Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Plant Physiol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186533

RESUMO

Saline-alkali stress is a widely distributed abiotic stress that severely limits plant growth. γ-Aminobutyric acid (GABA) accumulates rapidly in plants under saline-alkali stress, but the underlying molecular mechanisms and associated regulatory networks remain unclear. Here, we report a MYB-like protein, I-box binding factor (SlMYBI), which positively regulates saline-alkali tolerance through induced GABA accumulation by directly modulating the glutamic acid decarboxylase (GAD) gene SlGAD1 in tomato (Solanum lycopersicum L.). Overexpression of SlGAD1 increased GABA levels and decreased reactive oxygen species (ROS) accumulation under saline-alkali stress, while silencing of SlGAD1 further suggested that SlGAD1 plays an active role in GABA synthesis and saline-alkali tolerance of tomato. In addition, we found that SlMYBI activates SlGAD1 transcription. Both overexpression of SlMYBI and editing of SlMYBI using CRISPR/Cas9 showed that SlMYBI regulates GABA synthesis by modulating SlGAD1 expression. Furthermore, the interaction of SlNF-YC1 with SlMYBI enhanced the transcriptional activity of SlMYBI on SlGAD1 to further improve saline-alkali tolerance in tomato. Interestingly, we found that ethylene signaling was involved in the GABA response to saline-alkali stress by RNA-seq analysis of SlGAD1-overexpressing lines. This study elucidates the involvement of SlMYBI in GABA synthesis regulation. Specifically, the SlMYBI-SlNF-YC1 module is involved in GABA accumulation in response to saline-alkali stress.

2.
Plant Physiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028839

RESUMO

The involvement of nuclear factor Y (NF-Y) in transcriptional reprogramming during arbuscular mycorrhizal symbiosis has been demonstrated in several plant species. However, a comprehensive picture is lacking. We showed that the spatial expression of NF-YC3 was observed in cortical cells containing arbuscules via the cis-regulatory element GCC boxes. Moreover, the NF-YC3 promoter was transactivated by the combination of CYCLOPS and autoactive calcium and calmodulin-dependent kinase (CCaMK) via GCC boxes. Knockdown of NF-YC3 significantly reduced the abundance of all intraradical fungal structures and affected arbuscule size. BCP1, SbtM1, and WRI5a, whose expression associated with NF-YC3 levels, might be downstream of NF-YC3. NF-YC3 interacted with NF-YB3a, NF-YB5c, or NF-YB3b, in yeast (Saccharomyces cerevisiae) and in planta, and interacted with NF-YA3a in yeast. Spatial expression of three NF-YBs was observed in all cell layers of roots under both mock and mycorrhizal conditions. Simultaneous knockdown of three NF-YBs, but not individually, reduced the fungal colonization level, suggesting that there might be functional redundancy of NF-YBs to regulate AM symbiosis. Collectively, our data suggest that NF-YC3 and NF-YBs positively regulate AM symbiosis in tomato, and arbuscule-related NF-YC3 may be an important downstream gene of the common symbiosis signaling pathway.

3.
Genes Genomics ; 46(8): 927-940, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877289

RESUMO

BACKGROUND: The Nuclear Factor Y (NF-Y) transcription factor (TF) gene family plays a crucial role in plant development and response to stress. Limited information is available on this gene family in sugarcane. OBJECTIVES: To identify sugarcane NF-Y genes through bioinformatic analysis and phylogenetic association and investigate the expression of these genes in response to abiotic and biotic stress. METHODS: Sugarcane NF-Y genes were identified using comparative genomics from functionally annotated Poaceae and Arabidopsis species. Quantitative PCR and transcriptome analysis assigned preliminary functional roles to these genes in response to water deficit, cold and African sugarcane borer (Eldana saccharina) infestation. RESULTS: We identify 21 NF-Y genes in sugarcane. Phylogenetic analysis revealed three main branches representing the subunits with potential discrepancies present in the assignment of numerical names of some NF-Y putative orthologs across the different species. Gene expression analysis indicated that three genes, ShNF-YA1, A3 and B3 were upregulated and two genes, NF-YA4 and A7 were downregulated, while three genes were upregulated, ShNF-YB2, B3 and C4, in the plants exposed to water deficit and cold stress, respectively. Functional involvement of NF-Y genes in the biotic stress response were also detected where three genes, ShNF-YA6, A3 and A7 were downregulated in the early resistant (cv. N33) response to Eldana infestation whilst only ShNF-YA6 was downregulated in the susceptible (cv. N11) early response. CONCLUSIONS: Our research findings establish a foundation for investigating the function of ShNF-Ys and offer candidate genes for stress-resistant breeding and improvement in sugarcane.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Saccharum , Saccharum/genética , Saccharum/parasitologia , Animais , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Temperatura Baixa , Mariposas/genética
4.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474276

RESUMO

Cymbidium sinense, a type of orchid plant, is more drought-resistant and ornamental than other terrestrial orchids. Research has shown that many members of the NUCLEAR FACTOR Y (NF-Y) transcription factor family are responsive to plant growth, development, and abiotic stress. However, the mechanism of the NF-Y gene family's response to abiotic stress in orchids has not yet been reported. In this study, phylogenetic analysis allowed for 27 CsNF-Y genes to be identified (5 CsNF-YAs, 9 CsNF-YBs, and 13 CsNF-YC subunits), and the CsNF-Ys were homologous to those in Arabidopsis and Oryza. Protein structure analysis revealed that different subfamilies contained different motifs, but all of them contained Motif 2. Secondary and tertiary protein structure analysis indicated that the CsNF-YB and CsNF-YC subfamilies had a high content of alpha helix structures. Cis-element analysis showed that elements related to drought stress were mainly concentrated in the CsNF-YB and CsNF-YC subfamilies, with CsNF-YB3 and CsNF-YC12 having the highest content. The results of a transcriptome analysis showed that there was a trend of downregulation of almost all CsNF-Ys in leaves under drought stress, while in roots, most members of the CsNF-YB subfamily showed a trend of upregulation. Additionally, seven genes were selected for real-time reverse transcription quantitative PCR (qRT-PCR) experiments. The results were generally consistent with those of the transcriptome analysis. The regulatory roles of CsNF-YB 1, 2, and 4 were particularly evident in the roots. The findings of our study may make a great contribution to the understanding of the role of CsNF-Ys in stress-related metabolic processes.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Secas , Filogenia , Genoma de Planta , Fator de Ligação a CCAAT/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
5.
Cell Rep ; 43(3): 113825, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38386555

RESUMO

Jasmonate (JA) is a well-known phytohormone essential for plant response to biotic stress. Recently, a crucial role of JA signaling in salt resistance has been highlighted; however, the specific regulatory mechanism remains largely unknown. In this study, we found that the NUCLEAR FACTOR-Y (NF-Y) subunits NF-YA1, NF-YB2, and NF-YC9 form a trimeric complex that positively regulates the expression of salinity-responsive genes, whereas JASMONATE-ZIM DOMAIN protein 8 (JAZ8) directly interacts with three subunits and acts as the key repressor to suppress both the assembly of the NF-YA1-YB2-YC9 trimeric complex and the transcriptional activation activity of the complex. When plants encounter high salinity, JA levels are elevated and perceived by the CORONATINE INSENSITIVE (COI) 1 receptor, leading to the degradation of JAZ8 via the 26S proteasome pathway, thereby releasing the activity of the NF-YA1-YB2-YC9 complex, initiating the activation of salinity-responsive genes, such as MYB75, and thus enhancing the salinity tolerance of plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Plant Physiol Biochem ; 204: 108143, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37913748

RESUMO

The complex of Nuclear Factor Ys (NF-Ys), a family of heterotrimeric transcription factors composed of three unique subunits (NF-YA, NF-YB, and NF-YC), binds to the CCAAT box of eukaryotic promoters to activate or repress transcription of the downstream genes involved into various biological processes in plants. However, the systematic characterization of NF-Y gene family has not been elucidated in Phalaenopsis. A total of 24 NF-Y subunits (4 NF-YA, 9 NF-YB, and 11 NF-YC subunits) were identified in Phalaenopsis genome, whose exon/intron structures were highly differentiated among the PhNF-Y subunits. The distribution of motifs between coding regions of PhNF-YA and PhNF-YB/C was distinct. Segmental and tandem duplication events among paralogous PhNF-Ys were occurred. Six pairs of orthologous NF-Ys from Phalaenopsis and Arabidopsis and five pairs of orthologous NF-Ys from Phalaenopsis and rice involved in the phylogenetic gene synteny were identified. The various cis-elements being responsive to low-temperature, drought and ABA were distributed in the promoters of PhNF-Ys. qRT-PCR analysis indicated all of PhNF-Ys displayed the spatial specificity of expression in different tissues. Moreover, the expression levels of multiple PhNF-Ys significantly changed responding to low-temperature and ABA treatment. Yeast two hybrid and bimolecular fluorescence complementation assays approved the interaction of PhNF-YA1/3 with PhNF-YB6/PhNF-YC7, respectively, as well as PhNF-YB6 with PhNF-YC7. PhNF-YA1/3, PhNF-YB6, and PhNF-YC7 proteins were all localized in the nucleus. Further, transient overexpression of PhNF-YB6 and PhNF-YC7 promoted PhFT3 and repressed PhSVP expression in Phalaenopsis. These findings will facilitate to explore the role of PhNF-Ys in floral transition in Phalaenopsis orchid.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Yakugaku Zasshi ; 143(9): 729-744, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37661439

RESUMO

Cellular aging is one of the most extraordinary phenomena that mammalian cells undergo in vivo and in vitro. We have been observing their behavior for approximately 4 decades and here would like to summarize some of our salient findings. Normal cells such as human diploid cells exhibit finite growth potential in vitro as well as a set of senescent cell phenotypes. Those changes appear probabilistic and irreversible. In the search of the factor(s) to evoke the features we have observed that cellular glycosaminoglycan molecules plays significant roles in the cell physiology. Besides, CCAAT-box binding transcription factor NF-Y relates to the aging-coupled changes in gene expression, and aging of gastric mucosal cells may relate to a decrease in cytoprotection. As to the intracellular signaling, we have confirmed that the breakdown of phosphatidylinositol bisphosphate is critical for mitogenesis by using micro-injection of its antibody. Subsequently, we have discovered a novel, pivotal adaptor protein Grb2/Ash, a missing link between the receptor tyrosine kinases and their downstream target Ras. The limiting factors for the cellular life span have been considered as telomere shortening and accumulation of cellular and genomic damages. We have observed that telomerase-expressing cells exhibit expanded division potential; yet oxidative stress similarly induces senescent cell phenotypes. Herein we have demonstrated that the treatment of senescent cells with nicotinamide or related reagents elicits unique cellular responses, which might indicate the capability of the cells to recover from the aging.


Assuntos
Gerociência , Transdução de Sinais , Humanos , Animais , Envelhecimento , Longevidade , Células Cultivadas , Mamíferos
8.
Proc Natl Acad Sci U S A ; 120(36): e2303859120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639593

RESUMO

Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.


Assuntos
Rabdomiossarcoma , Fator de Ligação a CCAAT/genética , Diferenciação Celular/genética , Aberrações Cromossômicas , Rabdomiossarcoma/genética , Fatores de Transcrição
9.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569274

RESUMO

Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is a widely consumed vegetable in southern China with significant economic value. Developing product organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor known for its crucial role in various plant developmental processes. However, there is limited information available on the involvement of this gene family during flowering during Chinese cabbage development. In this study, 49 BcNF-Y genes were identified and characterized along with their physicochemical properties, gene structure, chromosomal location, collinearity, and expression patterns. We also conducted subcellular localization, yeast two-hybrid, and transcriptional activity assays on selected BcNF-Y genes. The findings of this study revealed enhanced expression levels of specific BcNF-Y genes during the stalk development and flowering stages in flowering Chinese cabbage. Notably, BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-YC5 interacted with BcRGA1, a negative regulator of GA signaling, indicating their potential involvement in GA-mediated stalk development. This study provides valuable insights into the role of BcNF-Y genes in flowering Chinese cabbage development and suggests that they are potential candidates for further investigating the key regulators of cabbage bolting and flowering.

10.
Cancer Lett ; 567: 216262, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307894

RESUMO

Aberrant splicing events are associated with colorectal cancer (CRC) and provide new opportunities for tumor diagnosis and treatment. The expression of the splice variants of NF-YA, the DNA binding subunit of the transcription factor NF-Y, is deregulated in multiple cancer types compared to healthy tissues. NF-YAs and NF-YAl isoforms differ in the transactivation domain, which may result in distinct transcriptional programs. In this study, we demonstrated that the NF-YAl transcript is higher in aggressive mesenchymal CRCs and predicts shorter patients' survival. In 2D and 3D conditions, CRC cells overexpressing NF-YAl (NF-YAlhigh) exhibit reduced cell proliferation, rapid single cell amoeboid-like migration, and form irregular spheroids with poor cell-to-cell adhesion. Compared to NF-YAshigh, NF-YAlhigh cells show changes in the transcription of genes involved in epithelial-mesenchymal transition, extracellular matrix and cell adhesion. NF-YAl and NF-YAs bind similarly to the promoter of the E-cadherin gene, but oppositely regulate its transcription. The increased metastatic potential of NF-YAlhigh cells in vivo was confirmed in zebrafish xenografts. These results suggest that the NF-YAl splice variant could be a new CRC prognostic factor and that splice-switching strategies may reduce metastatic CRC progression.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Peixe-Zebra/genética , Fatores de Transcrição , Neoplasias do Colo/genética , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular , Sorbitol , Movimento Celular/genética , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
11.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555422

RESUMO

Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that binds to the CCAAT cis-element in the promoters of target genes and plays critical roles in plant growth, development, and stress responses. In the present study, we aimed to re-characterize the ClNF-Y family in watermelon, examine the assembly of ClNF-Y complexes, and explore their possible involvement in disease resistance. A total of 25 ClNF-Y genes (7 ClNF-YAs, 10 ClNF-YBs, and 8 ClNF-YCs) were identified in the watermelon genome. The ClNF-Y family was comprehensively characterized in terms of gene and protein structures, phylogenetic relationships, and evolution events. Different types of cis-elements responsible for plant growth and development, phytohormones, and/or stress responses were identified in the promoters of the ClNF-Y genes. ClNF-YAs and ClNF-YCs were mainly localized in the nucleus, while most of the ClNF-YBs were localized in the cytoplasm of cells. ClNF-YB5, -YB6, -YB7, -YB8, -YB9, and -YB10 interacted with ClNF-YC2, -YC3, -YC4, -YC5, -YC6, -YC7, and -YC8, while ClNF-YB1 and -YB3 interacted with ClNF-YC1. A total of 37 putative ClNF-Y complexes were identified, e.g., ClNF-YA1, -YA2, -YA3, and -YA7 assembled into 13, 8, 8, and 8 ClNF-Y complexes with different ClNF-YB/-YC heterodimers. Most of the ClNF-Y genes responded with distinct expression patterns to defense hormones such as salicylic acid, methyl jasmonate, abscisic acid, and ethylene precursor 1-aminocyclopropane-1-carboxylate, and to infection by the vascular infecting fungus Fusarium oxysporum f. sp. niveum. Overexpression of ClNF-YB1, -YB8, -YB9, ClNF-YC2, and -YC7 in transgenic Arabidopsis resulted in an earlier flowering phenotype. Overexpression of ClNF-YB8 in Arabidopsis led to enhanced resistance while overexpression of ClNF-YA2 and -YC2 resulted in decreased resistance against Botrytis cinerea. Similarly, overexpression of ClNF-YA3, -YB1, and -YC4 strengthened resistance while overexpression of ClNF-YA2 and -YB8 attenuated resistance against Pseudomonas syringae pv. tomato DC3000. The re-characterization of the ClNF-Y family provides a basis from which to investigate the biological functions of ClNF-Y genes in respect of growth, development, and stress response in watermelon, and the identification of the functions of some ClNF-Y genes in disease resistance enables further exploration of the molecular mechanism of ClNF-Ys in the regulation of watermelon immunity against diverse pathogens.


Assuntos
Arabidopsis , Citrullus , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Filogenia , Citrullus/genética , Citrullus/metabolismo , Regulação da Expressão Gênica de Plantas , Fator de Ligação a CCAAT/metabolismo , Hormônios
12.
Int J Biol Macromol ; 223(Pt A): 202-212, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36347378

RESUMO

Phosphatidyl ethanolamine-binding protein (PEBP) has a conserved PEBP domain and plays an important role in regulating the flowering time and growth of angiosperms. To understand the evolution of PEBP family genes in walnut family and the mechanism of regulating flowering in photoperiod pathway, 53 genes with PEBP domain were identified from 5 Juglandaceae plants. The PEBP gene family of Juglandaceae can be divided into four subgroups, FT-like, TFL-like, MFT-like and PEBP-like subgroups. These genes all show very high homology for motifs and gene structure in Juglandaceae. In addition, the results of gene replication and collinearity analysis showed that the evolution of PEBP genes was mainly purified and selected, and segmental repetition was the main driving force for the evolution of PEBP gene family in walnut family. We found that PEBP gene family played an important role in female flower bud differentiation, and most JrPEBP genes were highly expressed in leaf bud and female flower bud by qRT-PCR. In Arabidopsis, AtCO can not only directly bind to CORE2, but also interact with NF-Y complex to positively regulate the expression of AtFT gene. In this study, we proved that JrCO (the lineal homologue of AtCO) could not directly regulate the expression of JrFT gene, but could enhance the binding of JrNF-YB4/6 protein to the promoter of JrFT gene by forming a heteropolymer with NF-YB4/NF-YB6. We also confirmed that JrNF-YC1/3/7, JrNF-YB4/6 and JrCO can form a trimer structure similar to AtNF-YB-YC-CO of Arabidopsis, and then bind to the promoter of JrFT gene to promote the transcription of JrFT gene. In a word, through identification and analysis of PEBP gene family in Juglandaceae and study on the mechanism of photoperiod pathway regulating flowering in walnut, we have found that nuclear transcription factor NF-YB/YC plays a more important role in the trimer structure of NF-YB-YC-CO in walnut species. Our study has further perfected the flowering regulatory network of walnut species.


Assuntos
Arabidopsis , Juglandaceae , Juglans , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Proteínas de Plantas/química , Filogenia , Juglans/genética
13.
Front Bioeng Biotechnol ; 10: 956271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185440

RESUMO

Plant nuclear factor-Y (NF-Y) transcription factors (TFs) are key regulators of growth and stress resistance. However, the role of NF-Y TFs in poplar in response to biotic stress is still unclear. In this study, we cloned 26 PdbNF-Y encoding genes in the hybrid poplar P. davidiana × P. bollena, including 12 PdbNF-YAs, six PdbNF-YBs, and eight PdbNF-YCs. Their physical and chemical parameters, conserved domains, and phylogeny were subsequently analyzed. The protein-protein interaction (PPI) network showed that the three PdbNF-Y subunits may interact with NF-Y proteins belonging to two other subfamilies and other TFs. Tissue expression analysis revealed that PdbNF-Ys exhibited three distinct expression patterns in three tissues. Cis-elements related to stress-responsiveness were found in the promoters of PdbNF-Ys, and most PdbNF-Ys were shown to be differentially expressed under Alternaria alternata and hormone treatments. Compared with the PdbNF-YB and PdbNF-YC subfamilies, more PdbNF-YAs were significantly induced under the two treatments. Moreover, loss- and gain-of-function analyses showed that PdbNF-YA11 plays a positive role in poplar resistance to A. alternata. Additionally, RT‒qPCR analyses showed that overexpression and silencing PdbNF-YA11 altered the transcript levels of JA-related genes, including LOX, AOS, AOC, COI, JAZ, ORCA, and MYC, suggesting that PdbNF-YA11-mediated disease resistance is related to activation of the JA pathway. Our findings will contribute to functional analysis of NF-Y genes in woody plants, especially their roles in response to biotic stress.

14.
Exp Cell Res ; 420(1): 113307, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028059

RESUMO

The CCAAT motif-binding factor NF-Y consists of three different subunits, NF-YA, NF-YB, and NF-YC. Although it is suggested that NF-Y activity is essential for normal tissue homeostasis, survival, and metabolic function, its precise role in lipid metabolism is not clarified yet. In Drosophila, eye disc specific knockdown of Drosophila NF-YA (dNF-YA) induced aberrant morphology of the compound eye, the rough eye phenotype in adults and mutation of the lipase 4 (lip4) gene suppressed the rough eye phenotype. RNA-seq analyses with dNF-YA knockdown third instar larvae identified the lip4 gene as one of the genes that are up-regulated by the dNF-YA knockdown. We identified three dNF-Y-binding consensuses in the 5'flanking region of the lip4 gene, and a chromatin immunoprecipitation assay with the specific anti-dNF-YA IgG demonstrated dNF-Y binding to this genomic region. The luciferase transient expression assay with cultured Drosophila S2 cells and the lip4 promoter-luciferase fusion genes with and without mutations in the dNF-Y-binding consensuses showed that each of the three dNF-Y consensus sequences negatively regulated lip4 gene promoter activity. Consistent with these results, qRT-PCR analysis with the dNF-YA knockdown third instar larvae revealed that endogenous lip4 mRNA levels were increased by the knockdown of dNF-YA in vivo. The specific knockdown of dNF-YA in the fat body with the collagen-GAL4 driver resulted in smaller oil droplets in the fat body cells. Collectively, these results suggest that dNF-Y is involved in lipid storage through its negative regulation of lip4 gene transcription.


Assuntos
Drosophila , Fatores de Transcrição , Animais , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Drosophila/metabolismo , Genes vif , Imunoglobulina G/metabolismo , Lipase/genética , Lipase/metabolismo , Lipídeos , Luciferases/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
15.
BMC Plant Biol ; 22(1): 320, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787249

RESUMO

Jilin ginseng (Panax ginseng C. A. Meyer) has a long history of medicinal use worldwide. The quality of ginseng is governed by a variety of internal and external factors. Nuclear factor Y (NF-Y), an important transcription factor in eukaryotes, plays a crucial role in the plant response to abiotic stresses by binding to a specific promoter, the CCAAT box. However, the NF-Y gene family has not been reported in Panax ginseng. In this study, 115 PgNF-Y transcripts with 40 gene IDs were identified from the Jilin ginseng transcriptome database. These genes were classified into the PgNF-YA (13), PgNF-YB (14), and PgNF-YC (13) subgroups according to their subunit types, and their nucleotide sequence lengths, structural domain information, and amino acid sequence lengths were analyzed. The phylogenetic analysis showed that the 79 PgNF-Y transcripts with complete ORFs were divided into three subfamilies, NF-YA, NF-YB, and NF-YC. PgNF-Y was annotated to eight subclasses under three major functions (BP, MF, and CC) by GO annotation, indicating that these transcripts perform different functions in ginseng growth and development. Expression pattern analysis of the roots of 42 farm cultivars, 14 different tissues of 4-year-old ginseng plants, and the roots of 4 different-ages of ginseng plants showed that PgNF-Y gene expression differed across lineages and had spatiotemporal specificity. Coexpression network analysis showed that PgNF-Ys acted synergistically with each other in Jilin ginseng. In addition, the analysis of the response of PgNF-YB09, PgNF-YC02, and PgNF-YC07-04 genes to salt stress treatment was investigated by fluorescence quantitative PCR. The expression of these genes increased after salt stress treatment, indicating that they may be involved in the regulation of the response to salt stresses in ginseng. These results provide important functional genetic resources for the improvement and gene breeding of ginseng in the future.Conclusions: This study fills a knowledge gap regarding the NF-Y gene family in ginseng, provides systematic theoretical support for subsequent research on PgNF-Y genes, and provides data resources for resistance to salt stress in ginseng.


Assuntos
Panax , Fator de Ligação a CCAAT , Regulação da Expressão Gênica de Plantas , Panax/genética , Panax/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Estresse Salino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
16.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742869

RESUMO

Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that plays an important role in various biological processes in plants, such as flowering regulation, drought resistance, and salt stress. However, few in-depth studies investigated the alfalfa NF-Y gene family. In this study, in total, 60 MsNF-Y genes, including 9 MsNF-YAs, 26 MsNF-YBs, and 25 MsNF-YCs, were identified in the alfalfa genome. The genomic locations, gene structures, protein molecular weights, conserved domains, phylogenetic relationships, and gene expression patterns in different tissues and under different stresses (cold stress, drought stress, and salt stress) of these NF-Y genes were analyzed. The illustration of the conserved domains and specific domains of the different subfamilies of the MsNF-Y genes implicates the conservation and diversity of their functions in alfalfa growth, development, and stress resistance. The gene expression analysis showed that 48 MsNF-Y genes (7 MsNF-YAs, 22 MsNF-YBs, and 19 MsNF-YCs) were expressed in all tissues at different expression levels, indicating that these genes have tissue expression specificity and different biological functions. In total, seven, seven, six, and eight MsNF-Y genes responded to cold stress, the ABA treatment, drought stress, and salt stress in alfalfa, respectively. According to the WGCNA, molecular regulatory networks related to salt stress were constructed for MsNF-YB2, MsNF-YB5, MsNF-YB7, MsNF-YB15, MsNF-YC5, and MsNF-YC6. This study could provide valuable information for further elucidating the biological functions of MsNF-Ys and improving salt tolerance and other abiotic stress resistance in alfalfa.


Assuntos
Medicago sativa , Fatores de Transcrição , Fator de Ligação a CCAAT , Secas , Regulação da Expressão Gênica de Plantas , Medicago sativa/genética , Medicago sativa/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Gene ; 812: 146089, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34896520

RESUMO

The Nuclear Factor-Y (NF-Y) transcription factor (TF), which includes three distinct subunits (NF-YA, NF-YB and NF-YC), is known to manipulate various aspects of plant growth, development, and stress responses. Although the NF-Y gene family was well studied in many species, little is known about their functions in potato. In this study, a total of 37 potato NF-Y genes were identified, including 11 StNF-YAs, 20 StNF-YBs, and 6 StNF-YCs. The genetic features of these StNF-Y genes were investigated by comparing their evolutionary relationship, intron/exon organization and motif distribution pattern. Multiple alignments showed that all StNF-Y proteins possessed clearly conserved core regions that were flanked by non-conserved sequences. Gene duplication analysis indicated that nine StNF-Y genes were subjected to tandem duplication and eight StNF-Ys arose from segmental duplication events. Synteny analysis suggested that most StNF-Y genes (33 of 37) were orthologous to potato's close relative tomato (Solanum lycopersicum L.). Tissue-specific expression of the StNF-Y genes suggested their potential roles in controlling potato growth and development. The role of StNF-Ys in regulating potato responses to abiotic stress (ABA, drought and salinity) was also confirmed: twelve StNF-Y genes were up-regulated and another two were down-regulated under different abiotic treatments. In addition, genes responded differently to pathogen challenges, suggesting that StNF-Y genes may play distinct roles under certain biotic stress. In summary, insights into the evolution of NF-Y family members and their functions in potato development and stress responses are provided.


Assuntos
Fator de Ligação a CCAAT/genética , Duplicação Gênica , Genômica/métodos , Solanum tuberosum/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Mapeamento Cromossômico , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Família Multigênica , Alinhamento de Sequência , Solanum tuberosum/genética , Estresse Fisiológico , Distribuição Tecidual
18.
Front Plant Sci ; 12: 749688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858457

RESUMO

The nuclear factor Y (NF-Y) family is comprised of transcription factors that have been implicated in multiple plant biological processes. However, little is known about this family in potato. In the present study, a total of 41 StNF-Y genes were identified in the potato genome. In addition, the phylogenetic, gene structure, motif, and chromosomal location of this family were analyzed. The tissue expression profiles based on RNA-seq data showed that 27 StNF-Y genes had tissue-specific expression, while the remaining 14 had low expression in all tissues. Publicly available transcriptomics data from various abiotic stresses revealed several stress-responsive StNF-Y genes, which were further verified via quantitative real-time polymerase chain reaction experiments. Furthermore, the StNF-YC9 gene was highly induced by dehydration and drought treatments. StNF-YC9 protein was mainly localized in the nucleus and cytoplasmic membrane. Overexpressing StNF-YC9 potato lines (OxStNF-YC9) had significantly increased in root length and exhibited stronger stomatal closure in potato treated by polyethylene-glycol and abscisic acid. In addition, OxStNF-YC9 lines had higher photosynthetic rates and decreased water loss under short-term drought stress compared to wild-type plants. During long-term drought stress, OxStNF-YC9 lines had higher proline levels, lower malondialdehyde content, and increased activity of several antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase. This study increased our understanding of the StNF-Y gene and suggested that StNF-YC9 played an important role in drought tolerance by increased the photosynthesis rate, antioxidant enzyme activity, and proline accumulation coupled to lowered malondialdehyde accumulation in potato.

19.
J Exp Clin Cancer Res ; 40(1): 362, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782004

RESUMO

BACKGROUND: Approaches based on expression signatures of prostate cancer (PCa) have been proposed to predict patient outcomes and response to treatments. The transcription factor NF-Y participates to the progression from benign epithelium to both localized and metastatic PCa and is associated with aggressive transcriptional profile. The gene encoding for NF-YA, the DNA-binding subunit of NF-Y, produces two alternatively spliced transcripts, NF-YAs and NF-YAl. Bioinformatic analyses pointed at NF-YA splicing as a key transcriptional signature to discriminate between different tumor molecular subtypes. In this study, we aimed to determine the pathophysiological role of NF-YA splice variants in PCa and their association with aggressive subtypes. METHODS: Data on the expression of NF-YA isoforms were extracted from the TCGA (The Cancer Genome Atlas) database of tumor prostate tissues and validated in prostate cell lines. Lentiviral transduction and CRISPR-Cas9 technology allowed the modulation of the expression of NF-YA splice variants in PCa cells. We characterized 3D cell cultures through in vitro assays and RNA-seq profilings. We used the rank-rank hypergeometric overlap approach to identify concordant/discordant gene expression signatures of NF-YAs/NF-YAl-overexpressing cells and human PCa patients. We performed in vivo studies in SHO-SCID mice to determine pathological and molecular phenotypes of NF-YAs/NF-YAl xenograft tumors. RESULTS: NF-YA depletion affects the tumorigenic potential of PCa cells in vitro and in vivo. Elevated NF-YAs levels are associated to aggressive PCa specimens, defined by Gleason Score and TNM classification. NF-YAl overexpression increases cell motility, while NF-YAs enhances cell proliferation in PCa 3D spheroids and xenograft tumors. The transcriptome of NF-YAs-spheroids has an extensive overlap with localized and metastatic human PCa signatures. According to PCa PAM50 classification, NF-YAs transcript levels are higher in LumB, characterized by poor prognosis compared to LumA and basal subtypes. A significant decrease in NF-YAs/NF-YAl ratio distinguishes PCa circulating tumor cells from cancer cells in metastatic sites, consistently with pro-migratory function of NF-YAl. Stratification of patients based on NF-YAs expression is predictive of clinical outcome. CONCLUSIONS: Altogether, our results indicate that the modulation of NF-YA isoforms affects prostate pathophysiological processes and contributes to cancer-relevant phenotype, in vitro and in vivo. Evaluation of NF-YA splicing may represent a new molecular strategy for risk assessment of PCa patients.


Assuntos
Processamento Alternativo/genética , Fator de Ligação a CCAAT/metabolismo , Edição de Genes/métodos , Neoplasias da Próstata/genética , Animais , Humanos , Masculino , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Plant J ; 108(5): 1493-1506, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607390

RESUMO

The success of plant reproduction depends on the timely transition from the vegetative phase to reproductive growth, a process often referred to as flowering. Although several plant-specific transcription factors belonging to the Teosinte Branched 1/Cycloidea/Proliferating Cell Factor (TCP) family are reportedly involved in the regulation of flowering in Arabidopsis, the molecular mechanisms, especially for Class I TCP members, are poorly understood. Here, we genetically identified Class I TCP7 as a positive regulator of flowering time. Protein interaction analysis indicated that TCP7 interacted with several Nuclear Factor-Ys (NF-Ys), known as the 'pioneer' transcription factors; CONSTANS (CO), a main photoperiod regulator of flowering. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was differentially expressed in the dominant-negative mutant of TCP7 (lcu) and the loss-of-function mutant of Class I TCP members (septuple). Additionally, we obtained genetic and molecular evidence showing that TCP7 directly activates the flowering integrator gene, SOC1. Moreover, TCP7 synergistically activated SOC1 expression upon interacting with CO and NF-Ys in vivo. Collectively, our results provide compelling evidence that TCP7 synergistically interacts with NF-Ys to activate the transcriptional expression of the flowering integrator gene SOC1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Flores/genética , Flores/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Fotoperíodo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA