Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Nutr Res Rev ; 30(1): 36-49, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27995830

RESUMO

CVD affect a large proportion of the world's population, with dyslipidaemia as the major risk factor. The regular consumption of both probiotic bacteria and yeast has been associated with improvement in the serum lipid profile. Thus, the present review aims to describe and discuss the potential mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotic bacteria and yeast. Regarding the hypocholesterolaemic effect of probiotic bacteria, the potential mechanisms responsible include: deconjugation of bile salts; modulation of lipid metabolism; and decreased absorption of intestinal cholesterol through co-precipitation of intestinal cholesterol with the deconjugated bile salts, incorporation and assimilation of cholesterol in the cell membrane of the probiotics, intestinal conversion of cholesterol in coprostanol, and inhibition of the expression of the intestinal cholesterol transporter Niemann-Pick C1 like 1 (NPC1L1) in the enterocytes. The potential mechanisms responsible for the hypocholesterolaemic effect of probiotic yeasts include: deconjugation of bile salts; co-precipitation of intestinal cholesterol with the deconjugated bile salts; incorporation and assimilation of cholesterol in the cell membrane; and inhibition of hepatic cholesterol synthesis. The regular consumption of probiotic bacteria and yeast, as a non-pharmaceutical approach to help manage cardiovascular risk, holds promise, according to the beneficial hypocholesterolaemic effects described herein. However, the hypocholesterolaemic effects vary according to the strains used, the physiological state of the host, and the type of diet to which the probiotics are added. Further studies are necessary to fill the gaps with regard to the knowledge related to this topic.


Assuntos
Anticolesterolemiantes , Probióticos/administração & dosagem , Animais , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Membrana Celular/metabolismo , Precipitação Química , Colestanol/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Dislipidemias/prevenção & controle , Humanos , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/fisiologia , Probióticos/uso terapêutico
2.
Int. j. morphol ; 30(2): 531-540, jun. 2012. ilus
Artigo em Espanhol | LILACS | ID: lil-651825

RESUMO

Las proteínas NPC1L1, ABCG5 y ABCG8 participan en la absorción intestinal de colesterol. Ezetimiba inhibe este proceso bloqueando a NPC1L1, sin embargo, su efecto sobre ABCG5 y ABCG8 aún no está claro. Así, el objetivo del presente trabajo fue evaluar en ratones C57BL/6 con hipercolesterolemia inducida por dieta y tratados con ezetimiba, la expresión de NPC1L1, ABCG5 y ABCG8 mediante PCR en tiempo real y Western blot, en 3 grupos de animales: 1, dieta hipercolesterolémica D12336; 2, dieta D12336 más 5 mg/kg/día de ezetimiba; 3, dieta control. El nivel sérico de colesterol total fue significativamente diferente entre los grupos estudiados (control: 1,85 +/- 0,49 mmol/L; dieta D12336: 3,11 +/- 0,73 mmol/L; ezetimiba: 2,11 +/- 0,50 mmol/L, P = 0,001). La expresión génica de NPC1L1 aumentó 5,4 veces en el grupo que recibió la dieta D12336 (P = 0,003). Por otro lado, la expresión génica de ABCG5 y ABCG8 no fue diferente en el grupo con hipercolesterolemia (P = 0,239 y P = 0,201, respectivamente). Después del tratamiento con ezetimiba, la expresión génica de ABCG5 se incrementó 15,6 veces (P = 0.038). No hubo diferencias significativas en la expresión génica de NPC1L1 (P = 0,134) y ABCG8 (P = 0,067). En relación a la expresión proteica, la dieta D12336 incrementó los niveles de expresión de NPC1L1 (P = 0,022) y ABCG5 (P = 0,008); el tratamiento con ezetimiba incrementó los niveles de NPC1L1 (P = 0,048) y redujo los niveles de ABCG5 (P = 0,036) y ABCG8 (P = 0,016). En conclusión, nuestros resultados sugieren que tanto la dieta hipercolesterolémica como el tratamiento con ezetimiba, en un modelo experimental, afectan los niveles de expresión de NPC1L1, ABCG5 y ABCG8, sugiriendo que ABCG5 y ABCG8 están involucrados en la respuesta hipolipemiante a este fármaco. No obstante, el mecanismo mediante el cual se explica esta interacción requiere de un futuro estudio.


Proteins NPC1L1, ABCG5 and ABCG8 are involved in the intestinal absorption of cholesterol. Ezetimibe inhibits this process by blocking NPC1L1, however, its effect on ABCG5 and ABCG8 is not yet clear. Thus, the objective of this study was to evaluate in C57BL / 6 mice with diet-induced hypercholesterolemia treated with ezetimibe, the expression of NPC1L1, ABCG5 and ABCG8 by real time PCR and Western blot, in 3 groups of animals: 1, diet hypercholesterolemic D12336, 2, D12336 diet plus 5 mg/kg/ day of ezetimibe, 3, diet control. The serum level of total cholesterol was significantly different between groups (control: 1.85 +/- 0.49 mmol / L; diet D12336: 3.11 +/- 0.73 mmol / L; ezetimibe: 2.11 +/- 0.50 mmol / L, P = 0.001). NPC1L1 gene expression increased 5.4-fold in the group receiving the diet D12336 (P = 0.003). Furthermore, the gene expression of ABCG5 and ABCG8 was not different in the group with hypercholesterolemia (P = 0.239 and P = 0.201, respectively). After treatment with ezetimibe, ABCG5 gene expression was increased 15.6 times (P = 0.038). No significant differences in gene expression of NPC1L1 (P = 0.134) and ABCG8 (P = 0.067). Regarding protein expression, the D12336 diet increased the levels of expression of NPC1L1 (P = 0.022) and ABCG5 (P = 0.008), treatment with ezetimibe increased the levels of NPC1L1 (P = 0.048) and reduced levels of ABCG5 (P = 0.036) and ABCG8 (P = 0.016). In conclusion, our results suggest that both hypercholesterolemic diet as treatment with ezetimibe, in an experimental model, affect the expression levels of NPC1L1, ABCG5 and ABCG8, suggesting that ABCG5 and ABCG8 are involved in lipid-lowering response to this drug. However, the mechanism by which this interaction is explained requires further study.


Assuntos
Animais , Ratos , Anticolesterolemiantes/administração & dosagem , Azetidinas/administração & dosagem , Hipercolesterolemia/tratamento farmacológico , Lipoproteínas/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Transportadores de Cassetes de Ligação de ATP/fisiologia , Western Blotting , Colesterol na Dieta , Modelos Animais de Doenças , Expressão Gênica , Lipoproteínas/genética , Proteínas de Membrana Transportadoras/genética , Reação em Cadeia da Polimerase em Tempo Real , Transportadores de Cassetes de Ligação de ATP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA