Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Vavilovskii Zhurnal Genet Selektsii ; 28(4): 398-406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027123

RESUMO

Serotonin 5-HT7 receptors (5-HT7R) are attracting increasing attention as important participants in the mechanisms of Alzheimer's disease and as a possible target for the treatment of various tau pathologies. In this study, we investigated the effects of amisulpride (5-HT7R inverse agonist) in C57BL/6J mice with experimentally induced expression of the gene encoding the aggregation-prone human Tau[R406W] protein in the prefrontal cortex. In these animals we examined short-term memory and the expression of genes involved in the development of tauopathy (Htr7 and Cdk5), as well as biomarkers of neurodegenerative processes - the Bdnf gene and its receptors TrkB (the Ntrk2 gene) and p75NTR (the Ngfr gene). In a short-term memory test, there was no difference in the discrimination index between mice treated with AAV-Tau[R406W] and mice treated with AAV-EGFP. Amisulpride did not affect this parameter. Administration of AAV-Tau[R406W] resulted in increased expression of the Htr7, Htr1a, and Cdk5 genes in the prefrontal cortex compared to AAV-EGFP animals. At the same time, amisulpride at the dose of 10 mg/kg in animals from the AAV-Tau[R406W] group caused a decrease in the Htr7, Htr1a genes mRNA levels compared to animals from the AAV-Tau[R406W] group treated with saline. A decrease in the expression of the Bdnf and Ntrk2 genes in the prefrontal cortex was revealed after administration of AAV-Tau[R406W]. Moreover, amisulpride at various doses (3 and 10 mg/kg) caused the same decrease in the transcription of these genes in mice without tauopathy. It is also interesting that in mice of the AAV-EGFP group, administration of amisulpride at the dose of 10 mg/kg increased the Ngfr gene mRNA level. The data obtained allow us to propose the use of amisulpride in restoring normal tau protein function. However, it should be noted that prolonged administration may result in adverse effects such as an increase in Ngfr expression and a decrease in Bdnf and Ntrk2 expression, which is probably indicative of an increase in neurodegenerative processes.

2.
Cesk Patol ; 60(1): 35-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697826

RESUMO

Spitz tumors represent a heterogeneous group of challenging melanocytic neoplasms, displaying a range of biological behaviors, spanning from benign lesions, Spitz nevi (SN) to Spitz melanomas (SM), with intermediate lesions in between known as atypical Spitz tumors (AST). They are histologically characterized by large epithelioid and/or spindled melanocytes arranged in fascicles or nests, often associated with characteristic epidermal hyperplasia and fibrovascular stromal changes. In the last decade, the detection of mutually exclusive structural rearrangements involving receptor tyrosine kinases ROS1, ALK, NTRK1, NTRK2, NTRK3, RET, MET, serine threonine kinases BRAF and MAP3K8, or HRAS mutation, led to a clinical, morphological and molecular based classification of Spitz tumors. The recognition of some reproducible histological features can help dermatopathologist in assessing these lesions and can provide clues to predict the underlying molecular driver. In this review, we will focus on clinical and morphological findings in molecular Spitz tumor subgroups.


Assuntos
Nevo de Células Epitelioides e Fusiformes , Neoplasias Cutâneas , Humanos , Nevo de Células Epitelioides e Fusiformes/patologia , Nevo de Células Epitelioides e Fusiformes/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/diagnóstico , Melanoma/patologia , Melanoma/genética , Melanoma/diagnóstico
3.
Animals (Basel) ; 14(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791682

RESUMO

Neurotrophin receptor B (NTRK2), also named TRKB, belongs to the neurotrophic factor family. Previous studies have shown that NTRK2 is associated with high fertility in mammals. However, the molecular mechanism and regulatory pathway of this neurotrophic factor remain unclear. In this study, NTRK2 overexpression and NTRK2-siRNA were constructed to detect the effects of NTRK2 on the proliferation and hormone secretion of the ovarian granulosa cells (GCs) of sheep. We successfully isolated follicular phase granulosa cells in vitro from the ovaries of sheep in simultaneous estrus, and the immunofluorescence results confirmed that NTRK2 was expressed in the collected cells. Subsequently, the effect of NTRK2 on the proliferation of sheep granulosa cells was examined via cell transfection experiments. The results showed that the expression of CDK4 and CyclinD2 was significantly increased after NTRK2 overexpression, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). The EdU and CCK-8 assays showed that the proliferation rate of sheep GCs was significantly increased after NTRK2 overexpression, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). Moreover, NTRK2 significantly increased the expression of steroidogenesis-related genes, including steroidogenic acute regulatory protein (STAR) and hydroxy-δ-5-steroid dehydrogenase (HSD3B1), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The ELISA results showed that the secretion levels of E2 and P4 significantly increased after NTRK2 overexpression, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). Previous studies had confirmed that NTRK2 gene belongs to the PI3K-AKT signaling pathway and participates in the signaling of this pathway. This was demonstrated by protein-protein interaction analysis and NTRK2 belongs to the PI3K-AKT pathway. The modification of PI3K and AKT, markers of the PI3K-AKT pathway, via phosphorylation was increased after NTRK2 overexpression in the sheep GCs, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). Overall, these results suggest that the NTRK2 gene regulates the proliferation of GCs and the secretion of steroid hormones in sheep, and that it influences the phosphorylation level of the PI3K/AKT signaling pathway. These findings provided a theoretical basis and new perspectives for exploring the regulation of NTRK2 gene in the development of ovine follicles.

4.
Int J Surg Pathol ; : 10668969241239679, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38562049

RESUMO

Glioblastoma, IDH-wildtype (GBM) is a high-grade astrocytic glioma that accounts for the majority of malignant brain tumors in adults. Within this entity, epithelioid GBM represents a histological subtype characterized by a loosely cohesive aggregate of large cells with abundant cytoplasm, and vesicular nuclei that usually harbors the BRAF V600E mutation. Molecular alterations in GBMs are frequent and play an important role in the diagnosis of this entity. Among the many genetic alterations reported, NTRK fusions are rare and account for <2% of gliomas. Furthermore, NTRK2 fusions are most seen in pediatric populations. Recent approval of the TRK inhibitor larotrectinib by the Food and Drug Administration (FDA) has brought interest in the study and recognition of NTRK fusions in multiple types of tumors. Trials that assess the response to this drug in cancers carrying NTRK fusions have yielded favorable results. We discuss a rare presentation of an adult-type GBM with epithelioid morphology and a BCR::NTRK2 gene fusion.

5.
J Cutan Pathol ; 51(3): 198-204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38031352

RESUMO

A host of signature genetic alterations have been demonstrated in Spitz neoplasms, most notably fusions of kinase genes (including BRAF, ALK, ROS1, NTRK1, NTRK3, RET, MET, MAP3K8) or variants in HRAS. While there are multiple reports of rearrangements involving NTRK1 and NTRK3 in Spitz tumors, there are very few reports of NTRK2-rearranged Spitz nevi in the literature. This report presents an NTRK2-rearranged atypical Spitz tumor with spindled cell features. The patient was a 6-year-old female with a growing pigmented papule on the back. Histopathological evaluation revealed an asymmetric, biphasic, compound proliferation of melanocytes featuring an epithelioid cell population arranged as variably sized nests and single cells along the basal layer with extension down adnexa, as well as a population of spindled melanocytes with desmoplastic features and loss of Melan-A expression in the dermis. There was partial loss of p16 expression in the epidermal component and diffuse loss in the dermal component. Immunohistochemistry for PRAME, ALK, NTRK1, HRAS Q61R, p53, and BRAF V600E were negative. A SQSTM1::NTRK2 fusion was identified by RNA sequencing. No TERT promoter hotspot variants were detected. This case report expands the known histopathologic spectrum of genetic alterations in Spitz neoplasms.


Assuntos
Nevo de Células Epitelioides e Fusiformes , Neoplasias Cutâneas , Feminino , Humanos , Criança , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Proteína Sequestossoma-1/genética , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas/genética , Nevo de Células Epitelioides e Fusiformes/genética , Receptores Proteína Tirosina Quinases/genética , Antígenos de Neoplasias
6.
Autophagy ; 20(3): 692-693, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37941410

RESUMO

Tightly regulated cell surface expression of NTRK2/TrkB provides a mechanism for fine-tuning cellular responses to the neurotrophic factor BDNF. Recently, the degradation of NTRK2 by reticulophagy has been identified as a mechanism to limit its availability for trafficking to the cell membrane. The ER-chaperone CANX (calnexin) delivers NTRK2 to the reticulophagy receptor RETREG1/Fam134b for lysosomal degradation. Upon phosphorylation of CANX, NTRK2 is released from this complex, which facilitates its cell surface transport. These results identify a novel role for CANX in regulating the cell surface expression of NTRK2 and imply a function for reticulophagy that goes beyond regulating the degradation of misfolded proteins within the ER.


Assuntos
Autofagia , Transdução de Sinais , Calnexina , Membrana Celular , Proteínas de Transporte
7.
Cell Mol Neurobiol ; 44(1): 4, 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38104054

RESUMO

Brain-derived neurotrophic factor (BDNF) acting upon its receptor Neurotrophic tyrosine kinase receptor 2 (NTRK2, TRKB) plays a central role in the development and maintenance of synaptic function and activity- or drug-induced plasticity. TRKB possesses an inverted cholesterol recognition and alignment consensus sequence (CARC), suggesting this receptor can act as a cholesterol sensor. We have recently shown that antidepressant drugs directly bind to the CARC domain of TRKB dimers, and that this binding as well as biochemical and behavioral responses to antidepressants are lost with a mutation in the TRKB CARC motif (Tyr433Phe). However, it is not clear if this mutation can also compromise the receptor function and lead to behavioral alterations. Here, we observed that Tyr433Phe mutation does not alter BDNF binding to TRKB, or BDNF-induced dimerization of TRKB. In this line, primary cultures from embryos of heterozygous Tyr433Phe mutant mice (hTRKB.Tyr433Phe) are responsive to BDNF-induced activation of TRKB, and samples from adult mice do not show any difference on TRKB activation compared to wild-type littermates (TRKB.wt). The behavioral phenotype of hTRKB.Tyr433Phe mice is indistinguishable from the wild-type mice in cued fear conditioning, contextual discrimination task, or the elevated plus maze, whereas mice heterozygous to BDNF null allele show a phenotype in context discrimination task. Taken together, our results indicate that Tyr433Phe mutation in the TRKB CARC motif does not show signs of loss-of-function of BDNF responses, while antidepressant binding to TRKB and responses to antidepressants are lost in Tyr433Phe mutants, making them an interesting mouse model for antidepressant research.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor trkB , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Antidepressivos/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Mutação/genética
8.
Genes (Basel) ; 14(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38002980

RESUMO

Despite the increasing availability of antidepressant drugs, a high rate of patients with major depression (MDD) does not respond to pharmacological treatments. Brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling is thought to influence antidepressant efficacy and hippocampal volumes, robust predictors of treatment resistance. We therefore hypothesized the possible role of BDNF and neurotrophic receptor tyrosine kinase 2 (NTRK2)-related polymorphisms in affecting both hippocampal volumes and treatment resistance in MDD. A total of 121 MDD inpatients underwent 3T structural MRI scanning and blood sampling to obtain genotype information. General linear models and binary logistic regressions were employed to test the effect of genetic variations related to BDNF and NTRK2 on bilateral hippocampal volumes and treatment resistance, respectively. Finally, the possible mediating role of hippocampal volumes on the relationship between genetic markers and treatment response was investigated. A significant association between one NTRK2 polymorphism with hippocampal volumes and antidepressant response was found, with significant indirect effects. Our results highlight a possible mechanistic explanation of antidepressant action, possibly contributing to the understanding of MDD pathophysiology.


Assuntos
Transtorno Depressivo Maior , Humanos , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Polimorfismo Genético , Receptor trkB/genética
9.
Case Rep Oncol ; 16(1): 871-877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900816

RESUMO

In patients with non-small cell lung cancer (NSCLC) harboring a fusion of the neurotrophic receptor kinase (NTRK) gene 1 or 3, treatment with tropomyosin kinase (TRK) inhibitors have shown promising results, however so far no data on efficacy of these agents in patients with NSCLC and NTRK2 fusion are available. We present a case of a female patient with NTRK2-positive NSCLC with a complete ongoing response on therapy with larotrectinib, suggesting efficacy of first-generation TRK inhibitors also in NTRK2-positive NSCLC.

10.
Diagn Pathol ; 18(1): 116, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865792

RESUMO

BACKGROUND: Among the three NTRK genes, NTRK2 possesses a tremendous structural complexity and involves tumorigenesis of several types of tumors. To date, only STRN and RBPMS are identified in the fusion with NTRK2 in adult soft tissue tumors. More recently, the highly selective Trk tyrosine kinases inhibitors, including larotrectinib and entrectinib, have shown significant efficacy for treating tumors harboring NTRK fusions and were approved by FDA. CASE PRESENTATION: We report a case of sarcoma in a 35-year-old female harboring two STRN-NTRK2 gene fusions, with a good clinical response to first-line larotrectinib treatment. Core biopsy of the 16.5 cm gluteal mass showed a high-grade mesenchymal neoplasm with features reminiscent of a solitary fibrous tumor, but negative for STAT6. In-house next-generation sequencing gene fusion panel showed two in-frame STRN-NTRK2 fusions, which contain the same 5' partner sequence (exon 1-3) of STRN, and the 3' fusion partner starting from either the exon 15 or the exon 16 of NTRK2. Due to the large size and location of the tumor, first-line neoadjuvant therapy with larotrectinib was initiated. The patient has an excellent clinical response with an 83% tumor size reduction by imaging. The tumor was subsequently completely resected. After 130 days, larotrectinib was reinitiated for lung metastasis (up to 7 cm), and a complete resolution was achieved. When compared with NTRK1 and NTRK3, NTRK2 fusions are the least common. Of note, the only other report in the literature on NRTK2 fusion-positive sarcoma also showed solitary fibrous tumor (SFT)-like morphology, and the patient responded well to larotrectinib as the second line adjuvant therapy. CONCLUSIONS: In conclusion, the identification of NTRK2 fusions in patients with soft tissue tumors could significantly improve the clinical outcome through selective NTRK inhibitor therapy, especially in the first-line setting. Prompt RNA-based NGS testing at initial diagnosis may benefit these patients. Our case is among the first few in the literature on NTRK2 fusion sarcoma with first-line larotrectinib therapy in the primary and metastatic setting, with good clinical response and minimal side effects.


Assuntos
Proteínas de Membrana , Neoplasias , Sarcoma , Neoplasias de Tecidos Moles , Tumores Fibrosos Solitários , Adulto , Feminino , Humanos , Proteínas de Ligação a Calmodulina/genética , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/uso terapêutico , Receptor trkA , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia
11.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686416

RESUMO

This study aimed to conduct a comprehensive analysis of actionable gene rearrangements in tumors with microsatellite instability (MSI). The detection of translocations involved tests for 5'/3'-end expression imbalance, variant-specific PCR and RNA-based next generation sequencing (NGS). Gene fusions were detected in 58/471 (12.3%) colorectal carcinomas (CRCs), 4/69 (5.8%) gastric cancers (GCs) and 3/65 (4.6%) endometrial cancers (ECs) (ALK: 8; RET: 12; NTRK1: 24; NTRK2: 2; NTRK3: 19), while none of these alterations were observed in five cervical carcinomas (CCs), four pancreatic cancers (PanCs), three cholangiocarcinomas (ChCs) and two ovarian cancers (OCs). The highest frequency of gene rearrangements was seen in KRAS/NRAS/BRAF wild-type colorectal carcinomas (53/204 (26%)). Surprisingly, as many as 5/267 (1.9%) KRAS/NRAS/BRAF-mutated CRCs also carried tyrosine kinase fusions. Droplet digital PCR (ddPCR) analysis of the fraction of KRAS/NRAS/BRAF mutated gene copies in kinase-rearranged tumors indicated that there was simultaneous co-occurrence of two activating events in cancer cells, but not genetic mosaicism. CRC patients aged above 50 years had a strikingly higher frequency of translocations as compared to younger subjects (56/365 (15.3%) vs. 2/106 (1.9%), p = 0.002), and this difference was particularly pronounced for tumors with normal KRAS/NRAS/BRAF status (52/150 (34.7%) vs. 1/54 (1.9%), p = 0.001). There were no instances of MSI in 56 non-colorectal tumors carrying ALK, ROS1, RET or NTRK1 rearrangements. An analysis of tyrosine kinase gene translocations is particularly feasible in KRAS/NRAS/BRAF wild-type microsatellite-unstable CRCs, although other categories of tumors with MSI also demonstrate moderate occurrence of these events.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Colorretais , Feminino , Humanos , Idoso , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases , Repetições de Microssatélites , Instabilidade de Microssatélites , Translocação Genética , Fusão Gênica , Ductos Biliares Intra-Hepáticos , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas c-ret/genética
12.
Int J Mol Sci ; 24(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37762506

RESUMO

The majority of NTRK1, NTRK2, and NTRK3 rearrangements result in increased expression of the kinase portion of the involved gene due to its fusion to an actively transcribed gene partner. Consequently, the analysis of 5'/3'-end expression imbalances is potentially capable of detecting the entire spectrum of NTRK gene fusions. Archival tumor specimens obtained from 8075 patients were subjected to manual dissection of tumor cells, DNA/RNA isolation, and cDNA synthesis. The 5'/3'-end expression imbalances in NTRK genes were analyzed by real-time PCR. Further identification of gene rearrangements was performed by variant-specific PCR for 44 common NTRK fusions, and, whenever necessary, by RNA-based next-generation sequencing (NGS). cDNA of sufficient quality was obtained in 7424/8075 (91.9%) tumors. NTRK rearrangements were detected in 7/6436 (0.1%) lung carcinomas, 11/137 (8.0%) pediatric tumors, and 13/851 (1.5%) adult non-lung malignancies. The highest incidence of NTRK translocations was observed in pediatric sarcomas (7/39, 17.9%). Increased frequency of NTRK fusions was seen in microsatellite-unstable colorectal tumors (6/48, 12.5%), salivary gland carcinomas (5/93, 5.4%), and sarcomas (7/143, 4.9%). None of the 1293 lung carcinomas with driver alterations in EGFR/ALK/ROS1/RET/MET oncogenes had NTRK 5'/3'-end expression imbalances. Variant-specific PCR was performed for 744 tumors with a normal 5'/3'-end expression ratio: there were no rearrangements in 172 EGFR/ALK/ROS1/RET/MET-negative lung cancers and 125 pediatric tumors, while NTRK3 fusions were detected in 2/447 (0.5%) non-lung adult malignancies. In conclusion, this study describes a diagnostic pipeline that can be used as a cost-efficient alternative to conventional methods of NTRK1-3 analysis.


Assuntos
Carcinoma , Neoplasias Pulmonares , Sarcoma , Adulto , Criança , Humanos , DNA Complementar , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Neoplasias Pulmonares/genética , Fusão Gênica , Receptores ErbB
13.
Respir Res ; 24(1): 78, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915149

RESUMO

BACKGROUND: Circular RNAs (circRNAs), a novel class of non-coding RNAs, play an important regulatory role in pulmonary arterial hypertension (PAH); however, the specific mechanism is rarely studied. In this study, we aimed to discover functional circRNAs and investigate their effects and mechanisms in hypoxia-induced pulmonary vascular remodelling, a core pathological change in PAH. METHODS: RNA sequencing was used to illustrate the expression profile of circRNAs in hypoxic PAH. Bioinformatics, Sanger sequencing, and quantitative real-time PCR were used to identify the ring-forming characteristics of RNA and analyse its expression. Then, we established a hypoxia-induced PAH mouse model to evaluate circRNA function in PAH by echocardiography and hemodynamic measurements. Moreover, microRNA target gene database screening, fluorescence in situ hybridisation, luciferase reporter gene detection, and western blotting were used to explore the mechanism of circRNAs. RESULTS: RNA sequencing identified 432 differentially expressed circRNAs in mouse hypoxic lung tissues. Our results indicated that circ-Ntrk2 is a stable cytoplasmic circRNA derived from Ntrk2 mRNA and frequently upregulated in hypoxic lung tissue. We further found that circ-Ntrk2 sponges miR-296-5p and miR-296-5p can bind to the 3'-untranslated region of transforming growth factor-ß1 (TGF-ß1) mRNA, thereby attenuating TGF-ß1 translation. Through gene knockout or exogenous expression, we demonstrated that circ-Ntrk2 could promote PAH and vascular remodelling. Moreover, we verified that miR-296-5p overexpression alleviated pulmonary vascular remodelling and improved PAH through the TGF-ß1/p38 MAPK pathway. CONCLUSIONS: We identified a new circRNA (circ-Ntrk2) and explored its function and mechanism in PAH, thereby establishing potential targets for the diagnosis and treatment of PAH. Furthermore, our study contributes to the understanding of circRNA in relation to PAH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , RNA Circular , Animais , Camundongos , Proliferação de Células , Hipertensão Pulmonar Primária Familiar , Hipertensão Pulmonar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipertensão Arterial Pulmonar/genética , Receptor trkB , RNA Circular/genética , RNA Mensageiro , Fator de Crescimento Transformador beta1/genética , Remodelação Vascular/genética
14.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499693

RESUMO

Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous malignant tumor with neuroendocrine differentiation, with a rapidly growing incidence rate, high risk of recurrence, and aggressive behavior. The available therapeutic options for advanced disease are limited and there is a pressing need for new treatments. Tumors harboring fusions involving one of the neurotrophin receptor tyrosine kinase (NTRK) genes are now actionable with targeted inhibitors. NTRK-fused genes have been identified in neuroendocrine tumors of other sites; thus, a series of 76 MCCs were firstly analyzed with pan-TRK immunohistochemistry and the positive ones with real-time RT-PCR, RNA-based NGS, and FISH to detect the eventual underlying gene fusion. Despite 34 MCCs showing pan-TRK expression, NTRK fusions were not found in any cases. As in other tumors with neural differentiation, TRK expression seems to be physiological and not caused by gene fusions.


Assuntos
Carcinoma de Célula de Merkel , Neoplasias , Neoplasias Cutâneas , Humanos , Receptor trkA/genética , Carcinoma de Célula de Merkel/genética , Fatores de Crescimento Neural/uso terapêutico , Receptor trkC/genética , Neoplasias/patologia , Neoplasias Cutâneas/genética , Proteínas de Fusão Oncogênica/genética , Biomarcadores Tumorais/genética
15.
Front Oncol ; 12: 1064817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531047

RESUMO

Neurotrophic tyrosine receptor kinase (NTRK) rearrangements are oncogenic drivers of various types of adult and pediatric tumors, including gliomas. However, NTRK rearrangements are extremely rare in glioneuronal tumors. Here, we report a novel NTRK2 rearrangement in a 24-year-old female with dysembryoplastic neuroepithelial tumor (DNT), a circumscribed WHO grade I benign tumor associated with epilepsy. By utilizing targeted RNA next-generation sequencing (NGS), fluorescence in situ hybridization (FISH), reverse transcriptase PCR (RT-PCR), and Sanger sequencing, we verified an in-frame fusion between NTRK2 and the lipoma HMGIC fusion partner-like 3 (LHFPL3). This oncogenic gene rearrangement involves 5' LHFPL3 and 3' NTRK2, retaining the entire tyrosine kinase domain of NTRK2 genes. Moreover, the targeted DNA NGS analysis revealed an IDH1 (p.R132H) mutation, a surprising finding in this type of tumor. The pathogenic mechanism of the LHFPL3::NTRK2 in this case likely involves aberrant dimerization and constitutive activation of RTK signaling pathways.

16.
Pathol Res Pract ; 239: 154163, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36265224

RESUMO

We reported a case of molecularly defined isocitrate dehydrogenase (IDH)-mutant astrocytoma that recurred twice with aggressive behavior and increased anaplastic morphology. Primary and recurrent tumors were analyzed using custom-made DNA-based cancer gene and RNA-based fusion panels for next-generation sequencing (NGS). NGS analyses revealed that recurrent astrocytoma, in addition to IDH1 and tumor protein 53 mutations detected in the primary lesion, harbored cyclin-dependent kinase inhibitor (CDKN) 2 A/B homozygous deletion and neurotrophic tropomyosin receptor kinase 2 (NTRK2) fusion genes that consisted of golgin A1- and cyclin-dependent kinase 5 regulatory subunit associated protein 2-NTRK2 fusions. Anaplasia and necrosis were observed in the recurrent tumors, but not in the primary lesion. Therefore, the integrative diagnosis was primary IDH-mutant astrocytoma grade 2 and recurrent IDH-mutant astrocytoma grade 4 with NTRK2 fusions. This is a worthwhile report describing a case of IDH-mutant astrocytoma that showed genomic evolution during tumor recurrence. Our report suggests that NTRK fusion and CDKN2A/B homozygous deletion promote high-grade transformation and indicate an unfavorable prognosis of IDH-mutant astrocytoma.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Humanos , Isocitrato Desidrogenase/genética , Homozigoto , Neoplasias Encefálicas/patologia , Deleção de Sequência , Astrocitoma/patologia , Mutação , Inibidor p16 de Quinase Dependente de Ciclina/genética
17.
Dis Model Mech ; 15(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781563

RESUMO

Bisphenol-A (BPA) is a representative endocrine disruptor, widely used in a variety of products including plastics, medical equipment and receipts. Hence, most people are exposed to BPA via the skin, digestive system or inhalation in everyday life. Furthermore, BPA crosses the blood-brain barrier and is linked to multiple neurological dysfunctions found in neurodegenerative and neuropsychological disorders. However, the mechanisms underlying BPA-associated neurological dysfunctions remain poorly understood. Here, we report that BPA exposure alters synapse morphology and function in the cerebral cortex. Cortical pyramidal neurons treated with BPA showed reduced size and number of dendrites and spines. The density of excitatory synapses was also decreased by BPA treatment. More importantly, we found that BPA disrupted normal synaptic transmission and cognitive behavior. RGS4 and its downstream BDNF/NTRK2 pathway appeared to mediate the effect of BPA on synaptic and neurological function. Our findings provide molecular mechanistic insights into anatomical and physiological neurotoxic consequences related to a potent endocrine modifier.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disruptores Endócrinos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Espinhas Dendríticas/metabolismo , Disruptores Endócrinos/farmacologia , Disruptores Endócrinos/toxicidade , Humanos , Células Piramidais/metabolismo
18.
Mol Biol Rep ; 49(8): 7567-7573, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713800

RESUMO

BACKGROUND: Pilocytic astrocytoma is the most frequent pediatric glioma. Despite its overall good prognosis, complete surgical resection is sometimes unfeasible, especially for patients with deep-seated tumors. For these patients, the identification of targetable genetic alterations such as NTRK fusions, raised as a new hope for therapy. The presence of gene fusions involving NTRK2 has been rarely reported in pilocytic astrocytoma. The aim of the present study was to investigate the frequency of NTRK2 alterations in a series of Brazilian pilocytic astrocytomas. METHODS: Sixty-nine pilocytic astrocytomas, previously characterized for BRAF and FGFR1 alterations were evaluated. The analysis of NTRK2 alterations was performed using a dual color break apart fluorescence in situ hybridization (FISH) assay. RESULTS: NTRK2 fusions were successfully evaluated by FISH in 62 of the 69 cases. Neither evidence of NTRK2 gene rearrangements nor NTRK2 copy number alterations were found. CONCLUSIONS: NTRK2 alterations are uncommon genetic events in pilocytic astrocytomas, regardless of patients' clinicopathological and molecular features.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Astrocitoma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Fusão Gênica , Glioma/genética , Humanos , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas B-raf/genética
19.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457030

RESUMO

Spitz neoplasms are a heterogeneous group of melanocytic proliferations with a great variability in the histological characteristics and in the biological behavior. Thanks to recent discoveries, the morpho-molecular landscape of Spitz lineage is becoming clearer, with the identification of subtypes with recurrent features thus providing the basis for a more solid and precise tumor classification. Indeed, specific mutually exclusive driver molecular events, namely HRAS or MAP2K1 mutations, copy number gains of 11p, and fusions involving ALK, ROS, NTRK1, NTRK2, NTRK3, MET, RET, MAP3K8, and BRAF genes, correlate with distinctive histological features. The accumulation of further molecular aberrations, instead, promotes the increasing malignant transformation of Spitz neoplasms. Thus, the detection of a driver genetic alteration can be achieved using the appropriate diagnostic tests chosen according to the histological characteristics of the lesion. This allows the recognition of subtypes with aggressive behavior requiring further molecular investigations. This review provides an update on the morpho-molecular correlations in Spitz neoplasms.


Assuntos
Melanoma , Nevo de Células Epitelioides e Fusiformes , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/patologia , Mutação , Nevo de Células Epitelioides e Fusiformes/diagnóstico , Nevo de Células Epitelioides e Fusiformes/genética , Receptores Proteína Tirosina Quinases/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
20.
Brain Sci ; 12(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448033

RESUMO

The time-sensitive GABA shift from excitatory to inhibitory is critical in early neural circuits development and depends upon developmentally regulated expression of cation-chloride cotransporters NKCC1 and KCC2. NKCC1, encoded by the SLC12A2 gene, regulates neuronal Cl- homeostasis by chloride import working opposite KCC2. The high NKCC1/KCC2 expression ratio decreases in early neural development contributing to GABA shift. Human SLC12A2 loss-of-function mutations were recently associated with a multisystem disorder affecting neural development. However, the multisystem phenotype of rodent Nkcc1 knockout models makes neurodevelopment challenging to study. Brain-Derived Neurotrophic Factor (BDNF)-NTRK2/TrkB signalling controls KCC2 expression during neural development, but its impact on NKCC1 is still controversial. Here, we discuss recent evidence supporting BDNF-TrkB signalling controlling Nkcc1 expression and the GABA shift during hippocampal circuit formation. Namely, specific deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects their integration and maturation in the hippocampal circuitry and reduces Nkcc1 expression in their target region, the CA3 principal cells, leading to premature GABA shift, ultimately influencing the establishment of functional hippocampal circuitry and animal behaviour in adulthood. Thus, immature DGCs emerge as a potential therapeutic target as GABAergic transmission is vital for specific neural progenitors generating dentate neurogenesis in early development and the mature brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA