Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.542
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000424

RESUMO

Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.


Assuntos
Doenças Cardiovasculares , Produtos Finais de Glicação Avançada , Miócitos Cardíacos , Produtos Finais de Glicação Avançada/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Camundongos
2.
Nat Prod Bioprospect ; 14(1): 40, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38955942

RESUMO

Plants and microbes are closely associated with each other in their ecological niches. Much has been studied about plant-microbe interactions, but little is known about the effect of phytochemicals on microbes at the molecular level. To access the products of cryptic biosynthetic gene clusters in bacteria, we incorporated an organic extract of hibiscus flowers into the culture media of different Actinobacteria isolated from plant rhizospheres. This approach led to the production of broad-spectrum dithiolopyrrolone (DTP) antibiotics, thiolutin (1) and aureothricin (2), by Streptomyces sp. MBN2-2. The compounds from the hibiscus extract responsible for triggering the production of these two DTPs were found to be hibiscus acid dimethyl ester (3) and hydroxycitric acid 1,3-dimethyl ester (4). It was subsequently found that the addition of either Fe2+ or Fe3+ to culture media induced the production of 1 and 2. The Chrome Azurol S (CAS) assay revealed that 3 and 4 can chelate iron, and therefore, the mechanism leading to the production of thiolutin and aureothricin appears to be related to changes in iron concentration levels. This work supports the idea that phytochemicals can be used to activate the production of cryptic microbial biosynthetic gene clusters and further understand plant-microbe interactions.

3.
Beilstein J Org Chem ; 20: 1548-1559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015620

RESUMO

In recent years, genome and transcriptome mining have dramatically expanded the rate of discovering diverse natural products from bacteria and fungi. In plants, this approach is often more limited due to the lack of available annotated genomes and transcriptomes combined with a less consistent clustering of biosynthetic genes. The recently identified burpitide class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products offer a valuable opportunity for bioinformatics-guided discovery in plants due to their short biosynthetic pathways and gene encoded substrates. Using a high-throughput approach to assemble and analyze 700 publicly available raw transcriptomic data sets, we uncover the potential distribution of split burpitide precursor peptides in Streptophyta. Metabolomic analysis of target plants confirms our bioinformatic predictions of new cyclopeptide alkaloids from both known and new sources.

4.
Front Cardiovasc Med ; 11: 1426379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015683

RESUMO

Introduction: The incidence of metabolic disorders during pregnancy is increasing year by year, with diseases including hypertension and hyperlipidemia. Statins are the primary drugs for treating hyperlipidemia or atherosclerosis, yet some patients remain unresponsive to them, and pregnant women are prohibited from taking statins. Curculigoside is the major biologically active natural product present in Curculigo orchioides. Methods: In this study, A high-fat mice model was developed to study the lipid-lowering effect of curculigoside. Using intestinal Caco-2 cell monolayer, the curculigoside transport properties at two temperatures and possible transporters were systemically studied. Results: Curculigoside at concentrations used during the experiments have no toxic effect to Caco-2 cells. The curculigoside transfer from the apical to the basolateral side was strongly influenced by temperature. P-glycoprotein, breast cancer resistance protein, and efflux transporters are crucial components of the human intestinal cell line Caco-2. The curculigoside can significantly affect the contents of total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in mice. Discussion: The transport properties and potential mechanism of curculigoside offer valuable insights for the design of development of hypolipidemic drugs like anti-atherosclerotic drugs and also be helpful to the further study of the pharmacological activity of curculigoside.

5.
J Pharm Pharmacol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018169

RESUMO

AIMS: The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2). BACKGROUND: The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients. OBJECTIVE: To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo. METHODS: The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained. RESULTS: This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases. CONCLUSION: The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.

6.
Chem Biol Interact ; : 111142, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019423

RESUMO

Several marine drugs exert anticancer effects by inducing oxidative stress, which becomes overloaded and kills cancer cells when redox homeostasis is imbalanced. The downregulation of antioxidant signaling induces oxidative stress, while its upregulation attenuates oxidative stress. Marine drugs have miRNA-modulating effects against cancer cells. However, the potential antioxidant targets of such drugs have been rarely explored. This review aims to categorize the marine-drug-modulated miRNAs that downregulate their antioxidant targets, causing oxidative stress in anticancer treatments. We also categorize the downregulation of oxidative-stress-inducing miRNAs in antioxidant protection among non-cancer cells. We summarize the putative antioxidant targets of miRNA-modulating marine drugs by introducing a bioinformatics tool (miRDB). Finally, the marine drugs affecting antioxidant targets are surveyed. In this way, the connections between marine drugs and their modulating miRNA and antioxidant targets are innovatively categorized to provide a precise network for exploring their potential anticancer functions and protective effects on non-cancer cells.

7.
J Agric Food Chem ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020512

RESUMO

Fungi produce various bioactive secondary metabolites (SMs) as protective and weaponized tools to enhance survival in shared ecological niches. By mimicking a competitive ecosystem, cocultivation has been proven to be particularly successful in stimulating SM discovery. Here, we reported the identification of four novel metabolites, epiclactones A and B, epioxochromane and aoergostane, from the coculture of two biotechnologically important strains, Aspergillus oryzae and Epicoccum dendrobii. Transcriptome and metabolome analyses revealed widespread silent gene activation during fungal-fungal interaction. The majority of differentially expressed gene clusters were summarized for both strains. Based on these highly activated biosynthetic pathways, we suggested that a bidirectional chemical defense occurred under cocultivation. E. dendrobii enhanced the production of the spore inhibitor, fumigermin. Moreover, A. oryzae highly accumulated the antifungal agent kojic acid with a yield of up to 1.10 g/L. This study provides an excellent example for the discovery of hidden natural products by cocultivation.

8.
Chemistry ; : e202401393, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023398

RESUMO

The macrocyclic tumonolide (1) with enamide functionality and the linear tumonolide aldehyde (2) are new interconverting natural products from a marine cyanobacterium with a peptide-polyketide skeleton, representing a hybrid of apratoxins and palmyrolides or laingolides. The planar structures were established by NMR and mass spectrometry. The relative configuration of the stereogenically-rich apratoxin-like polyketide portion was determined using J-based configuration analysis. The absolute configuration of tumonolide (1) was determined by chiral analysis of the amino acid units and computational methods, followed by NMR chemical shift and ECD spectrum prediction, indicating all-R configuration for the polyketide portion, as in palmyrolide A and contrary to the all-S configuration in apratoxins. Functional screening against a panel of 168 GPCR targets revealed tumonolide (1) as a selective antagonist of TACR2 with an IC50 of 7.0 µM, closely correlating with binding affinity. Molecular docking studies established the binding mode and rationalized the selectivity for TACR2 over TACR1 and TACR3. RNA sequencing upon treatment of HCT116 colorectal cancer cells demonstrated activation of the pulmonary fibrosis idiopathic signaling pathway and the insulin secretion signaling pathway at 20 µM, indicating its potential to modulate these pathways.

9.
Exp Parasitol ; : 108801, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009180

RESUMO

The agropastoral farmers have employed Turraea vogelii (TVL), Senna podocarpa (SPL), and Jaundea pinnata (JPL) leaves for treating various diseases, including intestinal parasites in livestock and the human population in Nigeria. Gastrointestinal nematodes are highly significant to livestock production and people's health, and natural products are interesting as sources of new drugs. In this study, we evaluated the effectiveness of extracts derived from these plants in treating parasitic infections using third-stage infective larvae (L3) of Strongyloides venezuelensis. We obtained crude extracts using n-gexane (Hex), ethyl acetate (Ea), and methanol (Met). The extracts were analyzed for their phytochemical composition, and their ability to prevent hemolysis were tested. The mean concentrations of total phenols in SPL Hex, SPL Ea, and SPL Met were 92.3±0.3, 103.0±0.4, and 128.2±0.5 mg/100 g, respectively. Total tannin concentrations for JPL Ea, SPL Ea, SPL Hex, and TVL Hex were 60.3±0.1, 89.2±0.2, 80.0±0.1, and 66.6±0.3 mg/100 g, respectively. The mean lethal concentration (LC50) at 72 h for JPL Ea 39 (26-61) µg/mL. SPL Ea was 39 (34-45) µg/mL, and TVL Hex 31 (26-36) µg/mL. The antiparasitic activities of the extracts against L3 were dose- and time-dependent. All the extracts were slightly hemolytic to the erythrocytes. In this study, the plant extract tested demonstrated significant anti-S. venezuelensis activity. These phytobotanical extracts could be used to create formulations for the potential treatment of helminthiasis in animals and humans.

10.
Bioorg Med Chem ; 110: 117826, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39004050

RESUMO

Design, synthesis, and biological evaluation of two series of O4'-benzyl-hispidol derivatives and the analogous corresponding O3'-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O4'-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O3'-benzyl derivatives series. The most potential compound 2e of O4'-benzyl derivatives elicited sub-micromolar MAO-B IC50 of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O3'-benzyl derivatives showed only 0.95 MAO-B IC50 and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.

11.
Small ; : e2402715, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004872

RESUMO

Messenger RNA (mRNA) is an emerging class of therapeutic agents for treating a wide range of diseases. However, due to the instability and low cell transfection rate of naked mRNA, the expression of delivered mRNA in target cells or tissues in vivo requires delivery strategies. Biomimetic vectors hold advantages such as high biocompatibility, tissue specific targeting ability and efficient delivery mechanisms, potentially overcoming challenges faced by other delivery vectors. In this review, biomimetic vector-based mRNA delivery systems are summarized and discuss the possible challenges and prospects of such delivery systems, which may contribute to the progress and application of mRNA-based therapy in the biomedical field.

12.
Microbiol Resour Announc ; 13(6): e0129723, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988209

RESUMO

Galbibacter sp. PAP.153 was isolated from a marine sponge. Here, we report its 4.12 Mbp draft genome sequence and rate its specialized metabolite production capacity with specific focus on the chemotaxonomic marker flexirubin.

13.
BMC Complement Med Ther ; 24(1): 264, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992644

RESUMO

BACKGROUND: Artemisia argyi is a traditional herbal medicine belonging to the genus Artemisia that plays an important role in suppressing inflammation. However, the chemical constituents and underlying mechanisms of its therapeutic potential in neuroinflammation are still incompletely understood, and warrant further investigation. METHODS: Several column chromatography were employed to isolate and purify chemical constituents from Artemisia argyi, and modern spectroscopy techniques were used to elucidate their chemical structures. The screening of monomeric compounds with nitric oxide inhibition led to the identification of the most effective bioactive compound, which was subsequently confirmed for its anti-inflammatory capability through qRT‒PCR. Predictions of compound-target interactions were made using the PharmMapper webserver and the TargetNet database, and an integrative protein-protein interaction network was constructed by intersecting the predicted targets with neuroinflammation-related targets. Topological analysis was performed to identify core targets, and molecular docking and molecular dynamics simulations were utilized to validate the findings. The result of the molecular simulations was experimentally validated through drug affinity responsive target stability (DARTS) and Western blot experiments. RESULTS: Seventeen sesquiterpenoids, including fifteen known sesquiterpenoids and two newly discovered guaiane-type sesquiterpenoids (argyinolide S and argyinolide T) were isolated from Artemisia argyi. Bioactivity screening revealed that argyinolide S (AS) possessed the most potent anti-inflammatory activity. However, argyinolide T (AT) showed weak anti-inflammatory activity, so AS was the target compound for further study. AS may regulate neuroinflammation through its modulation of eleven core targets: protein kinase B 1 (AKT1), epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein Kinase (FYN), Janus Kinase (JAK) 1, mitogen-activated protein (MAP) Kinase 1,8 and 14, matrix metalloproteinase 9 (MMP9), ras-related C3 botulinum toxin substrate 1 (RAC1), nuclear factor kappa-B p65 (RELA), and retinoid X receptor alpha (RXRA). Molecular dynamics simulations and DARTS experiments confirmed the stable binding of AS to JAK1, and Western blot experiments demonstrated the ability of AS to inhibit the phosphorylation of downstream Signal transducer and activator of transcription 3 (STAT3) mediated by JAK1. CONCLUSIONS: The sesquiterpenoid compounds isolated from Artemisia argyi, exhibit significant inhibitory effects on inflammation in C57BL/6 murine microglia cells (BV-2). Among these compounds, AS, a newly discovered guaiane-type sesquiterpenoid in Artemisia argyi, has been demonstrated to effectively inhibit the occurrence of neuroinflammation by targeting JAK1.


Assuntos
Anti-Inflamatórios , Artemisia , Simulação de Acoplamento Molecular , Sesquiterpenos , Artemisia/química , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células RAW 264.7 , Doenças Neuroinflamatórias/tratamento farmacológico , Simulação de Dinâmica Molecular
14.
J Food Sci Technol ; 61(8): 1578-1588, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966783

RESUMO

Exploring unconventional protein sources can be an alternative strategy to meet the deficiency. The seeds of Chirabilva (Holoptelea integrifolia Roxb., Family- Ulmaceae) are eaten raw by the ethnic communities of Southeast Asian countries. The present study assessed the chemical, nutritional, and biological potential of the seeds (HIS) and pericarp (HISP) of H. integrifolia. The seeds contain mainly fixed and very few essential oils. The fixed oil of HIS is composed primarily of unsaturated oleic (47%) and saturated palmitic (37%) acids. The HIS are exceptional due to a high content of lipid (50%), protein (24%), carbohydrates (19%), fiber (4%), and anti-nutritional components within permissible limits. The high content (in mg/Kg) of phosphorus (6000), magnesium (422), Calcium (279), and essential nutrients (Ni, Co, Zn, Fe, Cu, Mn, and Cr) in the range of (0.04-6.69) were observed. The moderate anti-oxidant potential of HISP was evident in single electron transfer in-vitro assays. Moreover, HISP extract and HIS solvent-extracted fixed oil showed anti-inflammatory action in lipopolysaccharide-induced HaCaT cells by significantly attenuating pro-inflammatory cytokines (TNF-α) without causing cytotoxicity. Results support de-oiled HIS cake as an alternative source of a high-protein diet and its oil with anti-inflammatory attributes for topical applications.

15.
Arch Oral Biol ; 166: 106043, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968906

RESUMO

OBJECTIVE: Combing PD-1/PD-L1 immune checkpoint inhibitors with natural products has exhibited better efficacy than monotherapy. Hence, the purpose of this research was to examine the anti-cancer effects of brusatol, a natural quassinoid-terpenoid derived from Brucea javanica, when used in conjunction with an anti-mouse-PD-1 antibody in a murine head and neck squamous cell carcinoma (HNSCC) model and elucidate underlying mechanisms. DESIGN: A murine HNSCC model and an SCC-15 cell xenograft nude mouse model were established to investigate the anti-cancer effects of brusatol and anti-PD-1 antibody. Mechanistic studies were performed using immunohistochemistry. Cell proliferation, migration, colony formation, and invasion were evaluated by MTT, migration, colony formation, and transwell invasion assays. PD-L1 levels in oral squamous cell carcinoma (OSCC) cells were assessed through qRT-PCR, flow cytometry, and western blotting assays. The impact of brusatol on Jurkat T cell function was assessed by an OSCC/Jurkat co-culture assay. RESULTS: Brusatol improved tumor suppression by anti-PD-1 antibody in HNSCC mouse models. Mechanistic studies revealed brusatol inhibited tumor cell growth and angiogenesis, induced apoptosis, increased T lymphocyte infiltration, and reduced PD-L1 expression in tumors. Furthermore, in vitro assays confirmed brusatol inhibited PD-L1 expression in OSCC cells and suppressed cell migration, colony formation, and invasion. Co-culture assays indicated that brusatol's PD-L1 inhibition enhanced Jurkat T cell-mediated OSCC cell death and reversed the inhibitory effect induced by OSCC cells. CONCLUSIONS: Brusatol improves anti-PD-1 antibody efficacy by targeting PD-L1, suggesting its potential as an adjuvant in anti-PD-1 immunotherapy.

16.
Angew Chem Int Ed Engl ; : e202409139, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994548

RESUMO

Reported herein is the first total synthesis of the poly-pseudoindoxyl natural product baphicacanthcusine A. The synthesis leverages the oxidative rearrangement of indoles to pseudoindoxyls to install vicinal pseudoindoxyl heterocycles in a diastereoselective manner. Key steps include an acid-mediated cyclization/indole transposition, two diastereoselective oxidative ring contractions, and a site-selective C--H oxygenation. The synthesis of the oxidation precursors was guided by recognition of an element of hidden symmetry. This work provides a foundation for the chemical synthesis of other poly-pseudoindoxyl alkaloids.

17.
Synth Syst Biotechnol ; 9(4): 742-751, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38974023

RESUMO

Plant natural products (PNPs) exhibit a wide range of biological activities and have essential applications in various fields such as medicine, agriculture, and flavors. Given their natural limitations, the production of high-value PNPs using microbial cell factories has become an effective alternative in recent years. However, host metabolic burden caused by its massive accumulation has become one of the main challenges for efficient PNP production. Therefore, it is necessary to strengthen the transmembrane transport process of PNPs. This review introduces the discovery and mining of PNP transporters to directly mediate PNP transmembrane transportation both intracellularly and extracellularly. In addition to transporter engineering, this review also summarizes several auxiliary strategies (such as small molecules, environmental changes, and vesicles assisted transport) for strengthening PNP transportation. Finally, this review is concluded with the applications and future perspectives of transportation engineering in the construction and optimization of PNP microbial cell factories.

18.
Angew Chem Int Ed Engl ; : e202407757, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978264

RESUMO

On the basis of a novel ynol-diene cyclization developed as a rapid access to tropone unit, the first divergent strategy to 17-nor-cephalotane diterpenoids has been successfully established. Combining with a bioinspired stereoselective dual hydrogenation, the divergent total synthesis of (+)-3-deoxyfortalpinoid F, (+)-harringtonolide, (-)-fortalpinoids M/N/P, and analog (-)-20-deoxocephinoid P have been achieved in 14-17 linear longest steps starting from commercially available materials.

19.
Bioorg Med Chem ; 110: 117833, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38996544

RESUMO

Prolidase (EC.3.4.13.9) is a Mn+2-dependent dipeptidase that is well known to play a crucial role in several physiological and pathological processes affecting humans. More in particular, this enzyme is involved in the cleavage of proline- and hydroxyproline-containing dipeptides (imidodipeptides), providing a fine regulation of the homeostasis of these two amino acids. Hyperactivity or deficiency of prolidase have been clearly associated to the development and progress of several acute and chronic syndromes (e.g. chronic liver fibrosis, viral and acute hepatitis, cancer, neurological disorders, inflammation, skin diseases, intellectual disability, respiratory infection). Thus, targeting prolidase and modulating its activity is an intriguing field of research with a great therapeutic potential for the next future and for the design of specific and selective drugs. Prolidase can be exploited in two essential ways: as an activator of proline containing prodrugs and by direct interaction. In this latter case, few specific ligands for the title enzyme have been described, but with no reports about their structure-activity relationship. The aim of this comprehensive review is to gather all available information on prolidase targeting so far reported in the literature, to rationalize the observed data and effect into a preliminary structure-relationship picture, to comment about the effectiveness of each reported ligands, and to address future research activities providing new potential and putative natural, semisynthetic, and purely synthetic molecules able to trigger prolidase as the main biological target.

20.
Chem Biodivers ; : e202400794, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997231

RESUMO

Natural occurring peroxides are interesting bioprospecting targets due to their molecular structural diversity and the wide range of pharmacological activities. In this systematic review, a total of 123 peroxide compounds were analysed from 99 published papers with the compounds distributed in 31 plants, 18 animals and 41 microorganisms living in land and water ecosystems. The peroxide moiety exists as both cyclic and acyclic entities and can include 1,2-dioxolanes, 1,2-dioxane rings and common secondary metabolites with a peroxo group. These peroxides possessed diverse bioactivities including anticancer, antimalarial, antimicrobial, anti-inflammatory, neuroprotective, adipogenic suppressor, antituberculosis, anti-melanogenic and anti-coagulant agents. Biosynthetic pathways and mechanisms of most endoperoxides have not been well established. Method development in peroxide detection has been a challenging task requiring multidisciplinary investigation and exploration on peroxy-containing secondary metabolites are necessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA