Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Virchows Arch ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162814

RESUMO

Xanthogranulomatous epithelial tumor (XGET) and HMGA2::NCOR2 fusion keratin-positive giant cell-rich tumor (KPGCT) are recently described morphologically overlapping rare neoplastic entities characterized by HMGA2::NCOR2 fusions, low-grade biological behavior, and a strong predilection for young females. To date, 47 cases have been reported with only four occurring in head and neck anatomic locations. In this study, we describe the clinicopathologic, immunohistochemical, and molecular findings of seven XGET/KPGCTs occurring in the head and neck region. The patients were six females and one male, aged 3.5-59 years old (median, 25 years). The tumors involved the ear, vocal cord, skull, neck soft tissue, and sinonasal cavity. Tumor sizes ranged from 1.5 to 6.7 cm. Histologically, the tumors were characterized by xanthogranulomatous histiocytes, osteoclast-like giant cells, and keratin-positive epithelioid cells. The XGET/KPGCTs involving the ear was remarkable for more cytologic atypia than previously described. Four cases had the HMGA2::NCOR2 fusion identified by NGS and three had HMGA2 gene locus alterations by FISH. Follow-up information was available for 3 of 7 patients (range 6-46 months). The patient with a vocal cord XGET/KPGCTs developed a local recurrence treated with excision. This study illustrates that XGET/KPGCTs involves the head and neck region as well, where it may be unexpected and hence under-recognized, and expands the anatomic locations of involvement to include unreported sites (ear, vocal cord, and sinonasal tract).

2.
Am J Hum Genet ; 111(8): 1588-1604, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047730

RESUMO

Histone deacetylase 3 (HDAC3) is a crucial epigenetic modulator essential for various developmental and physiological functions. Although its dysfunction is increasingly recognized in abnormal phenotypes, to our knowledge, there have been no established reports of human diseases directly linked to HDAC3 dysfunction. Using trio exome sequencing and extensive phenotypic analysis, we correlated heterozygous de novo variants in HDAC3 with a neurodevelopmental disorder having variable clinical presentations, frequently associated with intellectual disability, developmental delay, epilepsy, and musculoskeletal abnormalities. In a cohort of six individuals, we identified missense variants in HDAC3 (c.277G>A [p.Asp93Asn], c.328G>A [p.Ala110Thr], c.601C>T [p.Pro201Ser], c. 797T>C [p.Leu266Ser], c.799G>A [p.Gly267Ser], and c.1075C>T [p.Arg359Cys]), all located in evolutionarily conserved sites and confirmed as de novo. Experimental studies identified defective deacetylation activity in the p.Asp93Asn, p.Pro201Ser, p.Leu266Ser, and p.Gly267Ser variants, positioned near the enzymatic pocket. In addition, proteomic analysis employing co-immunoprecipitation revealed that the disrupted interactions with molecules involved in the CoREST and NCoR complexes, particularly in the p.Ala110Thr variant, consist of a central pathogenic mechanism. Moreover, immunofluorescence analysis showed diminished nuclear to cytoplasmic fluorescence ratio in the p.Ala110Thr, p.Gly267Ser, and p.Arg359Cys variants, indicating impaired nuclear localization. Taken together, our study highlights that de novo missense variants in HDAC3 are associated with a broad spectrum of neurodevelopmental disorders, which emphasizes the complex role of HDAC3 in histone deacetylase activity, multi-protein complex interactions, and nuclear localization for proper physiological functions. These insights open new avenues for understanding the molecular mechanisms of HDAC3-related disorders and may inform future therapeutic strategies.


Assuntos
Epigênese Genética , Histona Desacetilases , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Masculino , Feminino , Pré-Escolar , Criança , Deficiência Intelectual/genética , Sequenciamento do Exoma , Adolescente , Deficiências do Desenvolvimento/genética , Fenótipo , Lactente , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo
3.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189150, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971208

RESUMO

Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.


Assuntos
Histona Desacetilases , Humanos , Histona Desacetilases/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Animais , Epigênese Genética
4.
Cell Mol Life Sci ; 81(1): 273, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900294

RESUMO

Long-term memory formation requires de novo RNA and protein synthesis. Using differential display PCR, we found that the NCoR1 cDNA fragment is differentially expressed between fast learners and slow learners, with fast learners showing a lower expression level than slow learners in the water maze learning task. Fast learners also show lower NCoR1 mRNA and protein expression levels. In addition, spatial training decreases both NCoR1 mRNA and protein expression, whereas NCoR1 conditional knockout (cKO) mice show enhanced spatial memory. In studying the molecular mechanism, we found that spatial training decreases the association between NCoR1 and DEC2. Both NCoR1 and DEC2 suppress the expression of BDNF, integrin α3 and SGK1 through C/EBPα binding to their DNA promoters, but overexpression of DEC2 in NCoR1 cKO mice rescues the decreased expression of these proteins compared with NCoR1 loxP mice overexpressing DEC2. Further, spatial training decreases DEC2 expression. Spatial training also enhances C/EBPα binding to Bdnf, Itga3 and Sgk1 promoters, an effect also observed in fast learners, and both NCoR1 and DEC2 control C/EBPα activity. Whereas knockdown of BDNF, integrin α3 or SGK1 expression impairs spatial learning and memory, it does not affect Y-maze performance, suggesting that BDNF, integrin α3 and SGK1 are involved in long-term memory formation, but not short-term memory formation. Moreover, NCoR1 expression is regulated by the JNK/c-Jun signaling pathway. Collectively, our findings identify DEC2 as a novel interacting protein of NCoR1 and elucidate the novel roles and mechanisms of NCoR1 and DEC2 in negative regulation of spatial memory formation.


Assuntos
Aprendizagem em Labirinto , Camundongos Knockout , Correpressor 1 de Receptor Nuclear , Memória Espacial , Animais , Memória Espacial/fisiologia , Camundongos , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Aprendizagem em Labirinto/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Serina-Treonina Quinases , Proteínas Imediatamente Precoces
5.
Cancers (Basel) ; 16(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38792018

RESUMO

Keratin-positive giant cell-rich tumor (KPGCT) is an extremely rare and recently described mesenchymal neoplasm that occurs in both soft tissue and bone, frequently found in young women. It has locally recurrent potential if incompletely excised but low risk for metastasis. KPGCT is histologically similar to conventional giant cell tumors of soft tissue but shows the presence of keratin-positive mononuclear cells. Interestingly, KPGCT also shares some morphological features with xanthogranulomatous epithelial tumors. These two tumors have recently been shown to harbor an HMGA2-NCOR2 fusion, arguing in favor of a single entity. Surgery is the treatment of choice for localized KPGCT. Therapeutic options for advanced or metastatic disease are unknown. This review provides an overview of the current knowledge on the clinical presentation, pathogenesis, histopathology, and treatment of KPGCT. In addition, we will discuss the differential diagnosis of this emerging entity.

6.
Int J Hematol ; 120(2): 157-166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814500

RESUMO

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.


Assuntos
Diferenciação Celular , Eritropoese , Hemina , Leucemia Eritroblástica Aguda , Correpressor 1 de Receptor Nuclear , Humanos , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Células Eritroides/metabolismo , Células Eritroides/citologia , Eritropoese/genética , Técnicas de Silenciamento de Genes , Hemina/farmacologia , Hemoglobinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Células K562 , Leucemia Eritroblástica Aguda/patologia , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética
9.
Cancer Med ; 13(2): e6939, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38379333

RESUMO

Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.


Assuntos
Carcinoma Intraductal não Infiltrante , Neoplasias da Próstata , Masculino , Humanos , Carcinoma Intraductal não Infiltrante/patologia , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Prognóstico
10.
J Mol Cell Cardiol ; 188: 65-78, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38359551

RESUMO

Corepressors negatively regulate gene expression by chromatin compaction. Targeted regulation of gene expression could provide a means to control endothelial cell phenotype. We hypothesize that by targeting corepressor proteins, endothelial angiogenic function can be improved. To study this, the expression and function of nuclear corepressors in human umbilical vein endothelial cells (HUVEC) and in murine organ culture was studied. RNA-seq revealed that nuclear receptor corepressor 1 (NCoR1), silencing mediator of retinoid and thyroid hormone receptors (SMRT) and repressor element-1 silencing transcription factor (REST) are the highest expressed corepressors in HUVECs. Knockout and knockdown strategies demonstrated that the depletion of NCoR1 increased the angiogenic capacity of endothelial cells, whereas depletion of SMRT or REST did not. Interestingly, the effect was VEGF signaling independent. NCoR1 depletion significantly upregulated angiogenesis-associated genes, especially tip cell genes, including ESM1, DLL4 and NOTCH4, as observed by RNA- and ATAC-seq. Confrontation assays comparing cells with and without NCoR1-deficiency revealed that loss of NCoR1 promotes a tip-cell position during spheroid sprouting. Moreover, a proximity ligation assay identified NCoR1 as a direct binding partner of the Notch-signaling-related transcription factor RBPJk. Luciferase assays showed that siRNA-mediated knockdown of NCOR1 promotes RBPJk activity. Furthermore, NCoR1 depletion prompts upregulation of several elements in the Notch signaling cascade. Downregulation of NOTCH4, but not NOTCH1, prevented the positive effect of NCOR1 knockdown on spheroid outgrowth. Collectively, these data indicate that decreasing NCOR1 expression is an attractive approach to promote angiogenic function.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Cromatina , Animais , Humanos , Camundongos , Proteínas Correpressoras , Células Endoteliais da Veia Umbilical Humana , RNA Interferente Pequeno
11.
J Adv Res ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38341030

RESUMO

INTRODUCTION: Nuclear receptor corepressor 1(NCOR1) is reported to play crucial roles in cardiovascular diseases, but its function in the kidney has remained obscure. OBJECTIVE: We aim to elucidate the role of collecting duct NCOR1 in blood pressure (BP) regulation. METHODS AND RESULTS: Collecting duct NCOR1 knockout (KO) mice manifested increased BP and aggravated vascular and renal injury in an angiotensin II (Ang II)-induced hypertensive model. KO mice also showed significantly higher BP than littermate control (LC) mice in deoxycorticosterone acetate (DOCA)-salt model. Further study showed that collecting duct NCOR1 deficiency aggravated volume and sodium retention after saline challenge. Among the sodium transporter in the collecting duct, the expression of the three epithelial sodium channel (ENaC) subunits was markedly increased in the renal medulla of KO mice. Consistently, BP in Ang II-infused KO mice decreased significantly to the similar level as those in LC mice after amiloride treatment. ChIP analysis revealed that NCOR1 deficiency increased the enrichment of mineralocorticoid receptor (MR) on the promoters of the three ENaC genes in primary inner medulla collecting duct (IMCD) cells. Co-IP results showed interaction between NCOR1 and MR, and luciferase reporter results demonstrated that NCOR1 inhibited the transcriptional activity of MR. Knockdown of MR eliminated the increased ENaC expression in primary IMCD cells isolated from KO mice. Finally, BP was significantly decreased in Ang II-infused KO mice after treatment of MR antagonist spironolactone and the difference between LC and KO mice was abolished. CONCLUSIONS: NCOR1 interacts with MR to control ENaC activity in the collecting duct and to regulate sodium reabsorption and ultimately BP. Targeting NCOR1 might be a promising tactic to interrupt the volume and sodium retention of the collecting duct in hypertension.

12.
Surg Pathol Clin ; 17(1): 57-64, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278607

RESUMO

Xanthogranulomatous epithelial tumor is a recently described soft tissue tumor characterized by subcutaneous location, partial encapsulation, a xanthogranulomatous inflammatory cell infiltrate, and keratin-positive mononuclear cells. It shares some morphologic features with keratin-positive, giant cell-rich soft tissue tumors. Both have recently been shown to harbor HMGA2::NCOR2 fusions. The relationship between these tumors and their differential diagnosis with other osteoclast-containing soft tissue tumors is discussed.


Assuntos
Carcinoma , Tumores de Células Gigantes , Neoplasias de Tecidos Moles , Humanos , Queratinas , Tumores de Células Gigantes/diagnóstico , Tumores de Células Gigantes/genética , Tumores de Células Gigantes/patologia , Células Gigantes/patologia , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Carcinoma/patologia , Granuloma/patologia
13.
Proc Natl Acad Sci U S A ; 121(2): e2316104121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165941

RESUMO

The nuclear receptor corepressor (NCoR) forms a complex with histone deacetylase 3 (HDAC3) that mediates repressive functions of unliganded nuclear receptors and other transcriptional repressors by deacetylation of histone substrates. Recent studies provide evidence that NCoR/HDAC3 complexes can also exert coactivator functions in brown adipocytes by deacetylating and activating PPARγ coactivator 1α (PGC1α) and that signaling via receptor activator of nuclear factor kappa-B (RANK) promotes the formation of a stable NCoR/HDAC3/PGC1ß complex that coactivates nuclear factor kappa-B (NFκB)- and activator protein 1 (AP-1)-dependent genes required for osteoclast differentiation. Here, we demonstrate that activation of Toll-like receptor (TLR) 4, but not TLR3, the interleukin 4 (IL4) receptor nor the Type I interferon receptor, also promotes assembly of an NCoR/HDAC3/PGC1ß coactivator complex. Receptor-specific utilization of TNF receptor-associated factor 6 (TRAF6) and downstream activation of extracellular signal-regulated kinase 1 (ERK1) and TANK-binding kinase 1 (TBK1) accounts for the common ability of RANK and TLR4 to drive assembly of an NCoR/HDAC3/PGC1ß complex in macrophages. ERK1, the p65 component of NFκB, and the p300 histone acetyltransferase (HAT) are also components of the induced complex and are associated with local histone acetylation and transcriptional activation of TLR4-dependent enhancers and promoters. These observations identify a TLR4/TRAF6-dependent signaling pathway that converts NCoR from a corepressor of nuclear receptors to a coactivator of NFκB and AP-1 that may be relevant to functions of NCoR in other developmental and homeostatic processes.


Assuntos
Histonas , Fator 6 Associado a Receptor de TNF , Ativação Transcricional , Proteínas Correpressoras/genética , Histonas/genética , Histonas/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Transcrição AP-1/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
14.
Neurosci Lett ; 822: 137643, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38242347

RESUMO

Given the established role of nuclear receptor corepressor 1 (NCoR1) in sensing environmental cues and the importance of inflammation in neurodegenerative diseases, elucidation of NCoR1 involvement in neuroinflammation has notable implications. Yet, its regulatory mechanism remains largely unclear. Under in vitro conditions, NCoR1 expression peaked and then decreased at 12 h after lipopolysaccharides (LPS) stimulation in BV2 cells, However, NCoR1 knockdown using si-RNA attenuated microglial inflammation, evident by reduced the levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), phosphorylated-JNK and high mobility group box-1 (HMGB1). Furthermore, NCoR1 suppression could counteract the decline in mitochondrial membrane potential while simultaneously enhancing the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Under in vivo conditions, microglia-specific NCoR1 knockout (MNKO) mice after LPS injections alleviated the symptoms of anhedonia, diminished autonomic activity and cognitive impairment. Additionally, MNKO mice showed attenuation of microglial activation, downregulated HMGB1 and COX2, and upregulated PGC-1α expression in the cortex. In conclusion, these findings suggest that NCoR1 deficiency leads to a modest reduction in neuroinflammation, possibly attributed to the increased expression of PGC-1α.


Assuntos
Proteína HMGB1 , Doenças Neuroinflamatórias , Camundongos , Animais , Microglia/metabolismo , Proteína HMGB1/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Proteínas Correpressoras/metabolismo
15.
Autophagy ; 20(3): 697-698, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953605

RESUMO

Mycobacterium tuberculosis (Mtb) employs a multifaceted arsenal to elude host defense mechanisms, including those associated with autophagy and lysosome function. Within the realm of host-pathogen interactions, NCOR1, a well-recognized transcriptional co-repressor, is known to associate with a multitude of protein complexes to effect the repression of a diverse spectrum of genes. However, its role in regulating macroautophagy/autophagy, lysosome biogenesis, and, by extension, Mtb pathogenesis remains unexplored. The depletion of NCOR1 assumes a pivotal role in the control of the AMPK-MTOR-TFEB signaling axis, thereby fine-tuning cellular ATP homeostasis. This finely orchestrated adjustment further alters the profile of proteins involved in autophagy and lysosomal biogenesis through its master regulator, TFEB, culminating in the increased Mtb survival within the host milieu. Furthermore, the treatment of NCOR1-depleted cells with either rapamycin, antimycin A, or metformin demonstrates a capacity to restore the TFEB activity and LC3-II levels, consequently restoring the capacity of host cells to clear Mtb. Additionally, exogenous NCOR1 expression rescues the AMPK-MTOR-TFEB signaling axis and essentially the autophagic induction machinery. Overall, these findings demonstrate a crucial role of NCOR1 in regulating Mtb pathogenesis within myeloid cells and sheds light toward its involvement in the development of novel host-directed therapies.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Autofagia/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Lisossomos/metabolismo
16.
Hum Pathol ; 143: 1-4, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993023

RESUMO

"Xanthogranulomatous epithelial tumor" (XGET) and "keratin-positive giant cell-rich soft tissue tumor" (KPGCT), two recently described mesenchymal neoplasms, likely represent different aspects of a single entity. Both tumors are composed of only a small minority of tumor cells surrounded by large numbers of non-neoplastic inflammatory cells and histiocytes, suggesting production of a paracrine factor with resulting "landscape effect," as seen in tenosynovial giant cell tumor. Recent evidence suggests that the paracrine factor in XGET/KPGCT may be CSF1, as in tenosynovial giant cell tumor. We hypothesized that CSF1 is overexpressed in XGET/KPGCT. To test our hypothesis, we performed quantitative real time PCR (qPCR) for CSF1 expression and CSF1 RNAscope chromogenic in situ hybridization (CISH) on 6 cases of XGET/KPGCT. All cases were positive with CSF1 CISH and showed increased expression of CSF1 by qPCR. Our findings provide additional evidence that the CSF1/CSF1R pathway is involved in the pathogenesis of XGET/KPGCT. These findings suggest a possible role for CSF1R inhibition in the treatment of unresectable or metastatic XGET/KPGCT.


Assuntos
Carcinoma , Tumor de Células Gigantes de Bainha Tendinosa , Tumores de Células Gigantes , Neoplasias de Tecidos Moles , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Queratinas , Tumores de Células Gigantes/metabolismo , Tumores de Células Gigantes/patologia , Neoplasias de Tecidos Moles/patologia , Células Gigantes/patologia
17.
Anticancer Res ; 43(11): 4801-4807, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37909960

RESUMO

BACKGROUND/AIM: B-cell lymphomas are characterized by diverse genetic anomalies affecting B-cell differentiation. To expand targeted therapies, an in-depth grasp of the molecular dynamics in the germinal center (GC) is vital. Transducin ß-like 1 X-linked receptor 1 (TBL1XR1) and nuclear receptor corepressor 1 (NCOR1) are instrumental within the GC, modulating myriad oncogenic pathways. Their prognostic roles in various cancers are established, yet their precise impact on B-cell lymphoma is elusive. MATERIALS AND METHODS: Digital RNA quantification (Nanostring) of previously curated 188 B-cell lymphoma specimens across four subtypes, follicular lymphoma (FL), diffuse large B-cell lymphoma, not otherwise specified (DLBCL-NOS), primary testicular lymphoma (PTL), and plasmablastic lymphoma (PBL), was reanalyzed with focus on TBL1XR1 and NCOR1 expression, juxtaposing them with 730 ontogenically linked genes. RESULTS: Notably, TBL1XR1 expression was significantly elevated in the PTL- ABC-subtype versus DLBCL-NOS- ABC-subtype (p<0.001), with no marked disparity in GCB-subtypes between them. The median TBL1XR1 expression was remarkably diminished in FL, yet, intriguingly, GCB-subtypes of DLBCL-NOS exhibited significantly enhanced expression compared to FL (p=0.001). In contrast, NCOR1's expression trajectory was consistent across DLBCL-NOS, PTL, and PBL. A strong inverse correlation between TBL1XR1 and NCOR1 was observed in PBL (p=0.001). Importantly, TBL1XR1's pronounced association with several DNA Damage repair (DDR) genes was noted suggesting influence on DNA repair. TBL1XR1-DDR gene signature was further validated employing a public data set of DLBCL-NOS. CONCLUSION: Our exploratory findings unravel the expression patterns of TBL1XR1/NCOR1 in B-cell lymphoma variants. The TBL1XR1-DDR genes connection offers insights into potential DNA repair roles, paving avenues for innovative therapies in B-cell lymphomas.


Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Linfoma Plasmablástico , Humanos , Linfoma Difuso de Grandes Células B/genética , Reparo do DNA , Dano ao DNA , Proteínas Repressoras/genética , Receptores Citoplasmáticos e Nucleares/genética , Correpressor 1 de Receptor Nuclear/genética
18.
Front Mol Biosci ; 10: 1190094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674539

RESUMO

Histone deacetylase 3 (HDAC3) and nuclear receptor co-repressor (NCoR1/2) are epigenetic regulators that play a key role in gene expression and metabolism. HDAC3 is a class I histone deacetylase that functions as a transcriptional co-repressor, modulating gene expression by removing acetyl groups from histones and non-histone proteins. NCoR1, on the other hand, is a transcriptional co-repressor that interacts with nuclear hormone receptors, including peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor (LXR), to regulate metabolic gene expression. Recent research has revealed a functional link between HDAC3 and NCoR1 in the regulation of metabolic gene expression. Genetic deletion of HDAC3 in mouse models has been shown to improve glucose intolerance and insulin sensitivity in the liver, skeletal muscle, and adipose tissue. Similarly, genetic deletion of NCoR1 has improved insulin resistance and reduced adiposity in mouse models. Dysregulation of this interaction has been associated with the development of cardio-metabolic diseases such as cardiovascular diseases, obesity and type 2 diabetes, suggesting that targeting this pathway may hold promise for the development of novel therapeutic interventions. In this review, we summarize the current understanding of individual functions of HDAC3 and NCoR1/2 and the co-repressor complex formation (HDAC3/NCoR1/2) in different metabolic tissues. Further studies are needed to thoroughly understand the mechanisms through which HDAC3, and NCoR1/2 govern metabolic processes and the implications for treating metabolic diseases.

19.
Animals (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685048

RESUMO

The aims of this study were to examine the effect of luteotropic and luteolytic factors on the mRNA and protein expression of the coactivators HAT: histone acetyltransferase p300 (P300), cyclic adenosine monophosphate response element-binding protein (CREB), and steroid receptor coactivator-1 (SRC-1) and the corepressor: nuclear receptor corepressor-2 (NCOR-2) in bovine luteal cells on days 6-10 and 16-20. HAT and HDAC activities were also measured. The obtained results showed that luteotropic and luteolytic factors influence changes in the mRNA and protein levels of the coregulators of PGRs. However, they did not affect the activity of related HAT and HDAC, respectively. Therefore, it is possible that these factors, through changes in the expression of nuclear receptor coactivators and corepressors, may affect the functioning of the nuclear receptors, including PGRs, in the bovine CL.

20.
Mol Cell ; 83(19): 3421-3437.e11, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751740

RESUMO

The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1ß with the NCoR/HDAC3 complex, resulting in the activation of PGC1ß and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.


Assuntos
Osteoclastos , RNA , Humanos , Camundongos , Animais , Proteínas Correpressoras/genética , Osteoclastos/metabolismo , Ligante RANK/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA