Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125681

RESUMO

The search for bioactive compounds in natural products holds promise for discovering new pharmacologically active molecules. This study explores the anti-inflammatory potential of açaí (Euterpe oleracea Mart.) constituents against the NLRP3 inflammasome using high-throughput molecular modeling techniques. Utilizing methods such as molecular docking, molecular dynamics simulation, binding free energy calculations (MM/GBSA), and in silico toxicology, we compared açaí compounds with known NLRP3 inhibitors, MCC950 and NP3-146 (RM5). The docking studies revealed significant interactions between açaí constituents and the NLRP3 protein, while molecular dynamics simulations indicated structural stabilization. MM/GBSA calculations demonstrated favorable binding energies for catechin, apigenin, and epicatechin, although slightly lower than those of MCC950 and RM5. Importantly, in silico toxicology predicted lower toxicity for açaí compounds compared to synthetic inhibitors. These findings suggest that açaí-derived compounds are promising candidates for developing new anti-inflammatory therapies targeting the NLRP3 inflammasome, combining efficacy with a superior safety profile. Future research should include in vitro and in vivo validation to confirm the therapeutic potential and safety of these natural products. This study underscores the value of computational approaches in accelerating natural product-based drug discovery and highlights the pharmacological promise of Amazonian biodiversity.


Assuntos
Anti-Inflamatórios , Inflamassomos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Euterpe/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Clin Transl Oncol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090420

RESUMO

BACKGROUND: The nod-like receptor protein 3 (NLRP3) is one of the most characterized inflammasomes involved in the pathogenesis of several cancers, including hepatocellular carcinoma (HCC). However, the effects of genetic variants in the NLRP3 inflammasome-related genes on survival of hepatitis B virus (HBV)-related HCC patients are unclear. METHODS: We performed multivariable Cox proportional hazards regression analysis to evaluate associations between 299 single-nucleotide polymorphisms (SNPs) in 16 NLRP3 inflammasome-related genes and overall survival (OS) of 866 patients with HBV-related HCC. We further performed expression quantitative trait loci (eQTL) analysis using the data from the GTEx project and 1000 Genomes projects, and performed differential expression analysis using the TCGA dataset to explore possible molecular mechanisms underlying the observed associations. RESULTS: We found that two functional SNPs (PANX1 rs3020013 A > G and APP rs9976425 C > T) were significantly associated with HBV-related HCC OS with the adjusted hazard ratio (HR) of 0.83 [95% confidence interval (CI) = 0.73-0.95, P = 0.008], and 1.26 (95% CI = 1.02-1.55, P = 0.033), respectively. Moreover, the eQTL analysis revealed that the rs3020013 G allele was correlated with decreased mRNA expression levels of PANX1 in both normal liver tissues (P = 0.044) and whole blood (P < 0.001) in the GTEx dataset, and PANX1 mRNA expression levels were significantly higher in HCC samples and associated with a poorer survival of HCC patients. However, we did not observe such correlations for APP rs9976425. CONCLUSIONS: These results indicated that SNPs in the NLRP3 inflammasome-related genes may serve as potential biomarkers for HBV-related HCC survival, once replicated by additional larger studies.

3.
Biol Res ; 57(1): 47, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033184

RESUMO

BACKGROUND: MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS: Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1ß) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS: 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1ß, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION: 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.


Assuntos
Catecóis , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Dieta Hiperlipídica , Inflamassomos , Metformina , MicroRNAs , Animais , Masculino , Ratos , Catecóis/farmacologia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Quimioterapia Combinada , Álcoois Graxos/farmacologia , Hipoglicemiantes/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Metformina/farmacologia , Metformina/administração & dosagem , MicroRNAs/metabolismo , MicroRNAs/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Receptor 4 Toll-Like/metabolismo
4.
Free Radic Biol Med ; 222: 187-198, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38897422

RESUMO

Oxidative stress and the activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome have been linked to insulin resistance in skeletal muscle. In immune cells, the exacerbated generation of reactive oxygen species (ROS) activates the NLRP3 inflammasome, by facilitating the interaction between thioredoxin interacting protein (TXNIP) and NLRP3. However, the precise role of ROS/TXNIP-dependent NLRP3 inflammasome activation in skeletal muscle during obesity-induced insulin resistance remains undefined. Here, we induced insulin resistance in C57BL/6J mice by feeding them for 8 weeks with a high-fat diet (HFD) and explored whether the ROS/TXNIP/NLRP3 pathway was involved in the induction of insulin resistance in skeletal muscle. Skeletal muscle fibers from insulin-resistant mice exhibited increased oxidative stress, as evidenced by elevated malondialdehyde levels, and altered peroxiredoxin 2 dimerization. Additionally, these fibers displayed augmented activation of the NLRP3 inflammasome, accompanied by heightened ROS-dependent proximity between TXNIP and NLRP3, which was abolished by the antioxidant N-acetylcysteine (NAC). Inhibition of the NLRP3 inflammasome with MCC950 or suppressing the ROS/TXNIP/NLRP3 pathway with NAC restored insulin-dependent glucose uptake in muscle fibers from insulin-resistant mice. These findings provide insights into the mechanistic link between oxidative stress, NLRP3 inflammasome activation, and obesity-induced insulin resistance in skeletal muscle.


Assuntos
Proteínas de Transporte , Dieta Hiperlipídica , Glucose , Resistência à Insulina , Músculo Esquelético , Proteína 3 que Contém Domínio de Pirina da Família NLR , Obesidade , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Tiorredoxinas , Animais , Masculino , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Dieta Hiperlipídica/efeitos adversos , Furanos/farmacologia , Glucose/metabolismo , Indenos/farmacologia , Inflamassomos/metabolismo , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Obesidade/metabolismo , Obesidade/patologia , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas , Tiorredoxinas/metabolismo , Tiorredoxinas/genética
5.
J Inflamm (Lond) ; 21(1): 15, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698414

RESUMO

INTRODUCTION: PM exposure can induce inflammatory and oxidative responses; however, differences in these adverse effects have been reported depending on the chemical composition and size. Moreover, inflammatory mechanisms such as NLRP3 activation by PM10 have yet to be explored. OBJECTIVE: To assess the impact of PM10 on cell cytotoxicity and the inflammatory response through in vitro and in vivo models. METHODOLOGY: Peripheral blood mononuclear cells (PBMCs) from healthy donors were exposed to PM10. Cytotoxicity was determined using the LDH assay; the expression of inflammasome components and the production of pro-inflammatory cytokines were quantified through qPCR and ELISA, respectively; and the formation of ASC complexes was examined using confocal microscopy. For in vivo analysis, male C57BL6 mice were intranasally challenged with PM10 and bronchoalveolar lavage fluid was collected to determine cell counts and quantification of pro-inflammatory cytokines by ELISA. RNA was extracted from lung tissue, and the gene expression of inflammatory mediators was quantified. RESULTS: PM10 exposure induced significant cytotoxicity at concentrations over 100 µg/mL. Moreover, PM10 enhances the gene expression and release of pro-inflammatory cytokines in PBMCs, particularly IL-1ß; and induces the formation of ASC complexes in a dose-dependent manner. In vivo, PM10 exposure led to cell recruitment to the lungs, which was characterized by a significant increase in polymorphonuclear cells compared to control animals. Furthermore, PM10 induces the expression of several inflammatory response-related genes, such as NLRP3, IL-1ß and IL-18, within lung tissue. CONCLUSION: Briefly, PM10 exposure reduced the viability of primary cells and triggered an inflammatory response, involving NLRP3 inflammasome activation and the subsequent production of IL-1ß. Moreover, PM10 induces the recruitment of cells to the lung and the expression of multiple cytokines; this phenomenon could contribute to epithelial damage and, thus to the development and exacerbation of respiratory diseases such as viral infections.

6.
Pflugers Arch ; 476(7): 1065-1075, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679646

RESUMO

Cardiac hypertrophy (CH) is an adaptive response to maintain cardiac function; however, persistent stress responses lead to contractile dysfunction and heart failure. Although inflammation is involved in these processes, the mechanisms that control cardiac inflammation and hypertrophy still need to be clarified. The NLRP3 inflammasome is a cytosolic multiprotein complex that mediates IL-1ß production. The priming step of NLRP3 is essential for increasing the expression of its components and occurs following NF-κB activation. Hyperthyroidism triggers CH, which can progress to maladaptive CH and even heart failure. We have shown in a previous study that thyroid hormone (TH)-induced CH is linked to the upregulation of S100A8, leading to NF-κB activation. Therefore, we aimed to investigate whether the NLRP3 inflammasome is involved in TH-induced CH and its potential role in CH pathophysiology. Hyperthyroidism was induced in NLRP3 knockout (NLRP3-KO), Caspase-1-KO and Wild Type (WT) male mice of the C57Bl/6J strain, aged 8-12 weeks, by triiodothyronine (7 µg/100 g BW, i.p.) administered daily for 14 days. Morphological and cardiac functional analysis besides molecular assays showed, for the first time, that TH-induced CH is accompanied by reduced NLRP3 expression in the heart and that it occurs independently of the NLRP3 inflammasome and caspase 1-related pathways. However, NLRP3 is important for the maintenance of basal cardiac function since NLRP3-KO mice had impaired diastolic function and reduced heart rate, ejection fraction, and fractional shortening compared with WT mice.


Assuntos
Cardiomegalia , Hipertireoidismo , Inflamassomos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hipertireoidismo/metabolismo , Hipertireoidismo/complicações , Inflamassomos/metabolismo , Camundongos , Masculino , Cardiomegalia/metabolismo , Camundongos Knockout , Caspase 1/metabolismo
7.
Clin Oral Investig ; 28(5): 285, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684528

RESUMO

OBJECTIVE: To evaluate the effects of NLRP3 inflammasome inhibition or knockout in experimental apical periodontitis (AP) induced in mice. METHODS: The experimental AP was induced by pulpal exposure. To evaluate NLRP3-specific inhibitor medication (MCC950), WT mice received intraperitoneal injections, while the control received PBS (n = 10). In addition, to evaluate NLRP3 knockout, 35 wild-type (WT) and 35 NLRP3-/- mice were divided into a control group (without pulpal exposure, n = 5) and three experimental groups: after 2, 14 and 42 days after pulpal exposure (n = 10). Microscopic and molecular analyzes were carried out using a significance level of 5%. RESULTS: Exposure to MCC950 did not affect the periapical lesion size after 14 days (P = 0.584). However, exposed mice had a lower expression of IL-1ß, IL-18 and caspase-1 (P = 0.010, 0.016 and 0.002, respectively). Moreover, NLRP3-/- mice showed a smaller periapical lesion after 14 and 42 days (P = 0.023 and 0.031, respectively), as well as a lower expression of IL-1ß after 42 days (P < 0.001), of IL-18 and caspase-1 after 14 (P < 0.001 and 0.035, respectively) and 42 days (P = 0.002 and 0.002, respectively). NLRP3-/- mice also showed a lower mRNA for Il-1ß, Il-18 and Casp1 after 2 (P = 0.002, 0.036 and 0.001, respectively) and 14 days (P = 0.002, 0.002 and 0.001, respectively). CONCLUSIONS: NLRP3 inflammasome inhibition or knockout can attenuate the inflammatory events that result in the periapical lesion (AP) formation after pulpal exposure in mice. CLINICAL RELEVANCE: The NLRP3 inflammasome may be a therapeutic target for AP, and new approaches may verify the impact of its inhibition (through intracanal medications or filling materials) on the bone repair process and treatment success.


Assuntos
Modelos Animais de Doenças , Indenos , Inflamassomos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Periodontite Periapical , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Inflamassomos/metabolismo , Sulfonamidas/farmacologia , Furanos/farmacologia , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Sulfonas/farmacologia , Camundongos Endogâmicos C57BL , Masculino
9.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464118

RESUMO

Binge alcohol use is increasing among aged adults (>65 years). Alcohol-related toxicity in aged adults is associated with neurodegeneration, yet the molecular underpinnings of age-related sensitivity to alcohol are not well described. Studies utilizing rodent models of neurodegenerative disease reveal heightened activation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nod like receptor 3 (NLRP3) mediate microglia activation and associated neuronal injury. Our group, and others, have implicated hippocampal-resident microglia as key producers of inflammatory mediators, yet the link between inflammation and neurodegeneration has not been established in models of binge ethanol exposure and advanced age. Here, we report binge ethanol increased the proportion of NLRP3+ microglia in the hippocampus of aged (18-20 months) female C57BL/6N mice compared to young (3-4 months). In primary microglia, ethanol-induced expression of reactivity markers and NLRP3 inflammasome activation were more pronounced in microglia from aged mice compared to young. Making use of an NLRP3-specific inhibitor (OLT1177) and a novel brain-penetrant Nanoligomer that inhibits NF-κB and NLRP3 translation (SB_NI_112), we find ethanol-induced microglial reactivity can be attenuated by OLT1177 and SB_NI_112 in microglia from aged mice. In a model of intermittent binge ethanol exposure, SB_NI_112 prevented ethanol-mediated microglia reactivity, IL-1ß production, and tau hyperphosphorylation in the hippocampus of aged mice. These data suggest early indicators of neurodegeneration occurring with advanced age and binge ethanol exposure are NF-κB- and NLRP3-dependent. Further investigation is warranted to explore the use of targeted immunosuppression via Nanoligomers to attenuate neuroinflammation after alcohol consumption in the aged.

10.
Ann Hepatol ; 29(4): 101475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38331384

RESUMO

INTRODUCTION AND OBJECTIVES: Acute liver injury (ALI) is characterized by massive hepatocyte death with high mortality and poor prognosis. Hepatocyte pyroptosis plays a key role in the physiopathological processes of ALI, which can damage mitochondria and release NLRP3 inflammasome particles, causing systemic inflammatory responses. Z-DNA Binding Protein 1 (ZBP1) is a sensor that induces cell death. Here, we investigated whether ZBP1 participates in hepatocyte pyroptosis and explored the possible pathogenesis of ALI. MATERIALS AND METHODS: Hepatocyte pyrotosis was induced with lipopolysaccharide (LPS) and nigericin (Nig), and the expression of Zbp1 (ZBP1) was examined by western blot analysis and RT-qPCR. Further, we transfected AML-12 (LO2 and HepG2) cell lines with Zbp1 (ZBP1) siRNA. After ZBP1 was silenced, LDH release and flow cytometry were used to measure the cell death; Western blot analysis and RT-qPCR were used to detect the marker of NLRP3 inflammasome activation and pyroptosis. We also detected the expression of mitochondrial linear rupture marker phosphoglycerate mutase family member 5 (PGAM5) using western blot analysis and reactive oxygen species (ROS) using the DCFH-DA method. RESULTS: The expression of ZBP1 was up-regulated in LPS/Nig-induced hepatocytes. Si-Zbp1 (Si-ZBP1) inhibited NLRP3 inflammasome activation and pyroptosis in LPS/Nig-induced hepatocytes. Moreover, ZBP1 silencing inhibited the expression of PGAM5 by reducing ROS production. CONCLUSIONS: ZBP1 promotes hepatocellular pyroptosis by modulating mitochondrial damage, which facilitates the extracellular release of ROS.


Assuntos
Hepatócitos , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Espécies Reativas de Oxigênio , Animais , Humanos , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamassomos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Nigericina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfoproteínas Fosfatases , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais
11.
Braz. j. med. biol. res ; 57: e13379, fev.2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557310

RESUMO

Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.

12.
Braz. j. med. biol. res ; 57: e13299, fev.2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557328

RESUMO

25-hydroxycholesterol (25-HC) plays a role in the regulation of cell survival and immunity. However, the effect of 25-HC on myocardial ischemia/reperfusion (MI/R) injury remains unknown. Our present study aimed to investigate whether 25-HC aggravated MI/R injury through NLRP3 inflammasome-mediated pyroptosis. The overlapping differentially expressed genes (DEGs) in MI/R were identified from the GSE775, GSE45818, GSE58486, and GSE46395 datasets in Gene Expression Omnibus (GEO) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using the database of Annotation, Visualization and Integration Discovery (DAVID). The protein-protein interaction (PPI) network of the overlapping DEGs was established using the Search Tool for the Retrieval of Interacting Genes (STRING) database. These bioinformatics analyses indicated that cholesterol 25-hydroxylase (CH25H) was one of the crucial genes in MI/R injury. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was established to simulate MI/R injury. Western blot and RT-qPCR analysis demonstrated that CH25H was significantly upregulated in OGD/R-stimulated H9C2 cardiomyocytes. Moreover, knockdown of CH25H inhibited the OGD/R-induced pyroptosis and nod-like receptor protein 3 (NLRP3) inflammasome activation, as demonstrated by cell counting kit-8 (CCK8), lactate dehydrogenase (LDH), RT-qPCR, and western blotting assays. Conversely, 25-HC, which is synthesized by CH25H, promoted activation of NLRP3 inflammasome in OGD/R-stimulated H9C2 cardiomyocytes. In addition, the NLRP3 inhibitor BAY11-7082 attenuated 25-HC-induced H9C2 cell injury and pyroptosis under OGD/R condition. In conclusion, 25-HC could aggravate OGD/R-induced pyroptosis through promoting activation of NLRP3 inflammasome in H9C2 cells.

13.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279290

RESUMO

Despite significant therapeutic advancements, morbidity and mortality following myocardial infarction (MI) remain unacceptably high. This clinical challenge is primarily attributed to two significant factors: delayed reperfusion and the myocardial injury resulting from coronary reperfusion. Following reperfusion, there is a rapid intracellular pH shift, disruption of ionic balance, heightened oxidative stress, increased activity of proteolytic enzymes, initiation of inflammatory responses, and activation of several cell death pathways, encompassing apoptosis, necroptosis, and pyroptosis. The inflammatory cell death or pyroptosis encompasses the activation of the intracellular multiprotein complex known as the NLRP3 inflammasome. High-density lipoproteins (HDL) are endogenous particles whose components can either promote or mitigate the activation of the NLRP3 inflammasome. In this comprehensive review, we explore the role of inflammasome activation in the context of MI and provide a detailed analysis of how HDL can modulate this process.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Apoptose , Piroptose
14.
Artigo em Inglês | MEDLINE | ID: mdl-38062738

RESUMO

Significance: The growing importance of mitochondria in the immune response and inflammation is multifaceted. Unraveling the different mechanisms by which mitochondria have a relevant role in the inflammatory response beyond the energy management of the process is necessary for improving our understanding of the host immune defense and the pathogenesis of various inflammatory diseases and syndromes. Critical Issues: Mitochondria are relevant in the immune response at different levels, including releasing activation molecules, changing its structure and function to accompany the immune response, and serving as a structural base for activating intermediates as NLRP3 inflammasome. In this scientific journey of dissecting mitochondrial mechanisms, new questions and interesting aspects arise, such as the involvement of mitochondrial-derived vesicles in the immune response with the putative role of preventing uncontrolled situations. Recent Advances: Researchers are continuously rethinking the role of mitochondria in acute and chronic inflammation and related disorders. As such, mitochondria have important roles as centrally positioned signaling hubs in regulating inflammatory and immune responses. In this review, we present the current understanding of mitochondrial mechanisms involved, beyond the largely known mitochondrial dysfunction, in the onset and development of inflammatory situations. Future Directions: Mitochondria emerge as an interesting and multifaceted platform for studying and developing pharmaceutical and therapeutic approaches. There are many ongoing studies aimed to describe the effects of specific mitochondrial targeted molecules and treatments to ameliorate the consequences of exacerbated inflammatory components of pathologies and syndromes, resulting in an open area of increasing research interest.

15.
Front Immunol ; 14: 1161832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035089

RESUMO

Myelofibrosis (MF) is a clonal hematopoietic stem cell disorder classified among chronic myeloproliferative neoplasms, characterized by exacerbated myeloid and megakaryocytic proliferation and bone marrow fibrosis. It is induced by driver (JAK2/CALR/MPL) and high molecular risk mutations coupled to a sustained inflammatory state that contributes to disease pathogenesis. Patient outcome is determined by stratification into risk groups and refinement of current prognostic systems may help individualize treatment decisions. Circulating cell-free (cf)DNA comprises short fragments of double-stranded DNA, which promotes inflammation by stimulating several pathways, including inflammasome activation, which is responsible for IL-1ß and IL-18 maturation and release. In this work, we assessed the contribution of cfDNA as a marker of disease progression and mediator of inflammation in MF. cfDNA was increased in MF patients and higher levels were associated with adverse clinical outcome, a high-risk molecular profile, advanced disease stages and inferior overall survival, indicating its potential value as a prognostic marker. Cell-free DNA levels correlated with tumor burden parameters and markers of systemic inflammation. To mimic the effects of cfDNA, monocytes were stimulated with poly(dA:dT), a synthetic double-stranded DNA. Following stimulation, patient monocytes released higher amounts of inflammasome-processed cytokine, IL-18 to the culture supernatant, reflecting enhanced inflammasome function. Despite overexpression of cytosolic DNA inflammasome sensor AIM2, IL-18 release from MF monocytes was shown to rely mainly on the NLRP3 inflammasome, as it was prevented by NLRP3-specific inhibitor MCC950. Circulating IL-18 levels were increased in MF plasma, reflecting in vivo inflammasome activation, and highlighting the previously unrecognized involvement of this cytokine in MF cytokine network. Monocyte counts were higher in patients and showed a trend towards correlation with IL-18 levels, suggesting monocytes represent a source of circulating IL-18. The close correlation shown between IL-18 and cfDNA levels, together with the finding of enhanced DNA-triggered IL-18 release from monocytes, suggest that cfDNA promotes inflammation, at least in part, through inflammasome activation. This work highlights cfDNA, the inflammasome and IL-18 as additional players in the complex inflammatory circuit that fosters MF progression, potentially providing new therapeutic targets.


Assuntos
Ácidos Nucleicos Livres , Mielofibrose Primária , Humanos , Inflamassomos/metabolismo , Citocinas/metabolismo , Interleucina-18/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mielofibrose Primária/genética , Inflamação/induzido quimicamente , DNA , Progressão da Doença
16.
Gac Med Mex ; 159(3): 255-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37494725

RESUMO

Diabetic cardiomyopathy (DCM) is a serious complication of diabetes caused by oxidative stress, inflammation, insulin resistance, myocardial fibrosis, and lipotoxicity; its nature is insidious, complex and difficult to treat. NLRP3 inflammasome triggers the maturation and release of pro-inflammatory cytokines, participates in pathophysiological processes such as insulin resistance and myocardial fibrosis, in addition to being closely related to the development and progression of diabetic cardiomyopathy. The development of inhibitors targeting specific aspects of inflammation suggests that NLRP3 inflammasome can be used to treat diabetic cardiomyopathy. This paper aims to summarize NLRP3 inflammasome mechanism and therapeutic targets in diabetic cardiomyopathy, and to provide new suggestions for the treatment of this disease.


La cardiomiopatía diabética es una complicación grave de la diabetes causada por estrés oxidativo, inflamación, resistencia a la insulina, fibrosis miocárdica y lipotoxicidad. Se trata de un padecimiento insidioso, complejo y difícil de tratar. El inflamasoma NLRP3 desencadena la maduración y liberación de citoquinas proinflamatorias, participa en procesos fisiopatológicos como la resistencia a la insulina y la fibrosis miocárdica, además de estar estrechamente relacionado con la aparición y progresión de la cardiomiopatía diabética. El desarrollo de inhibidores dirigidos a aspectos específicos de la inflamación sugiere que el inflamasoma NLRP3 puede utilizarse para tratar la cardiomiopatía diabética. Este artículo pretende resumir el mecanismo y las dianas terapéuticas del inflamasoma NLRP3 en la cardiomiopatía diabética, así como aportar nuevas sugerencias para el tratamiento de esta enfermedad.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Resistência à Insulina , Animais , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/complicações , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Inflamação/etiologia , Fibrose
17.
Gac. méd. Méx ; Gac. méd. Méx;159(3): 261-267, may.-jun. 2023. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1448285

RESUMO

Resumen La cardiomiopatía diabética es una complicación grave de la diabetes causada por estrés oxidativo, inflamación, resistencia a la insulina, fibrosis miocárdica y lipotoxicidad. Se trata de un padecimiento insidioso, complejo y difícil de tratar. El inflamasoma NLRP3 desencadena la maduración y liberación de citoquinas proinflamatorias, participa en procesos fisiopatológicos como la resistencia a la insulina y la fibrosis miocárdica, además de estar estrechamente relacionado con la aparición y progresión de la cardiomiopatía diabética. El desarrollo de inhibidores dirigidos a aspectos específicos de la inflamación sugiere que el inflamasoma NLRP3 puede utilizarse para tratar la cardiomiopatía diabética. Este artículo pretende resumir el mecanismo y las dianas terapéuticas del inflamasoma NLRP3 en la cardiomiopatía diabética, así como aportar nuevas sugerencias para el tratamiento de esta enfermedad.


Abstract Diabetic cardiomyopathy (DCM) is a serious complication of diabetes caused by oxidative stress, inflammation, insulin resistance, myocardial fibrosis, and lipotoxicity; its nature is insidious, complex and difficult to treat. NLRP3 inflammasome triggers the maturation and release of pro-inflammatory cytokines, participates in pathophysiological processes such as insulin resistance and myocardial fibrosis, in addition to being closely related to the development and progression of diabetic cardiomyopathy. The development of inhibitors targeting specific aspects of inflammation suggests that NLRP3 inflammasome can be used to treat diabetic cardiomyopathy. This paper aims to summarize NLRP3 inflammasome mechanism and therapeutic targets in diabetic cardiomyopathy, and to provide new suggestions for the treatment of this disease.

18.
Can J Physiol Pharmacol ; 101(2): 106-116, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661235

RESUMO

Inflammatory pathways of Toll-like receptor 4 (TLR4) and NLRP3 inflammasome contribute to acute myocardial infarction (AMI) pathophysiology. The hypoxia-inducible factor 1α (HIF-1α), however, is a key transcription factor related to cardioprotection. This study aimed to compare the influence of carvedilol and thyroid hormones (TH) on inflammatory and HIF-1α proteins and on cardiac haemodynamics in the infarcted heart. Male Wistar rats were allocated into five groups: sham-operated group (SHAM), infarcted group (MI), infarcted treated with the carvedilol group (MI + C), infarcted treated with the TH group (MI + TH), and infarcted co-treated with the carvedilol and TH group (MI + C + TH). Haemodynamic analysis was assessed 15 days post-AMI. The left ventricle (LV) was collected for morphometric and Western blot analysis. The MI group presented LV systolic pressure reduction, LV end-diastolic pressure elevation, and contractility index decrease compared to the SHAM group. The MI + C, MI + TH, and MI + C + TH groups did not reveal such alterations compared to the SHAM group. The MI + TH and MI + C + TH groups presented reduced MyD88 and NLRP3 and increased HIF-1α levels. In conclusion, all treatments preserve the cardiac haemodynamic, and only TH, as isolated treatment or in co-treatment with carvedilol, was able to reduce MyD88 and NLRP3 and increase HIF-1α in the infarcted heart.


Assuntos
Fator 88 de Diferenciação Mieloide , Infarto do Miocárdio , Animais , Masculino , Ratos , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Fator 88 de Diferenciação Mieloide/metabolismo , Infarto do Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Wistar , Hormônios Tireóideos
19.
Ann Hepatol ; 28(1): 100780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36309184

RESUMO

INTRODUCTION AND OBJECTIVES: Administration of carbon tetrachloride (CCl4), along with an hepatopathogenic diet, is widely employed as a chemical inducer to replicate human nonalcoholic steatohepatitis (NASH) in rodents; however, the role of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in this model remains unclear. We aimed to determine the relevance of NLRP3 inflammasome activation in the development of NASH induced by CCl4 along with an hepatopathogenic diet in male Wistar rats. MATERIALS AND METHODS: Animals were fed either a high fat, sucrose, and cholesterol diet (HFSCD) or a HFSCD plus intraperitoneal injections of low doses of CCl4 (400 mg/kg) once a week for 15 weeks. Liver steatosis, inflammation, fibrosis, and NLRP3 inflammasome activation were evaluated using biochemical, histological, ultrastructural, and immunofluorescence analyses, western blotting, and immunohistochemistry. RESULTS: Our experimental model reproduced several aspects of the human NASH pathophysiology. NLRP3 inflammasome activation was induced by the combined effect of HFSCD plus CCl4 and significantly increased levels of both proinflammatory and profibrogenic cytokines and collagen deposition in the liver; thus, NASH severity was higher in the HFSCD+CCl4 group than that in the HFSCD group, to which CCl4 was not administered. Hepatic stellate cells, the most profibrogenic cells, were activated by HFSCD plus CCl4, as indicated by elevated levels of α-smooth muscle actin. Thus, activation of the NLRP3 inflammasome, triggered by low doses of CCl4, exacerbates the severity of NASH. CONCLUSIONS: Our results indicate that NLRP3 inflammasome activation plays a key role and may be an important therapeutic target for NASH treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Animais , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inflamassomos/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Wistar , Fígado/patologia , Colesterol , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
20.
Curr Neuropharmacol ; 21(2): 202-212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35339182

RESUMO

Alzheimer's disease (AD), the most prevalent form of dementia, is a complex clinical condition with multifactorial origin posing a major burden to health care systems across the world. Even though the pathophysiological mechanisms underlying the disease are still unclear, both central and peripheral inflammation has been implicated in the process. Piling evidence shows that the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in AD. As dyslipidemia is a risk factor for dementia, and cholesterol can also activate the inflammasome, a possible link between lipid levels and the NLRP3 inflammasome has been proposed in Alzheimer's. It is also speculated that not only cholesterol but also its metabolites, the oxysterols, may be involved in AD pathology. In this context, mounting data suggest that NLRP3 inflammasome activity can be modulated by different peripheral nuclear receptors, including liver-X receptors, which present oxysterols as endogenous ligands. In light of this, the current review explores whether the activation of NLRP3 by nuclear receptors, mediated by oxysterols, may also be involved in AD and could serve as a potential pharmacological avenue in dementia.


Assuntos
Doença de Alzheimer , Oxisteróis , Humanos , Inflamassomos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA