectively. CONCLUSION: Altered NCF2, NOX2 mRNA levels in PTB patients implied that these genes might play roles in PTB, and their expression levels might be potential biomarkers for the diagnosis of PTB.

5.
Virology ; 531: 269-279, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30974383

RESUMO

The study evaluated the effects of nucleoprotein viral and the infectious virus in SHK-1 cells. The results show a strong respiratory burst activation and the induction of p47phox, SOD, GLURED, and apoptotic genes. Additionally, the cells alter the profile of SUMOylated proteins by the effect of transfection and infection experiments. In silico analyses show a set of structural motifs in NP susceptible of post-translational modification by the SUMO protein. Interestingly, the inhibition of the NADPH oxidase complex blocked the production of reactive oxygen species and the high level of cellular ROS due to the nucleoprotein and the ISAv. At the same time, the blocking of the p38MAPK signaling pathway and the use of Aristotelia chilensis, decreased viral progeny production. These results suggest that the NP triggers a strong production of ROS and modifying the post-translational profile mediated by SUMO-2/3, a phenomenon that favors the production of new virions.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Isavirus/metabolismo , NADPH Oxidases/metabolismo , Nucleoproteínas/metabolismo , Infecções por Orthomyxoviridae/veterinária , Estresse Oxidativo , Proteínas Virais/metabolismo , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Interações Hospedeiro-Patógeno , Isavirus/genética , NADPH Oxidases/genética , Nucleoproteínas/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Salmão , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Proteínas Virais/genética , Vírion/genética , Vírion/metabolismo
6.
Inflammopharmacology ; 26(2): 349-360, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29027056

RESUMO

Parkinson's disease (PD) pathology is characterized by the abnormal accumulation and aggregation of the pre-synaptic protein α-synuclein in the dopaminergic neurons as Lewy bodies (LBs). Curcumin, which plays a neuroprotective role in various animal models of PD, was found to directly modulate the aggregation of α-synuclein in in vitro as well as in in vivo studies. While curcumin has been shown to exhibit strong anti-oxidant and anti-inflammatory properties, there are a number of other possible mechanisms by which curcumin may alter α-synuclein aggregation which still remains obscure. Therefore, the present study was designed to understand such concealed mechanisms behind neuroprotective effects of curcumin. An animal model of PD was established by injecting lipopolysaccharide (LPS, 5 µg/5 µl PBS) into the substantia nigra (SN) of rats which was followed by curcumin administration (40 mg/kg b.wt (i.p.)) daily for a period of 21 days. Modulatory functions of curcumin were evident from the inhibition of astrocytic activation (GFAP) by immunofluorescence and NADPH oxidase complex activation by RT-PCR. Curcumin supplementation prevented the LPS-induced upregulation in the protein activity of transcription factor NFκB, proinflammatory cytokines (TNF-α, IL-1ß, and IL-1α), inducible nitric oxide synthase (iNOS) as well as the regulating molecules of the intrinsic apoptotic pathway (Bax, Bcl-2, Caspase 3 and Caspase 9) by ELISA. Curcumin also resulted in significant improvement in the glutathione system (GSH, GSSG and redox ratio) and prevented iron deposition in the dopaminergic neurons as depicted from atomic absorption spectroscopy (AAS) and Prussian blue staining, respectively. Curcumin also prevented α-synuclein aggregates in the dopaminergic neurons as observed from gene as well as protein activity of α-synuclein using RT-PCR and IHC. Collectively, our results suggest that curcumin can be further pursued as a candidate drug in the molecules targeted therapy for PD and other related synucleopathies.


Assuntos
Curcumina/farmacologia , Lipopolissacarídeos/farmacologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
7.
Ann Rheum Dis ; 76(9): 1607-1613, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28606963

RESUMO

OBJECTIVES: Ncf1 polymorphisms leading to low production of reactive oxygen species (ROS) are strongly associated with autoimmune diseases in animal models. The human NCF1 gene is very complex with both functional and non-functional gene copies and genotyping requires assays specific for functional NCF1 genes. We aimed at investigating association and function of the missense single nucleotide polymorphism (SNP), rs201802880 (here denoted NCF1-339) in NCF1 with systemic lupus erythematosus (SLE). METHODS: We genotyped the NCF1-339 SNP in 973 Swedish patients with SLE and 1301 controls, using nested PCR and pyrosequencing. ROS production and gene expression of type 1 interferon-regulated genes were measured in isolated cells from subjects with different NCF1-339 genotypes. RESULTS: We found an increased frequency of the NCF1-339 T allele in patients with SLE, 11% compared with 4% in controls, OR 3.0, 95% CI 2.4 to 3.9, p=7.0×10-20. The NCF1-339 T allele reduced extracellular ROS production in neutrophils (p=0.004) and led to an increase expression of type 1 interferon-regulated genes. In addition, the NCF1-339 T allele was associated with a younger age at diagnosis of SLE; mean age 30.3 compared with 35.9, p=2.0×1-6. CONCLUSIONS: These results clearly demonstrate that a genetically controlled reduced production of ROS increases the risk of developing SLE and confirm the hypothesis that ROS regulate chronic autoimmune inflammatory diseases.


Assuntos
Lúpus Eritematoso Sistêmico/genética , NADPH Oxidases/genética , Explosão Respiratória/genética , Adulto , Estudos de Casos e Controles , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Neutrófilos/imunologia , Polimorfismo de Nucleotídeo Único , Espécies Reativas de Oxigênio/metabolismo , Suécia , População Branca/genética
8.
Biogerontology ; 18(1): 55-68, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27734200

RESUMO

Deterioration of adipocyte function due to increased oxidative stress predisposes patients to metabolic disorders in advanced age. However, the roles of tumor suppressors in such conditions remain largely unknown. Therefore, we aimed to address their dynamics in aged adipocytes using a long-term culture model. We compared 3T3-L1 adipocytes at 17-19 days (long-term) with those at 8-10 days (short-term) after initiation of adipogenic induction for mimicking 'aged' and 'young' adipocytes, respectively. H2O2 release and dihydroethidium (DHE) staining was increased, while superoxide dismutase (SOD) activity was reduced in long-term cultured adipocytes, which is suggestive of enhanced oxidative stress in this group. Moreover, qRT-PCR revealed increased mRNAs of Nox4 (a subunit of NADPH oxidase complex), Ccl2 (a proinflammatory chemokine) and Il6 [a marker of senescence-associated secretory phenotype (SASP)] along with decreased levels of Pparγ, Adipoq and Slc2a4 (genes related to glucose metabolism). These alterations were associated with increased expression of the tumor suppressors alternate-reading-frame protein p19Arf (Arf) and p16Ink4a. However, silencing of Arf reduced mRNAs of Adipoq and Slc2a4 and enhanced release of Il6. The effect was opposite in Arf overexpressing adipocytes, which showed reduced superoxide production as assessed with DHE staining and SOD activity. Western blots showed that Arf negatively regulates the phosphorylation of Akt. Luciferase assay in Hela cells additionally suggested that Arf negatively regulates Il6 transcriptional activity through a PI3 K/Akt mediated pathway. These findings strongly suggest that the enhanced Arf expression in oxidative stress plays compensatory protective roles against aging-related dysregulation of gene expression in adipocytes.


Assuntos
Adipócitos/metabolismo , Envelhecimento/metabolismo , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Células 3T3-L1 , Animais , Células HeLa , Humanos , Camundongos , Regulação para Cima/fisiologia
9.
Indian J Pediatr ; 83(4): 345-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865172

RESUMO

Chronic granulomatous disease (CGD) is the most common symptomatic phagocytic defect. It is caused by mutations in genes encoding protein subunits of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. CGD is characterized by a defective intracellular killing of phagocytosed organisms due to a defective oxidative burst in the neutrophils and macrophages. It is inherited in either X-linked recessive or autosomal recessive pattern. Staphylococcus aureus and Aspergillus species are the most common organisms reported. Infections with Burkholderia, Serratia, and Nocardia warrant a screen for CGD. Suppurative lymphadenitis, cutaneous abscesses, pneumonia and diarrhea constitute the most common problems in children with CGD. A small percentage of children develop autoimmune manifestations (e.g., rheumatoid arthritis, systemic lupus erythematosus, colitis, autoimmune hepatitis) and warrant immunosuppression. X-linked carriers of CGD are at an increased risk of developing autoimmune diseases. Nitroblue-tetrazolium dye reduction test and dihydro-rhodamine assay by flow cytometry are the screening tests for this disorder. While most children do well on long term antibiotic and antifungal prophylaxis, those with severe forms warrant hematopoietic stem cell transplant. The role of regular interferon-γ injections is debatable. Evidence for white cell transfusions is sparse, and gene therapy is under trial.This current review highlights various aspects and studies in CGD. X-linked form of CGD has been noted to carry a poorer prognosis compared to autosomal recessive variants. However, recent evidence suggests that outcome in CGD is determined by the amount of residual NADPH oxidase activity irrespective of mode of inheritance.


Assuntos
Doença Granulomatosa Crônica/diagnóstico , Criança , Doença Granulomatosa Crônica/complicações , Doença Granulomatosa Crônica/terapia , Humanos
10.
Behav Brain Res ; 296: 177-190, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26367469

RESUMO

Parkinson's disease (PD), is an age-related, progressive neurodegenerative disorder that affects movement and is characterized by the loss of dopaminergic neurons in the nigrostriatal region. Although the clinical and pathological features of PD are complex, recent studies have indicated that microglial NADPH oxidase play a key role in its pathology. A little information is available regarding the role of apocyanin, an NADPH oxidase inhibitor, in ameliorating α-synuclein aggregation and neurobehavioral consequences of PD. Therefore, the present study evaluated its therapeutic potentials for the treatment of neurobehavioral consequences in lipolysaccharide (LPS) induced PD model. For the establishment of PD model LPS (5 µg/5 µl PBS) was injected into the Substantia nigra (SN) of rats. Apocyanin (10mg/kgb.wt) was injected intraperitoneal. Statistical analysis revealed that apocynin significantly ameliorated LPS induced inflammatory response characterized by NFkB, TNF-α and IL-1ß upregulation as assessed by ELISA. It also prevented dopaminergic neurons from toxic insult of LPS as indicated by inhibition of apoptotic markers i.e., caspase 3 and caspase 9 as depicted from RT-PCR and ELISA studies. This was further supported by TUNEL assay for DNA fragmentation. Effectiveness of apocyanin in protecting dopaminergic neuronal degeneration was further confirmed by assessment of α-synuclein deposition as depicted by IHC analysis. Consequently, an improvement in the behavioral outcome was observed following apocyanin treatment as depicted from various behavioral tests performed. Hence the data suggests that specific NADPH oxidase inhibitors, such as apocynin, may provide a new therapeutic approach to the control of neurological disabilities induced by LPS induced PD.


Assuntos
Acetofenonas/farmacologia , Comportamento Animal/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Lipopolissacarídeos/farmacologia , NADPH Oxidases/antagonistas & inibidores , Doença de Parkinson Secundária/tratamento farmacológico , alfa-Sinucleína/efeitos dos fármacos , Acetofenonas/administração & dosagem , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Masculino , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA