RESUMO
The catalytic oxidation of phenethoxybenzene as a lignin model compound with a ß-O-4 bond was conducted using the Keggin-type polyoxometalate nanocatalyst (TBA)5[PMo10V2O40]. The optimization of the process's operational conditions was carried out using response surface methodology. The statistically significant variables in the process were determined using a fractional factorial design. Based on this selection, a central circumscribed composite experimental design was used to maximize the phenethoxybenzene conversion, varying temperature, reaction time, and catalyst load. The optimal conditions that maximized the phenethoxybenzene conversion were 137 °C, 3.5 h, and 200 mg of catalyst. In addition, under the optimized conditions, the Kraft lignin catalytic depolymerization was carried out to validate the effectiveness of the process. The depolymerization degree was assessed by gel permeation chromatography from which a significant decrease in the molar mass distribution Mw from 7.34 kDa to 1.97 kDa and a reduction in the polydispersity index PDI from 6 to 3 were observed. Furthermore, the successful cleavage of the ß-O-4 bond in the Kraft lignin was verified by gas chromatography-mass spectrometry analysis of the reaction products. These results offer a sustainable alternative to efficiently converting lignin into valuable products.
RESUMO
Among the most relevant themes of modernity, using renewable resources to produce biofuels attracts several countries' attention, constituting a vital part of the global geopolitical chessboard since humanity's energy needs will grow faster and faster. Fortunately, advances in personal computing associated with free and open-source software production facilitate this work of prospecting and understanding complex scenarios. Thus, for the development of this work, the keywords "biofuel" and "nanocatalyst" were delivered to the Scopus database, which returned 1071 scientific articles. The titles and abstracts of these papers were saved in Research Information Systems (RIS) format and submitted to automatic analysis via the Visualization of Similarities Method implemented in VOSviewer 1.6.18 software. Then, the data extracted from the VOSviewer were processed by software written in Python, which allowed the use of the network data generated by the Visualization of Similarities Method. Thus, it was possible to establish the relationships for the pair between the nodes of all clusters classified by Link Strength Between Items or Terms (LSBI) or by year. Indeed, other associations should arouse particular interest in the readers. However, here, the option was for a numerical criterion. However, all data are freely available, and stakeholders can infer other specific connections directly. Therefore, this innovative approach allowed inferring that the most recent pairs of terms associate the need to produce biofuels from microorganisms' oils besides cerium oxide nanoparticles to improve the performance of fuel mixtures by reducing the emission of hydrocarbons (HC) and oxides of nitrogen (NOx).
RESUMO
In the present work, for the first time, green chemically synthesized and stabilized Co3O4 nanoparticles were employed for catalytic conversion of isopropyl alcohol to acetone by dehydrogenation of IPA. Plant extract of Rosmarinus officinalis was used as a reducing and stabilizing agent for this synthesis. The biosynthesized Co3O4 nanoparticles were annealed at 450â followed by their physiochemical characterizations through XRD, SEM, AFM, and FTIR. Size distribution information collected through XRD and AFM back each other, and it was found to be 6.5 nm, having the highest number of nanoparticles in this size range. While SEM confirms the self-arranging property of synthesized nanoparticles due to their magnetic nature, furthermore, the biogenic Co3O4 nanoparticles were studied for their catalytic potential to convert isopropyl alcohol to acetone with the help of a UV-Visible spectrophotometer. The highest photocatalytic conversion of 99% was obtained in time period of 48 s. For the first time ever, nanoparticles were used for 5 cycles to evaluate their recyclable nature and conversion fell from 99 to 86% and the end of the 5th cycle. Later anti-bacterial activity against 3 Gram-positive and 3 Gram-negative strains gave the highest inhibition value of 99% against Streptococcus pneumoniae at 500 µg/mL. Finally, a cytotoxicity study on synthesized nanomaterials was carried out by exposing freshly drawn human macrophages to them. It was found that even at the highest concentration of 500 µg/mL, the nanoparticles showed only 28% lysis.
Assuntos
Antibacterianos , Nanopartículas Metálicas , Humanos , Antibacterianos/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , 2-Propanol , Acetona , Química VerdeRESUMO
In this study, cobalt composite immobilized on polysulfone fibrous network nanoparticles (CCPSF NPs) were synthesized in a controllable and one-step way under microwave-assisted conditions. The structure of CCPSF NPs was characterized by SEM images (for morphology and size distribution), TGA (for thermal stability), BET technique (for the specific surface area), FT-IR spectroscopy (for relation group characterization), and XRD patterns (for crystal size). The oxidation of the primary and secondary alcohols to aldehyde and ketone was investigated using synthesized CCPSF NPs under solvent-free microwave-assisted conditions, and high oxidizing activity was observed. In addition to oxidation properties, the anticancer activity of the synthesized CCPSF NPs in breast cancer was evaluated by the MTT method , and significant results were obtained.
RESUMO
The development of new catalytic nanomaterials following sustainability criteria both in their composition and in their synthesis process is a topic of great current interest. The purpose of this work was to investigate the preparation of nanocatalysts derived from the zirconium metal-organic framework UiO-66 obtained under friendly conditions and supporting dispersed species of non-noble transition elements such as Cu, Co, and Fe, incorporated through a simple incipient wetness impregnation technique. The physicochemical properties of the synthesized solids were studied through several characterization techniques and then they were investigated in reactions of relevance for environmental pollution control, such as the oxidation of carbon monoxide in air and in hydrogen-rich streams (COProx). By controlling the atmospheres and pretreatment temperatures, it was possible to obtain active catalysts for the reactions under study, consisting of Cu-based UiO-66-, bimetallic CuCo-UiO-66-, and CuFe-UiO-6-derived materials. These solids represent new alternatives of nanostructured catalysts based on highly dispersed non-noble active metals.
RESUMO
The type of metal oxide affects the activity and selectivity of Fe2O3â»SiO2â»MeO2â»Pt (Me = Ti, Sn, Ce) catalysts on the hydrogenation of cinnamaldehyde. The double shell structure design is thought to protect the magnetic Fe2O3 cores, and also act as a platform for depositing a second shell of TiO2, SnO2 or CeO2 metal oxide. To obtain a homogeneous metallic dispersion, the incorporation of 5 wt % of Pt was carried out over Fe2O3â»SiO2â»MeO2 (Me = Ti, Sn, Ce) structures modified with (3-aminopropyl)triethoxysilane by successive impregnation-reduction cycles. The full characterization by HR-TEM, STEM-EDX, XRD, N2 adsorption isotherm at -196 °C, TPR-H2 and VSM of the catalysts indicates that homogeneous core-shell structures with controlled nano-sized magnetic cores, multi-shells and metallic Pt were obtained. The nature of the metal oxide affects the Pt nanoparticle sizes where the mean Pt diameter is in the order: â»TiO2â»Pt > â»SnO2â»Pt > â»CeO2â»Pt. Among the catalysts studied, â»CeO2â»Pt had the best catalytic performance, reaching the maximum of conversion at 240 min. of reaction without producing hydrocinnamaldehyde (HCAL). It also showed a plot volcano type for the production of cinnamic alcohol (COL), with 3-phenyl-1-propanol (HCOL) as a main product. The â»SnO2â»Pt catalyst showed a poor catalytic performance attributable to the Pt clusters' occlusion in the irregular surface of the â»SnO2. Finally, the â»TiO2â»Pt catalyst showed a continuous production of COL with a 100% conversion and 65% selectivity at 600 min of reaction.