Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
Stem Cell Rev Rep ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134888

RESUMO

NADPH oxidase 2 (Nox2), a superoxide-generating enzyme, is a source of reactive oxygen species (ROS) that regulate the intracellular redox state, self-renewal, and fate of hematopoietic stem/progenitor cells (HSPCs). Nox2 complex expressed on HSPCs associated with several activated cell membrane receptors increases the intracellular level of ROS. In addition, ROS are also released from mitochondria and, all together, are potent activators of intracellular pattern recognition receptor Nlrp3 inflammasome, which regulates the trafficking, proliferation, and metabolism of HSPCs. In the current study, we noticed that Nox2-deficient mice, despite the increased number of HSPCs in the bone marrow (BM), show hematopoietic defects illustrated by delayed recovery of peripheral blood (PB) hematopoietic parameters after sublethal irradiation and mobilize fewer HSPCs after administration of G-CSF and AMD3100. Moreover, Nox2-deficient HSPCs engraft poorly after transplantation into normal syngeneic recipients. To explain these defects at the molecular level, we hypothesized that Nox2-KO decreased ROS level does not efficiently activate Nlrp3 inflammasome, which plays a crucial role in regulating the trafficking of HSPCs. Herein, we report Nox2-deficient HSPCs display i) defective migration to major chemoattractant, ii) impaired intracellular activation of Nlrp3 inflammasome, and iii) a defect in membrane lipid raft (MLRs) formation that is required for a proper chemotactic response to pro-migratory factors. We conclude that Nox2-derived ROS enhances in Nlrp3 inflammasome-dependent manner HSPCs trafficking by facilitating MLRs assemble on the outer cell membranes, and defect in Nox2 expression results in impaired activation of Nlrp3 inflammasome, which affects HSPCs migration.

2.
Eur J Neurosci ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049535

RESUMO

Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.

3.
Cardiovasc Diabetol ; 23(1): 273, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049086

RESUMO

BACKGROUND: Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS: This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS: The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin ß1, but without significant impact on piezo 1. CONCLUSIONS: Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.


Assuntos
Compostos Benzidrílicos , Cardiomiopatias Diabéticas , Matriz Extracelular , Glucosídeos , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Glucosídeos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Compostos Benzidrílicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Ratos , Quinase 1 de Adesão Focal/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações
4.
Sci China Life Sci ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38902450

RESUMO

Energy status is linked to the production of reactive oxygen species (ROS) in macrophages, which is elevated in obesity. However, it is unclear how ROS production is upregulated in macrophages in response to energy overload for mediating the development of obesity. Here, we show that the Rab-GTPase activating protein (RabGAP) TBC1D1, a substrate of the energy sensor AMP-activated protein kinase (AMPK), is a critical regulator of macrophage ROS production and consequent adipose inflammation for obesity development. TBC1D1 deletion decreases, whereas an energy overload-mimetic non-phosphorylatable TBC1D1S231A mutation increases, ROS production and M1-like polarization in macrophages. Mechanistically, TBC1D1 and its downstream target Rab8a form an energy-responsive complex with NOX2 for ROS generation. Transplantation of TBC1D1S231A bone marrow aggravates diet-induced obesity whereas treatment with an ultra-stable TtSOD for removal of ROS selectively in macrophages alleviates both TBC1D1S231A mutation- and diet-induced obesity. Our findings therefore have implications for drug discovery to combat obesity.

5.
Int Immunopharmacol ; 137: 112425, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851160

RESUMO

The production of superoxide anions and other reactive oxygen species (ROS) by neutrophils is necessary for host defense against microbes. However, excessive ROS production can induce cell damage that participates in the inflammatory response. Superoxide anions are produced by the phagocyte NADPH oxidase, a multicomponent enzyme system consisting of two transmembrane proteins (gp91phox/NOX2 and p22phox) and four soluble cytosolic proteins (p40phox, p47phox, p67phox and the small G proteins Rac1/2). Stimulation of neutrophils by various agonists, such as the bacterial peptide formyl-Met-Leu-Phe (fMLF), induces NADPH oxidase activation and superoxide production, a process that is enhanced by the pro-inflammatory cytokines such as GM-CSF. The pathways involved in this GM-CSF-induced up-regulation or priming are not fully understood. Here we show that GM-CSF induces the activation of the prolyl cis/trans isomerase Pin1 in human neutrophils. Juglone and PiB, two selective Pin1 inhibitors, were able to block GM-CSF-induced priming of ROS production by human neutrophils. Interestingly, GM-CSF induced Pin1 binding to phosphorylated p47phox at Ser345. Neutrophils isolated from synovial fluid of patients with rheumatoid arthritis are known to be primed. Here we show that Pin1 activity was also increased in these neutrophils and that Pin1 inhibitors effectively inhibited ROS hyperproduction by the same cells. These results suggest that the prolyl cis/trans isomerase Pin1 may control GM-CSF-induced priming of ROS production by neutrophils and priming of neutrophils in synovial fluid of rheumatoid arthritis patients. Pharmacological targeting of Pin1 may be a valuable approach to the treatment of inflammation.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , NADPH Oxidases , Peptidilprolil Isomerase de Interação com NIMA , Neutrófilos , Humanos , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Naftoquinonas/farmacologia , Inflamação/imunologia , Células Cultivadas , Artrite Reumatoide/imunologia , Artrite Reumatoide/tratamento farmacológico
6.
Front Cell Dev Biol ; 12: 1342227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690564

RESUMO

Extracellular vesicles (EVs) are a type of cytoplasmic vesicles secreted by a variety of cells. EVs originating from cells have been known to participate in cell communication, antigen presentation, immune cell activation, tolerance induction, etc. These EVs can also carry the active form of Nicotinamide Adenine Dinucleotide Phosphate Oxidase Hydrogen (NADPH) oxidase, which is very essential for the production of reactive oxygen species (ROS) and that can then modulate processes such as cell regeneration. The aim of this study is to characterize the EVs isolated from U-937 and THP-1 cells, identify the NADPH oxidase (NOX) isoforms, and to determine whether EVs can modulate NOX4 and NOX2 in monocytes and macrophages. In our study, isolated EVs of U-937 were characterized using dynamic light scattering (DLS) spectroscopy and immunoblotting. The results showed that the exogenous addition of differentiation agents (either phorbol 12-myristate 13-acetate (PMA) or ascorbic acid) or the supplementation of EVs used in the study did not cause any stress leading to alterations in cell proliferation and viability. In cells co-cultured with EVs for 72 h, strong suppression of NOX4 and NOX2 is evident when monocytes transform into macrophagic cells. We also observed lower levels of oxidative stress measured using immunoblotting and electron paramagnetic resonance spectroscopy under the EVs co-cultured condition, which also indicates that EVs might contribute significantly by acting as an antioxidant source, which agrees with previous studies that hypothesized the role of EVs in therapeutics. Therefore, our results provide evidence for NOX regulation by EVs in addition to its role as an antioxidant cargo.

7.
Proc Natl Acad Sci U S A ; 121(23): e2320388121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805284

RESUMO

Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple ß-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.


Assuntos
Microscopia Crioeletrônica , NADPH Oxidase 2 , NADPH Oxidases , Fagócitos , Humanos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/química , Fagócitos/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/química , Ligação Proteica , Sítios de Ligação , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/genética , Modelos Moleculares , Espécies Reativas de Oxigênio/metabolismo
8.
Free Radic Biol Med ; 220: 179-191, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704053

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.


Assuntos
Atorvastatina , Modelos Animais de Doenças , Armadilhas Extracelulares , Imipenem , NADPH Oxidase 2 , Sepse , Animais , Atorvastatina/farmacologia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Sepse/patologia , Camundongos , Imipenem/farmacologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Lesão Pulmonar/metabolismo , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Transdução de Sinais/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Quimioterapia Combinada
9.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696730

RESUMO

Reactive oxygen species are important effectors and modifiers of the acute inflammatory response, recruiting phagocytes including neutrophils to sites of tissue injury. In turn, phagocytes such as neutrophils are both consumers and producers of reactive oxygen species. Phagocytes including neutrophils generate reactive oxygen species in an oxidative burst through the activity of a multimeric phagocytic nicotinamide adenine dinucleotide phosphate oxidase complex. Mutations in the NOX2/CYBB (previously gp91phox) nicotinamide adenine dinucleotide phosphate oxidase subunit are the commonest cause of chronic granulomatous disease, a disease characterized by infection susceptibility and an inflammatory phenotype. To model chronic granulomatous disease, we made a nox2/cybb zebrafish (Danio rerio) mutant and demonstrated it to have severely impaired myeloid cell reactive oxygen species production. Reduced early survival of nox2 mutant embryos indicated an essential requirement for nox2 during early development. In nox2/cybb zebrafish mutants, the dynamics of initial neutrophil recruitment to both mild and severe surgical tailfin wounds was normal, suggesting that excessive neutrophil recruitment at the initiation of inflammation is not the primary cause of the "sterile" inflammatory phenotype of chronic granulomatous disease patients. This nox2 zebrafish mutant adds to existing in vivo models for studying reactive oxygen species function in myeloid cells including neutrophils in development and disease.


Assuntos
Mutação , Células Mieloides , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Peixe-Zebra , Animais , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Células Mieloides/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Neutrófilos/metabolismo , Infiltração de Neutrófilos , Cauda , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Doença Granulomatosa Crônica/genética , Modelos Animais de Doenças
10.
Redox Biol ; 73: 103214, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805973

RESUMO

The chaperone protein EROS ("Essential for Reactive Oxygen Species") was recently discovered in phagocytes. EROS was shown to regulate the abundance of the ROS-producing enzyme NADPH oxidase isoform 2 (NOX2) and to control ROS-mediated cell killing. Reactive oxygen species are important not only in immune surveillance, but also modulate physiological signaling responses in multiple tissues. The roles of EROS have not been previously explored in the context of oxidant-modulated cell signaling. Here we show that EROS plays a key role in ROS-dependent signal transduction in vascular endothelial cells. We used siRNA-mediated knockdown and developed CRISPR/Cas9 knockout of EROS in human umbilical vein endothelial cells (HUVEC), both of which cause a significant decrease in the abundance of NOX2 protein, associated with a marked decrease in RAC1, a small G protein that activates NOX2. Loss of EROS also attenuates receptor-mediated hydrogen peroxide (H2O2) and Ca2+ signaling, disrupts cytoskeleton organization, decreases cell migration, and promotes cellular senescence. EROS knockdown blocks agonist-modulated eNOS phosphorylation and nitric oxide (NO●) generation. These effects of EROS knockdown are strikingly similar to the alterations in endothelial cell responses that we previously observed following RAC1 knockdown. Proteomic analyses following EROS or RAC1 knockdown in endothelial cells showed that reduced abundance of these two distinct proteins led to largely overlapping effects on endothelial biological processes, including oxidoreductase, protein phosphorylation, and endothelial nitric oxide synthase (eNOS) pathways. These studies demonstrate that EROS plays a central role in oxidant-modulated endothelial cell signaling by modulating NOX2 and RAC1.


Assuntos
Células Endoteliais da Veia Umbilical Humana , NADPH Oxidase 2 , Oxirredução , Espécies Reativas de Oxigênio , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Humanos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico/metabolismo , Movimento Celular , Fosforilação , Senescência Celular , Técnicas de Silenciamento de Genes
11.
Artigo em Inglês | MEDLINE | ID: mdl-38652598

RESUMO

OBJECTIVES: Patients with systemic lupus erythematosus (SLE) display heightened immune activation and elevated IgG autoantibody levels, indicating compromised regulatory T cell (Tregs) function. Our recent findings pinpoint CD8+ Tregs as crucial regulators within secondary lymphoid organs, operating in a NOX2-dependent mechanism. However, the specific involvement of CD8+ Tregs in SLE pathogenesis and the mechanisms underlying their role remain uncertain. METHODS: SLE and healthy individuals were enlisted to assess the quantity and efficacy of Tregs. CD8+CD45RA+CCR7+ Tregs were generated ex vivo, and their suppressive capability was gauged by measuring pZAP70 levels in targeted T cells. Notch1 activity was evaluated by examining activated Notch1 and HES1, with manipulation of Notch1 accomplished with Notch inhibitor DAPT, Notch1 shRNA, and Notch1-ICD. To create humanized SLE chimeras, immune-deficient NSG mice were engrafted with PBMCs from SLE patients. RESULTS: We observed a reduced frequency and impaired functionality of CD8+ Tregs in SLE patients. There was a downregulation of NOX2 in CD8+ Tregs from SLE patients, leading to a dysfunction. Mechanistically, the reduction of NOX2 in SLE CD8+ Tregs occurred at a post-translational level rather than at the transcriptional level. SLE CD8+ Tregs exhibited heightened Notch1 activity, resulting in increased expression of STUB1, an E3 ubiquitin ligase that binds to NOX2 and facilitates its ubiquitination. Consequently, restoring NOX2 levels and inhibiting Notch1 activity could alleviate the severity of the disease in humanized SLE chimeras. CONCLUSION: Notch1 is the cell-intrinsic mechanism underlying NOX2 deficiency and CD8+ Treg dysfunction, serving as a therapeutic target for clinical management of SLE.

12.
Antioxidants (Basel) ; 13(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38671938

RESUMO

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), are characterized by uncontrolled inflammatory responses, neutrophil activation and infiltration, damage to the alveolar capillary membrane, and diffuse alveolar injury. Neutrophil extracellular traps (NETs), formed by activated neutrophils, contribute significantly to various inflammatory disorders and can lead to tissue damage and organ dysfunction. Corilagin, a compound found in Phyllanthus urinaria, possesses antioxidative and anti-inflammatory properties. In this study, we investigated the protective effects and underlying mechanisms of corilagin in hydrochloric acid (HCl)/lipopolysaccharide (LPS)-induced lung injury. Mice received intraperitoneal administration of corilagin (2.5, 5, or 10 mg/kg) or an equal volume of saline 30 min after intratracheal HCl/LPS administration. After 20 h, lung tissues were collected for analysis. Corilagin treatment significantly mitigated lung injury, as evidenced by reduced inflammatory cell infiltration, decreased production of proinflammatory cytokines, and alleviated oxidative stress. Furthermore, corilagin treatment suppressed neutrophil elastase expression, reduced NET formation, and inhibited the expression of ERK, p38, AKT, STAT3, and NOX2. Our findings suggest that corilagin inhibits NET formation and protects against HCl/LPS-induced ALI in mice by modulating the STAT3 and NOX2 signaling pathways.

13.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38675426

RESUMO

Cerebral malaria (CM), a severe neurological pathology caused by Plasmodium falciparum infection, poses a significant global health threat and has a high mortality rate. Conventional therapeutics cannot cross the blood-brain barrier (BBB) efficiently. Therefore, finding effective treatments remains challenging. The novelty of the treatment proposed in this study lies in the feasibility of intranasal (IN) delivery of the nanostructured lipid carrier system (NLC) combining microRNA (miRNA) and artemether (ARM) to enhance bioavailability and brain targeting. The rational use of NLCs and RNA-targeted therapeutics could revolutionize the treatment strategies for CM management. This study can potentially address the challenges in treating CM, allowing drugs to pass through the BBB. The NLC formulation was developed by a hot-melt homogenization process utilizing 3% (w/w) precirol and 1.5% (w/v) labrasol, resulting in particles with a size of 94.39 nm. This indicates an effective delivery to the brain via IN administration. The results further suggest the effective intracellular delivery of encapsulated miRNAs in the NLCs. Investigations with an experimental cerebral malaria mouse model showed a reduction in parasitaemia, preservation of BBB integrity, and reduced cerebral haemorrhages with the ARM+ miRNA-NLC treatment. Additionally, molecular discoveries revealed that nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and Interleukin-6 (IL-6) levels were reduced in the treated groups in comparison to the CM group. These results support the use of nanocarriers for IN administration, offering a viable method for mitigating CM through the increased bioavailability of therapeutics. Our findings have far-reaching implications for future research and personalized therapy.

14.
J Biol Chem ; 300(4): 107130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432630

RESUMO

The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.


Assuntos
NADPH Oxidase 2 , Família de Proteínas da Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sítios de Ligação
15.
Cancer Drug Resist ; 7: 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434766

RESUMO

Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.

16.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543179

RESUMO

Glutamate excitotoxicity and oxidative stress represent two major pathological mechanisms implicated in retinal disorders. In Diabetic Retinopathy (DR), oxidative stress is correlated to NADPH oxidase (NOX), a major source of Reactive Oxygen Species (ROS), and glutamate metabolism impairments. This study investigated the role of NOX2 and the novel NOX2 inhibitor, GLX7013170, in two models of a) retinal AMPA excitotoxicity [AMPA+GLX7013170 (10-4 M, intravitreally)] and b) early-stage DR paradigm (ESDR), GLX7013170: 14-day therapeutic treatment (topically, 20 µL/eye, 10 mg/mL (300 × 10-4 M), once daily) post-streptozotocin (STZ)-induced DR. Immunohistochemical studies for neuronal markers, nitrotyrosine, micro/macroglia, and real-time PCR, Western blot, and glutamate colorimetric assays were conducted. Diabetes increased NOX2 expression in the retina. NOX2 inhibition limited the loss of NOS-positive amacrine cells and the overactivation of micro/macroglia in both models. In the diabetic retina, GLX7013170 had no effect on retinal ganglion cell axons, but reduced oxidative damage, increased Bcl-2, reduced glutamate levels, and partially restored excitatory amino acid transporter (EAAT1) expression. These results suggest that NOX2 in diabetes is part of the triad, oxidative stress, NOX, and glutamate excitotoxicity, key players in the induction of DR. GLX7013170 is efficacious as a neuroprotective/anti-inflammatory agent and a potential therapeutic in retinal diseases, including ESDR.

17.
Life Sci ; 343: 122555, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460811

RESUMO

AIMS: Ferroptosis, a novel mode of cell death characterized by lipid peroxidation and oxidative stress, plays an important role in the pathogenesis of preeclampsia (PE). The aim of this study is to determine the role of Nox2 in the ferroptosis of trophoblast cells, along with the underlying mechanisms. METHODS: The mRNA and protein levels of Nox2, STAT3, and GPX4 in placental tissues and trophoblast cells were respectively detected by qRT-PCR and western blot analysis. CCK8, transwell invasion and tube formation assays were used to evaluate the function of trophoblast cells. Ferroptosis was evaluated using flow cytometry and the lipid peroxidation assay. Glycolysis and mitochondrial respiration were investigated by detecting the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) using Seahorse extracellular flux technology. The t-test or one-way ANOVA was used for statistical analysis. KEY FINDINGS: Nox2 was up-regulated while STAT3 and GPX4 were down-regulated in PE placental tissues. Nox2 knockdown inhibited ferroptosis in trophoblast cells, which was shown by enhanced proliferation and invasion, decreased ROS and lipid peroxide levels, and reduced glycolysis and mitochondrial dysfunction. Nox2 negatively correlated with MVD in PE placentas, and Nox2 knockdown restored ferroptosis-inhibited tube formation. Nox2 could interact with STAT3. Inhibiting Nox2 restored ferroptosis-induced alterations in the mRNA and protein levels of STAT3 and GPX4. SIGNIFICANCE: Nox2 may trigger ferroptosis through the STAT3/GPX4 pathway, subsequently leading to regulation of mitochondrial respiration, transition of glycolysis, and inhibition of placental angiogenesis. Therefore, targeted inhibition of Nox2 is expected to become a new therapeutic target for PE.


Assuntos
Ferroptose , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Linhagem Celular , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Trofoblastos/metabolismo
18.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474158

RESUMO

This study aims to analyze post-mortem human cardiac specimens, to verify and evaluate the existence or extent of oxidative stress in subjects whose cause of death has been traced to sepsis, through immunohistological oxidative/nitrosative stress markers. Indeed, in the present study, i-NOS, NOX2, and nitrotyrosine markers were higher expressed in the septic death group when compared to the control group, associated with also a significant increase in 8-OHdG, highlighting the pivotal role of oxidative stress in septic etiopathogenesis. In particular, 70% of cardiomyocyte nuclei from septic death specimens showed positivity for 8-OHdG. Furthermore, intense and massive NOX2-positive myocyte immunoreaction was noticed in the septic group, as nitrotyrosine immunostaining intense reaction was found in the cardiac cells. These results demonstrated a correlation between oxidative and nitrosative stress imbalance and the pathophysiology of cardiac dysfunction documented in cases of sepsis. Therefore, subsequent studies will focus on the expression of oxidative stress markers in other organs and tissues, as well as on the involvement of the intracellular pattern of apoptosis, to better clarify the complex pathogenesis of multi-organ failure, leading to support the rationale for including therapies targeting redox abnormalities in the management of septic patients.


Assuntos
Cardiopatias , Sepse , Humanos , Estresse Oxidativo/fisiologia , Sepse/metabolismo , Miócitos Cardíacos/metabolismo , Cardiopatias/metabolismo , Estresse Nitrosativo
19.
Curr Mol Med ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38299414

RESUMO

BACKGROUND: Chronic hyperglycemia in diabetes induces oxidative stress, leading to damage to the vascular system. In this study, we aimed to evaluate the effects and mechanisms of AS-IV-Exos in alleviating endothelial oxidative stress and dysfunction caused by high glucose (HG). METHODS: Histopathological changes were observed using HE staining, and CD31 expression was assessed through immunohistochemistry (IHC). Cell proliferation was evaluated through CCK8 and EDU assays. The levels of ROS, SOD, and GSH-Px in the skin tissues of each group were measured using ELISA. Cell adhesion, migration, and tube formation abilities were assessed using adhesion, Transwell, and tube formation experiments. ROS levels in HUVEC cells were measured using flow cytometry. The levels of miR-210 and Nox2 were determined through quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression of Nox2, SOD, GSH-Px, CD63, and CD81 was confirmed using WB. RESULTS: The level of miR-210 was reduced in diabetes-induced skin damage, while the levels of Nox2 and ROS increased. Treatment with AS-IV increased the level of miR-210 in EPC-Exos. Compared to Exos, AS-IV-Exos significantly reduced the proliferation rate, adhesion number, migration speed, and tube-forming ability of HGdamaged HUVEC cells. AS-IV-Exos also significantly decreased the levels of SOD and GSH-Px in HG-treated HUVEC cells and reduced the levels of Nox2 and GSH-Px. However, ROS levels and Nox2 could reverse this effect. CONCLUSION: AS-IV-Exos effectively alleviated endothelial oxidative stress and dysfunction induced by HG through the miR-210/Nox2/ROS pathway.

20.
J Dent Sci ; 19(1): 211-219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303789

RESUMO

Background/purpose: Periodontitis is a chronic infectious disease. The oxidative stress environment can cause or exacerbate the inflammation in periodontitis. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) may be the most important source of reactive oxygen species (ROS) in periodontal tissues. The pathological mechanism of periodontitis may be related to the increased ROS caused by enhanced NOX activity. The purpose was to investigate the effect of tumor necrosis factor (TNF-α) on inflammatory cytokines and ROS, and the role of NOX-2 in human gingival fibroblasts (HGFs). Materials and methods: HGFs were cultured and divided into the normal control group (NC group) and the inflammatory model group (TNF-α group) induced by 10 ng/ml TNF-α. Thereafter, NOX-2 siRNA was used to knock down NOX-2 gene expression. Quantitative real-time PCR was applied to detect IL-6, MCP-1, and NOX-2 mRNA levels. The levels of IL-6 and MCP-1 protein were examined by ELISA. The level of NOX-2 was evaluated by Western blot. ROS expression was measured by the fluorescence microplate. Results: The mRNA and protein expression levels of IL-6, MCP-1, and NOX-2 were significantly increased, and the expression of ROS was significantly elevated in response to 10 ng/ml TNF-α. Compared with the si-NC group, the mRNA and protein expression levels of IL-6 and MCP-1 were significantly down-regulated and ROS expression was significantly decreased in the si-NOX2 group stimulated by 10 ng/ml TNF-α. Conclusion: TNF-α promotes the expression of NOX-2 in human gingival fibroblasts and enhances the expression of inflammatory factors and ROS in human gingival fibroblasts through the upregulation of NOX-2 partly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA