Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.363
Filtrar
1.
Curr Cardiol Rev ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39229989

RESUMO

Thirty percent of deaths worldwide are caused by cardiovascular disorders (CVDs). As per the WHO data, the number of fatalities due to CVDs is 17.9 million years, and it is projected to cause 22.2 million deaths by 2030. In terms of gender, women die from CVD at a rate of 51% compared to 42% for males. Most people use phytochemicals, a type of traditional medicine derived from plants, either in addition to or instead of commercially available medications to treat and prevent CVD. Phytochemicals are useful in lowering cardiovascular risks, especially for lowering blood cholesterol, lowering obesity-related factors, controlling blood sugar and the consequences of type 2 diabetes, controlling oxidative stress factors and inflammation, and preventing platelet aggregation. Medicinal plants that are widely known for treating CVD include ginseng, ginkgo biloba, ganoderma lucidum, gynostemma pentaphyllum, viridis amaranthus, etc. Plant sterol, flavonoids, polyphenols, sulphur compound and terpenoid are the active phytochemicals present in these plants. The aim of this article is to cover more and more drugs that are used for cardiovascular diseases. In this article, we will learn about the use of different herbal drugs, mechanism of action, phytochemical compounds, side effects, etc. However, more research is required to comprehend the process and particular phytochemicals found in plants that treat CVD.

2.
Int Immunopharmacol ; 142(Pt B): 113151, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303538

RESUMO

The current study aimed to evaluate the preventive effects of urolithin C (Uro C), a gut microbial metabolite of ellagitannins on D-galactose (D-gal)-induced brain damage during the aging process and to elucidate the underlying mechanisms. In our study, the protective effect of Uro C on D-gal-induced BV2 microglia cell-mediated neuroinflammation damage in primary cortical neurons in vitro was confirmed. The results in an aging model in vivo induced by D-gal demonstrated that Uro C prevented D-gal-induced memory impairment, long-term potentiation (LTP) damage, and synaptic dysfunction through behavioral, electrophysiological, and histological examinations. Additionally, amyloidogenesis was observed in the central nervous system. The findings indicated that Uro C exhibited a preventive effect on the D-gal-induced elevation of ß-amyloid (1-42 specific) (Aß1-42) accumulation, APP levels, ABCE1 levels, and the equilibrium of the cholinergic system in the aging mouse brain. Moreover, Uro C demonstrated downregulation of D-gal-induced glial overactivation through inhibition of the MAPK/NF-kB pathway. This resulted in the regulation of inflammatory mediators and cytokines, including iNOS, IL-6, IL-1ß, and TNF-ɑ, in the mouse brain and BV2 microglial cells. Taken together, our results suggested that Uro C treatment could effectively mitigate the D-gal-induced memory impairment and amyloidogenesis, and the underlying mechanism might be tightly related to the improvement of neuroinflammation by suppressing the MAPK/NF-kB pathway, indicating Uro C might be an alternative and promising agent for the treatment of aging and age-associated brain diseases.

3.
Exp Cell Res ; 442(2): 114235, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236989

RESUMO

BACKGROUND & AIMS: Activation of hepatic stellate cells (HSCs) is the key process underlying liver fibrosis. Unveiling its molecular mechanism may provide an effective target for inhibiting liver fibrosis. Protein ubiquitination is a dynamic and reversible process. Deubiquitinases (DUBs) catalyze the removal of ubiquitin chains from substrate proteins, thereby inhibiting the biological processes regulated by ubiquitination signals. However, there are few studies revealing the role of deubiquitination in the activation of HSCs. METHODS & RESULTS: Single-cell RNA sequencing (scRNA-seq) revealed significantly decreased USP18 expression in activated HSCs when compared to quiescent HSCs. In mouse primary HSCs, continuous activation of HSCs led to a gradual decrease in USP18 expression whilst restoration of USP18 expression significantly inhibited HSC activation. Injection of USP18 lentivirus into the portal vein of a CCl4-induced liver fibrosis mouse model confirmed that overexpression of USP18 can significantly reduce the degree of liver fibrosis. In terms of mechanism, we screened some targets of USP18 in mouse primary HSCs and found that USP18 could directly bind to TAK1. Furthermore, we demonstrated that USP18 can inhibit TAK1 activity by interfering with the K63 ubiquitination of TAK1. CONCLUSIONS: Our study demonstrated that USP18 inhibited HSC activation and alleviated liver fibrosis via modulation of TAK1 activity; this may prove to be an effective target for inhibiting liver fibrosis.

4.
mBio ; : e0024024, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269169

RESUMO

Lentiviruses encode a number of multi-functional accessory proteins, however, the primary role of the accessory protein Vpr remains unclear. As Vpr engages the host DNA damage response (DDR) at multiple steps, modulation of the DDR is considered central to the function(s) of Vpr. Vpr activates ataxia telangiectasia and Rad3 (ATR)-mediated DDR signaling, resulting in cell cycle arrest. However, the cellular consequences of Vpr-induced DNA damage, and the connection of Vpr-induced DNA damage to other Vpr functions, are unknown. Here, we determined that HIV-1 Vpr-induced DNA damage activates the ATM-NF-κB essential modulator (NEMO) pathway and alters cellular transcription via NF-κB/RelA. Through RNA-sequencing (RNA-seq) of cells expressing Vpr or mutants that separate the ability of Vpr to induce DNA damage from other DDR phenotypes, we identified that Vpr alters the transcriptome independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), we showed Vpr activates both ataxia telangiectasia mutated (ATM) and NF-κB/RelA signaling cascades. While inhibition of NEMO did not affect Vpr-induced DNA damage, it prevented NF-κB activation by Vpr, highlighting the importance of NEMO in Vpr-mediated transcriptional reprogramming. Virion-delivered Vpr was sufficient to induce DNA damage and activate ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional changes can occur early during viral replication. Together, our data uncover cellular consequences of Vpr-induced DNA damage and provide a mechanism for how Vpr activates NF-κB through DNA damage and ATM-NEMO signaling, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral replication.IMPORTANCEThe HIV accessory protein Vpr is multi-functional and required for viral replication in vivo, yet how Vpr enhances viral replication is unknown. Emerging literature suggests that a conserved function of Vpr is the engagement of the host DNA damage response (DDR). For example, Vpr activates DDR signaling, causes DDR-dependent cell cycle arrest, promotes degradation of various DDR proteins, and alters cellular consequences of DDR activation. However, a central understanding of how these phenotypes connect and how they affect HIV-infected cells remains unknown. Here, we found that Vpr-induced DNA damage alters the host transcriptome by activating an essential transcription pathway, NF-κB. This occurs early during the infection of primary human immune cells, suggesting NF-κB activation and transcriptome remodeling are important for establishing productive HIV-1 infection. Together, our study provides novel insights into how Vpr alters the host environment through the DDR, and what roles Vpr and the DDR play to enhance HIV replication.

5.
Mucosal Immunol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39265892

RESUMO

The host-microbiome axis has been implicated in promoting anti-inflammatory immune responses. Yet, the underlying molecular mechanisms of commensal-mediated IL-10 production by regulatory B cells (Bregs) are not fully elucidated. Here, we demonstrate that bacterial CpG motifs trigger the signaling downstream of TLR9 promoting IκBNS-mediated expression of Blimp-1, a transcription regulator of IL-10. Surprisingly, this effect was counteracted by the NF-κB transcription factor c-Rel. A functional screen for intestinal bacterial species identified the commensal Clostridium sporogenes, secreting high amounts of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs), as an amplifier of IL-10 production by promoting sustained mTOR signaling in B cells. Consequently, enhanced Breg functionality was achieved by combining CpG with the SCFA butyrate or the BCFA isovalerate thereby synergizing TLR- and mTOR-mediated pathways. Collectively, Bregs required two bacterial signals (butyrate and CpG) to elicit their full suppressive capacity and ameliorate T cell-mediated intestinal inflammation. Our study has dissected the molecular pathways induced by bacterial factors, which might contribute not only to better understanding of host-microbiome interactions, but also to exploration of new strategies for improvement of anti-inflammatory cellular therapy.

6.
Heliyon ; 10(14): e34213, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114010

RESUMO

Background: Non-alcoholic steatohepatitis (NASH), an escalating global health concern, is a primary factor behind cirrhosis, liver transplantation, and hepatocellular carcinoma. Effective treatments remain elusive. Danggui-Shaoyao-San (DGSY), a classic famous prescription employed in treating NASH, could hold promise, although its molecular underpinnings are still under investigation. This study undertakes an exploration of the impacts of DGSY on NASH and seeks to illuminate the mechanisms at play. Methods: UHPLC-Q-Orbitrap HRMS was employed to identify compounds within DGSY. Mice underwent a 25-week regimen of HFHC diet and high-sugar water, with 4 weeks of DGSY treatment for efficacy and pathogenic mechanism exploration in vivo. L02 cells were cultured with 0.2 mM FFA for 24 h, exposed to DGSY at 1 mg/ml and 2 mg/ml for efficacy and pathogenic mechanism exploration in vitro. Using online databases, we sought potential targets for NASH treatment, and through PPI networks, identified key targets. Expression levels of genes and proteins were examined by western blotting, RT-PCR, and immunofluorescence staining. Results: Thirty-four compounds were identified within DGSY. DGSY brought about marked reductions in biochemical indicators and yielded significant improvements in NASH mice histological features. Additionally, it mitigated hepatic steatosis and inflammation both in vivo and in vitro. The top 10 targets from two network pharmacology analyses, one focusing on structural prediction and the other on literature mining, identified APOE and APP as potential therapeutic targets for DGSY in NASH treatment. PCR validation confirmed that DGSY reduced APP expression after treatment, and further investigation revealed that DGSY significantly suppressed hepatic APP and Aß expression, indicating its effectiveness in treating NASH. Furthermore, it inhibited Aß-induced Cathepsin B lysosomal release, reducing hepatic inflammation. Conclusion: Danggui-Shaoyao-San has anti-steatohepatitis effects in ameliorating hepatic APP protein expression, reducing hepatic lysosomal CTSB release, and suppressing hepatic NF-κB activation. The study provided a more theoretical basis for the future clinical application of DGSY.

7.
Folia Neuropathol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165217

RESUMO

INTRODUCTION: The morbidity and mortality of spinal cord injury (SCI) are increasing year by year. It is of vital importance to ascertain the mechanism of SCI. Phosphoglycerate mutase family member 5 (PGAM5) is viewed as a molecular marker of SCI, but its specific role in SCI is elusive. MATERIAL AND METHODS: Following establishment of the SCI mouse model, the pathological examination of the spinal cord was initially assessed using H&E staining. PGAM5 expression in spinal cord tissues was appraised utilizing immunohistochemistry and RT-qPCR. Subsequently, after the expression of PGAM5 in SCI mice was inhibited by adenovirus transfection, the degree of SCI was determined, and the motor ability of hind limbs was estimated with the BBB score. In addition, the apoptosis of neurons, microglia activation and the generation of inflammatory cytokines in the spinal cord of mice were detected. Next, at the cellular level, PGAM5 expression was inhibited in the BV2 microglial cells induced by lipopolysaccharide (LPS), so as to explore the effects of down-regulation of PGAM5 on the activation, inflammation and apoptosis of neurons. Finally, western blot was applied for the appraisement of apoptosis signal-regulating kinase-1 (ASK-1)/p38/nuclear factor-kappa B (NF-kB) signaling-associated proteins. RESULTS: PGAM5 expression in SCI mice was found to be raised. Inhibition of PGAM5 expression in SCI mice can significantly reduce spinal cord pathological injury, SCI-induced neuronal apoptosis, microglial cell activation and inflammation. The above regulatory process might be realized through the ASK-1/p38/NF-kB signaling pathway mediated by PGAM5. CONCLUSIONS: Down-regulation of PGAM5 attenuated SCI-induced neuronal injury by inhibiting ASK-1/p38/NF-kB signaling.

8.
Environ Toxicol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171884

RESUMO

Bladder cancer (BC), the predominant urological malignancy in men, exhibits complex molecular underpinnings contributing to its progression. This investigation aims to elucidate the expression dynamics of calcium-binding protein 39 (CAB39) in both healthy and cancerous tissues and to explore its functional role in the epithelial-mesenchymal transition (EMT) within human bladder cancer contexts. Utilizing immunohistochemistry and quantitative reverse transcription analyses, we assessed CAB39 expression across BC specimens and cell lines. Further, we implemented wound healing, cell invasion, and CCK-8 proliferation assays in CAB39-knockdown cell lines, alongside a nude mouse xenograft model, to gauge the impact of diminished CAB39 expression on the invasive, migratory, and proliferative capacities of BC cells. Our gene set enrichment analysis probed into the repertoire of genes augmented by increased CAB39 expression in BC cells, with subsequent validation via western blotting. Our findings reveal a pronounced overexpression of CAB39 in both BC tissues and cellular models, inversely correlated with disease prognosis. Remarkably, the oncogenic trajectory of bladder cancer was mitigated upon the establishment of shRNA-mediated CAB39 knockdown in vitro and in vivo, effectively reversing the cancer's invasive and metastatic behaviors and curbing tumorigenesis in xenograft models. Hence, CAB39 emerges as a critical biomarker for bladder cancer progression, significantly implicated in facilitating EMT via the upregulation of neural cadherin (N-cadherin) and the suppression of epithelial cadherin through NF-κB signaling pathways. CU-T12-9 effectively overturned the downregulation of p65-NF-kB and N-cadherin, key elements involved in EMT and cell motility, induced by CAB39 knockdown. This study underscores CAB39's pivotal role in bladder cancer pathophysiology and its potential as a therapeutic target.

9.
Curr Drug Metab ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39129159

RESUMO

AIMS: The aim of the present study is to elucidate the mechanism of CYP2E1 induction as a causative factor of alcoholic hepatitis (AH) and its relationship with inflammation. BACKGROUND: Chronic alcohol consumption induces CYP2E1, which is involved in the development of alcoholic hepatitis (AH). However, the mechanisms underlying the induction of CYP2E1 by alcohol remain unclear. Therefore, we herein investigated the induction of drug-metabolizing enzymes, particularly CYP2E1, by hydrogen peroxide (H2O2), the concentration of which is elevated under inflammatory conditions. OBJECTIVE: The mechanisms underlying the induction of CYP2E1 by H2O2 were examined with a focus on Keap1, a target factor of H2O2. METHODS: We assessed changes in the expression of drug-metabolizing enzymes in the human hepatoma cell line, Hep3B, following treatment with H2O2, and evaluated changes in the expression of the NFkB-related factor RelA(p65) after the knockdown of Keap1, a regulator of Nrf2 expression by reactive oxygen species. We also performed a promoter analysis using the upstream region of the CYP2E1 gene. We herein used the GSE89632 series for non-alcoholic hepatitis (NASH) and the GSE28619 series for AH. RESULTS: The induction of CYP2E1 by H2O2 was significantly stronger than that of other drugmetabolizing enzymes. On the other hand, the knockdown of Keap1, a target of H2O2, markedly increased RelA(p65), an NFkB factor. Furthermore, the overexpression of RelA(p65) strongly induced the expression of CYP2E1. Four candidate p65-binding sequences were identified upstream of the CYP2E1 gene, and promoter activity assays showed that the third sequence was responsive to the overexpression of RelA(p65). We used the GSE89632 series for NASH and the GSE28619 series for AH in the present study. The expression of CYP2E1 mRNA in the liver was significantly lower in AH patients than in HC patients, but was similar in HC patients and NASH patients. CONCLUSION: We herein demonstrated that the expression of CYP2E1 was induced by H2O2. The overexpression of RelA(p65) also induced CYP2E1 mRNA expression, whereas H2O2 did not after the knockdown of RelA. These results suggest that H2O2 acts on Keap1 to upregulate RelA (p65) in the NFkB system. One of the mechanisms underlying the induction of CYP2E1 was dependent on the H2O2-Keap1-RelA axis. The results of the database analysis revealed that the expression of CYP2E1 in the liver was significantly lower in AHH patients than in NASH patients, suggesting that CYP2E1 is not the main cause of AH; however, CYP2E1 may exacerbate the pathogenesis of AH.

10.
Arch Biochem Biophys ; 759: 110112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111613

RESUMO

Inflammation is the body's response to injuries, which depends on numerous regulatory factors. Among them, miRNAs have gained much attention for their role in regulating inflammatory gene expression at multiple levels. In particular, miR-21 is up-regulated during the inflammatory response and reported to be involved in the resolution of inflammation by down-regulating pro-inflammatory mediators, including MyD88. Herein, we evaluated the regulatory effects of miR-21 on the TLR-4/MyD88 pathway in an in vitro model of 6-mer HA oligosaccharides-induced inflammation in human chondrocytes. The exposition of chondrocytes to 6-mer HA induced the activation of the TLR4/MyD88 pathway, which culminates in NF-kB activation. Changes in miR-21, TLR-4, MyD88, NLRP3 inflammasome, IL-29, Caspase1, MMP-9, iNOS, and COX-2 mRNA expression of 6-mer HA-stimulated chondrocytes were examined by qRT-PCR. Protein amounts of TLR-4, MyD88, NLRP3 inflammasome, p-ERK1/2, p-AKT, IL-29, caspase1, MMP-9, p-NK-kB p65 subunit, and IKB-a have been evaluated by ELISA kits. NO and PGE2 levels have been assayed by colorimetric and ELISA kits, respectively. HA oligosaccharides induced a significant increase in the expression of the above parameters, including NF-kB activity. The use of a miR-21 mimic attenuated MyD88 expression levels and the downstream effectors. On the contrary, treatment with a miR-21 inhibitor induced opposite effects. Interestingly, the use of a MyD88 siRNA confirmed MyD88 as the target of miR-21 action. Our results suggest that miR-21 expression could increase in an attempt to reduce the inflammatory response, targeting MyD88.


Assuntos
Condrócitos , Ácido Hialurônico , Inflamação , MicroRNAs , Fator 88 de Diferenciação Mieloide , Oligossacarídeos , Humanos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Inflamação/metabolismo , Inflamação/genética , Oligossacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Transdução de Sinais/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , NF-kappa B/metabolismo , Células Cultivadas
11.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39201742

RESUMO

In the current study, two Salmonella Typhimurium strains, JOL 912 and JOL 1800, were engineered from the wild-type JOL 401 strain through in-frame deletions of the lon and cpxR genes, with JOL 1800 also lacking rfaL. These deletions significantly attenuated the strains, impairing their intracellular survival and creating unique immunological profiles. This study investigates the response of these strains to various abiotic stress conditions commonly experienced in vivo, including temperature, acidity, osmotic, and oxidative stress. Notably, cold stress induced a non-significant trend towards increased invasion by Salmonella compared to other stressors. Despite the observed attenuation, no significant alterations in entry mechanisms (trigger vs. zipper) were noted between these strains, although variations were evident depending on the host cell type. Both strains effectively localized within the cytoplasm, demonstrating their ability to invade and interact with the intracellular environment. Immunologically, JOL 912 elicited a robust response, marked by substantial activation of nuclear factor kappa B (NF-kB), and chemokines, interleukin 8 (CXCL 8) and interleukin 10 (CXCL 10), comparable to the wild-type JOL 401 (over a fourfold increase compared to JOL 1800). In contrast, JOL 1800 exhibited a minimal immune response. Additionally, these attenuations influenced the expression of cyclins D1 and B1 and caspases 3 and 7, indicating cell cycle arrest at the G2/M phase and promotion of the G0/G1 to S phase transition, alongside apoptosis in infected cells. These findings provide valuable insights into the mechanisms governing the association, internalization, and survival of Salmonella mutants, enhancing our understanding of their regulatory effects on host cell physiology.


Assuntos
Proteínas de Bactérias , Salmonella typhimurium , Estresse Fisiológico , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estresse Fisiológico/genética , Humanos , Virulência/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Protease La/metabolismo , Protease La/genética , Mutação , Infecções por Salmonella/microbiologia , Infecções por Salmonella/genética , NF-kappa B/metabolismo
12.
Curr Issues Mol Biol ; 46(8): 9215-9233, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39194761

RESUMO

The thymus, a central lymphoid organ in animals, serves as the site for T cell development, differentiation and maturation, vital to adaptive immunity. The thymus is critical for maintaining tissue homeostasis to protect against tumors and tissue damage. An overactive or prolonged immune response can lead to oxidative stress from increased production of reactive oxygen species. Heat stress induces oxidative stress and overwhelms the natural antioxidant defense mechanisms. This study's objectives were to investigate the protective properties of astaxanthin against heat-induced oxidative stress and apoptosis in the chicken thymus, by comparing the growth performance and gene signaling pathways among three groups: thermal neutral, heat stress, and heat stress with astaxanthin. The thermal neutral temperature was 21-22 °C, and the heat stress temperature was 32-35 °C. Both heat stress groups experienced reduced growth performance, while the astaxanthin-treated group showed a slightly lesser decline. The inflammatory response and antioxidant defense system were activated by the upregulation of the NF-kB, NFE2L2, PPARα, cytoprotective capacity, and apoptotic gene pathways during heat stress compared to the thermal neutral group. However, expression levels showed no significant differences between the thermal neutral and heat stress with antioxidant groups, suggesting that astaxanthin may mitigate inflammation and oxidative stress damage.

13.
Biochem Pharmacol ; 229: 116506, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39182734

RESUMO

Complex regional pain syndrome (CRPS) presents as a persistent and distressing pain condition often stemming from limb trauma or ischemia, manifesting as either CRPS-I (without initial nerve injury) or CRPS-II (accompanied by nerve injury). Despite its prevalence and significant impact on functionality and emotional well-being, standard treatments for CRPS remain elusive. The multifaceted nature of CRPS complicates the identification of its underlying mechanisms. In efforts to elucidate these mechanisms, researchers have turned to animal models such as chronic post-ischemic pain (CPIP), which mirrors the symptoms of CRPS-I. Various mechanisms have been proposed to underlie the acute and chronic pain experienced in CRPS-I, including oxidative stress and inflammation. Traditional treatment approaches often involve antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and opioids. However, these methods frequently fall short of providing adequate relief. Accordingly, there is a growing interest in exploring alternative treatments, such as antioxidant supplementation, anti-inflammatory agents, and non-pharmacological interventions. Future research directions should focus on optimizing treatment strategies and addressing remaining gaps in knowledge to improve patient outcomes. This review aims to delve into the pathophysiological mechanisms implicated in the CPIP model, specifically focusing on oxidative stress and inflammation, with the ultimate goal of proposing innovative therapeutic strategies for alleviating the symptoms of CRPS-I.

14.
Cells ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38994961

RESUMO

Cytokine-induced ß-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect ß-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on ß-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected ß-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced ß-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in ß-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for ß-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting ß-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving ß-cell functional mass in T1D.


Assuntos
Apoptose , Citocinas , Células Secretoras de Insulina , NF-kappa B , Transdução de Sinais , Animais , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , NF-kappa B/metabolismo , Camundongos , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Proteína Forkhead Box O1/metabolismo , Camundongos Endogâmicos NOD , Masculino , Camundongos Endogâmicos C57BL
15.
Cell Biol Toxicol ; 40(1): 54, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995476

RESUMO

BACKGROUND: The neuropathic pain with complex networks of neuroinflammatory activation severely limits clinical therapeutic research. TNF receptor-associated factor 6 (TRAF6) is associated with multiple inflammatory diseases. However, there remains confusion about the effects and mechanisms of TRAF6 in neuropathic pain. METHODS: A chronic constriction injury (CCI) model was developed to simulate neuralgia in vivo. We overexpressed or knocked down TRAF6 in CCI mice, respectively. Activation of microglia by TRAF6, the inflammatory response, and disease progression were inspected using WB, qRT-PCR, immunofluorescence, flow cytometry, and ELISA assays. Moreover, the mechanism of M1/M2 polarization activation of microglia by TRAF6 was elaborated in BV-2 cells. RESULTS: TRAF6 was enhanced in the spinal neurons and microglia of the CCI mice model compared with the sham operation group.. Down-regulation of TRAF6 rescued the expression of Iba-1. In response to mechanical and thermal stimulation, PWT and PWL were improved after the knockdown of TRAF6. Decreased levels of pro-inflammatory factors were observed in TRAF6 knockdown groups. Meanwhile, increased microglial M1 markers induced by CCI were limited in mice with TRAF6 knockdown. In addition, TRAF6 overexpression has the precise opposite effect on CCI mice or microglia polarization. We also identifed that TRAF6 activated the c-JUN/NF-kB pathway signaling; the inhibitor of c-JUN/NF-kB could effectively alleviate the neuropathic pain induced by upregulated TRAF6 in the CCI mice model. CONCLUSION: In summary, this study indicated that TRAF6 was concerned with neuropathic pain, and targeting the TRAF6/c-JUN/NF-kB pathway may be a prospective target for treating neuropathic pain.


Assuntos
Microglia , NF-kappa B , Neuralgia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Masculino , Camundongos , Linhagem Celular , Polaridade Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator 6 Associado a Receptor de TNF/metabolismo
16.
Front Immunol ; 15: 1404122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979411

RESUMO

Introduction: Chronic obstructive pulmonary disease (COPD) is a major global cause of mortality with limited effective treatments. Sirtuins (SIRT) are histone deacetylases that are involved in the regulation of redox and inflammatory homeostasis. Hence, the present study aims to investigate the role of SIRT-2 in modulating inflammation in a murine model of COPD. Methods: COPD in mice was established by cigarette smoke (CS) exposure for 60 days, and AK-7 was used as the specific SIRT-2 inhibitor. AK-7 (100 µg/kg and 200 µg/kg body weight) was administered intranasally 1 h before CS exposure. Molecular docking was performed to analyze the binding affinity of different inflammatory proteins with AK-7. Results: Immune cell analysis showed a significantly increased number of macrophages (F4/80), neutrophils (Gr-1), and lymphocytes (CD4+, CD8+, and CD19+) in the COPD, group and their population was declined by AK-7 administration. Total reactive oxygen species, total inducible nitric oxide synthase, inflammatory mediators such as neutrophil elastase, C-reactive protein, histamine, and cytokines as IL4, IL-6, IL-17, and TNF-α were elevated in COPD and declined in the AK-7 group. However, IL-10 showed reverse results representing anti-inflammatory potency. AK-7 administration by inhibiting SIRT-2 decreased the expression of p-NF-κB, p-P38, p-Erk, and p-JNK and increased the expression of Nrf-2. Furthermore, AK-7 also declined the lung injury by inhibiting inflammation, parenchymal destruction, emphysema, collagen, club cells, and Kohn pores. AK-7 also showed good binding affinity with inflammatory proteins. Discussion: The current study reveals that SIRT-2 inhibition mitigates COPD severity and enhances pulmonary therapeutic interventions, suggesting AK-7 as a potential therapeutic molecule for COPD medication development.


Assuntos
NF-kappa B , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica , Sirtuína 2 , Animais , Sirtuína 2/metabolismo , Sirtuína 2/antagonistas & inibidores , Camundongos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Estresse Oxidativo/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Transdução de Sinais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Carbazóis
17.
J Ethnopharmacol ; 334: 118521, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38969152

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated. AIM OF THE STUDY: Influenza is a severe respiratory disease that threatens human health. This study aims to assess the therapeutic potential of SJCG and the possible molecular mechanism underlying its activity against influenza A virus in vitro and in vivo. MATERIALS AND METHODS: Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive was used to identify the components of SJCG. The 50% cytotoxic concentration of SJCG in MDCK and A549 cells were determined using the CCK-8 assay. The activity of SJCG against influenza A virus H1N1 was evaluated in vitro using plaque reduction and progeny virus titer reduction assays. RT-qPCR was performed to obtain the expression levels of inflammatory mediators and the transcriptional regulation of RIG-I and MDA5 in H1N1-infected A549 cells. Then, the mechanism of SJCG effect on viral replication and inflammation was further explored by measuring the expressions of proteins of the RIG-I/NF-kB/IFN(I/III) signaling pathway by Western blot. The impact of SJCG was explored in vivo in an intranasally H1N1-infected BALB/c mouse pneumonia model treated with varying doses of SJCG. The protective role of SJCG in this model was evaluated by survival, body weight monitoring, lung viral titers, lung index, lung histological changes, lung inflammatory mediators, and peripheral blood leukocyte count. RESULTS: The main SJCG chemical constituents were flavonoids, carbohydrates and glycosides, amino acids, peptides, and derivatives, organic acids and derivatives, alkaloids, fatty acyls, and terpenes. The CC50 of SJCG were 24.43 mg/mL on MDCK cells and 20.54 mg/mL on A549 cells, respectively. In vitro, SJCG significantly inhibited H1N1 replication and reduced the production of TNF-α, IFN-ß, IL-6, IL-8, IL-13, IP-10, RANTES, TRAIL, and SOCS1 in infected A549 cells. Intracellularly, SJCG reduced the expression of RIG-I, MDA5, P-NF-κB P65 (P-P65), P-IκBα, P-STAT1, P-STAT2, and IRF9. In vivo, SJCG enhanced the survival rate and decreased body weight loss in H1N1-infected mice. Mice with H1N1-induced pneumonia treated with SJCG showed a lower lung viral load and lung index than untreated mice. SJCG effectively alleviated lung damage and reduced the levels of TNF-α, IFN-ß, IL-6, IP-10, RANTES, and SOCS1 in lung tissue. Moreover, SJCG significantly ameliorated H1N1-induced leukocyte changes in peripheral blood. CONCLUSIONS: SJCG significantly reduced influenza A virus and virus-mediated inflammation through inhibiting the RIG-I/NF-kB/IFN(I/III) signaling pathway. Thus, SJCG could provide an effective TCM for influenza treatment.


Assuntos
Anti-Inflamatórios , Antivirais , Medicamentos de Ervas Chinesas , Vírus da Influenza A Subtipo H1N1 , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Animais , Antivirais/farmacologia , Cães , Humanos , Células A549 , Anti-Inflamatórios/farmacologia , Células Madin Darby de Rim Canino , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Camundongos , Replicação Viral/efeitos dos fármacos , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia
18.
Pathol Res Pract ; 260: 155443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981348

RESUMO

Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.


Assuntos
Glioblastoma , Proteases Específicas de Ubiquitina , Humanos , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/enzimologia , Glioblastoma/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Terapia de Alvo Molecular/métodos , Complexo de Endopeptidases do Proteassoma/metabolismo , Antineoplásicos/uso terapêutico , Animais , Inibidores de Proteassoma/uso terapêutico , Inibidores de Proteassoma/farmacologia
19.
J Sci Food Agric ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041368

RESUMO

BACKGROUND: Organic trace minerals (TM) offer superior nutritional benefits because of their stable structure, making their addition to broiler diets potentially beneficial during challenging periods such as aflatoxin B1 (AFB1) contamination. The present study evaluated the impacts of different replacement levels of inorganic TM (ITM) with advanced chelate technology-based TM (ACTM) on the growth performance, serum biochemical parameters, antioxidant indicators, and some inflammatory and immune parameters of broilers fed diets contaminated with AFB1. A 42-day experiment involved randomly assigning 1-day-old broiler chickens (n = 480) to one of five dietary treatments, each with six replicates. The treatments were as follows: (1) NC: basal diet without AFB1 and recommended ITM levels; (2) PC: basal diet with 0.5 mg kg-1 AFB1 and recommended ITM levels; (3) TB: PC diet +1 g kg-1 toxin binder; (4) ACTM50: replacement of ITM with 50% ACTM in the PC diet; and (5) ACTM100: replacement of ITM with 100% ACTM in the PC diet. RESULTS: Compared with PC treatment, ACTM100 treatment resulted in increased (P < 0.05) body weight gain, serum zinc and glutathione concentrations, immunoglobulin Y level, antioxidant enzyme activities, and hepatic gene expression of nuclear factor erythroid 2-related factor 2, glutathione peroxidase-1, superoxide dismutase-1 and transforming growth factor beta 1. The ACTM100 group also exhibited decreased AFB1 residue in the liver and kidney, serum alanine transaminase activity and malondialdehyde concentration, and hepatic gene expression levels of nuclear factor-kappa B and interferon-gamma (P < 0.05). These values were comparable to those recorded in the TB and NC treatments. CONCLUSION: In conclusion, completely replacing ITM with ACTM can benefit the metabolism and mitigate AFB1-induced immunotoxicity and oxidative damage in chickens by altering the mRNA expression of nuclear factor-kappa B and nuclear factor erythroid 2-related factor 2, and some genes downstream their signaling pathways. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA