Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cereb Cortex ; 33(20): 10492-10503, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566918

RESUMO

Interactions between the body and the environment are dynamically modulated by upcoming sensory information and motor execution. To adapt to this behavioral state-shift, brain activity must also be flexible and possess a large repertoire of brain networks so as to switch them flexibly. Recently, flexible internal brain communications, i.e. brain network flexibility, have come to be recognized as playing a vital role in integrating various sensorimotor information. Therefore, brain network flexibility is one of the key factors that define sensorimotor skill. However, little is known about how flexible communications within the brain characterize the interindividual variation of sensorimotor skill and trial-by-trial variability within individuals. To address this, we recruited skilled musical performers and used a novel approach that combined multichannel-scalp electroencephalography, behavioral measurements of musical performance, and mathematical approaches to extract brain network flexibility. We found that brain network flexibility immediately before initiating the musical performance predicted interindividual differences in the precision of tone timbre when required for feedback control, but not for feedforward control. Furthermore, brain network flexibility in broad cortical regions predicted skilled musical performance. Our results provide novel evidence that brain network flexibility plays an important role in building skilled sensorimotor performance.


Assuntos
Música , Humanos , Encéfalo , Mapeamento Encefálico , Eletroencefalografia
2.
Neuropsychologia ; 167: 108164, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35085597

RESUMO

Malevolent creativity, as one dark side of creativity, refers to manifestations people propose to harm themselves or others materially, mentally, or physically in an innovative way. This study aimed to explore the neural correlates of malevolent creative idea generation using task-based static and dynamic functional connectivity (FC) analysis across different time periods. We collected 34 participants who performed malevolent creativity task (MCT), benevolent creativity task (BCT), and realistic presented problems task (RPPT) in the fMRI scanner. The static connectivity analysis showed lower FC strength and global and local efficiency between the dorsal somatomotor network (dSMN), visual network (VN), default mode network (DMN), and reward network (RN) in MCT and RPPT than BCT. Dynamic connectivity analysis showed higher dynamic network reconfiguration in the DMN during MCT than BCT and RPPT. The behavioral results showed higher anxiety, anger, and lower pleasure in MCT than in BCT and RPPT. These findings indicate that the dSMN, VN, RN, and DMN are specifically involved in malevolent creative idea generation. Our findings provide the neural correlates of malevolent creative idea generation using neuroimaging techniques for the first time, which provides insight into the future study of malevolent creativity.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Criatividade , Humanos , Imageamento por Ressonância Magnética
3.
Arab J Sci Eng ; 47(3): 3821-3846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34540527

RESUMO

Intermodal freight transportation facilitates today's global trade. The benefits of intermodal freight transportation have been studied and are more observable in commercial logistics; however, the potential benefits of humanitarian logistics have not been thoroughly investigated. This research aims to present a resilient transportation framework by modeling intermodal transportation utilizing interoperable loading devices during disaster responses. We developed an integer programming model based on a time-space network by considering route and vehicle availabilities that are allowed to change with time. We consider vehicles with varying capacities in three transportation modes (i.e., ground, maritime, and air). The contribution of this study is threefold: (1) Two compatible unit load devices are proposed for humanitarian logistics; (2) a mathematical model that includes integer variable representation for vehicle fleets in different transportation modes is developed; and (3) intermodal transportation is compared with single-mode transportation using a real-life dataset. Our main results are as follows: In terms of cost, intermodal transportation is effective when demand occurs in consecutive periods and response time is short. Inventory is held more in intermodal transportation when it is cost-effective to use transportation modes with large capacities. Thus, the benefits of the responsiveness of intermodal transportation outweigh the costs of mode interchange and inventory holding for sudden-onset disasters where quick responses are needed within a short time.

4.
Netw Neurosci ; 5(1): 125-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688609

RESUMO

Sex steroid hormones have been shown to alter regional brain activity, but the extent to which they modulate connectivity within and between large-scale functional brain networks over time has yet to be characterized. Here, we applied dynamic community detection techniques to data from a highly sampled female with 30 consecutive days of brain imaging and venipuncture measurements to characterize changes in resting-state community structure across the menstrual cycle. Four stable functional communities were identified, consisting of nodes from visual, default mode, frontal control, and somatomotor networks. Limbic, subcortical, and attention networks exhibited higher than expected levels of nodal flexibility, a hallmark of between-network integration and transient functional reorganization. The most striking reorganization occurred in a default mode subnetwork localized to regions of the prefrontal cortex, coincident with peaks in serum levels of estradiol, luteinizing hormone, and follicle stimulating hormone. Nodes from these regions exhibited strong intranetwork increases in functional connectivity, leading to a split in the stable default mode core community and the transient formation of a new functional community. Probing the spatiotemporal basis of human brain-hormone interactions with dynamic community detection suggests that hormonal changes during the menstrual cycle result in temporary, localized patterns of brain network reorganization.

5.
Netw Neurosci ; 4(3): 611-636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885118

RESUMO

An overarching goal of neuroscience research is to understand how heterogeneous neuronal ensembles cohere into networks of coordinated activity to support cognition. To investigate how local activity harmonizes with global signals, we measured electroencephalography (EEG) while single pulses of transcranial magnetic stimulation (TMS) perturbed occipital and parietal cortices. We estimate the rapid network reconfigurations in dynamic network communities within specific frequency bands of the EEG, and characterize two distinct features of network reconfiguration, flexibility and allegiance, among spatially distributed neural sources following TMS. Using distance from the stimulation site to infer local and global effects, we find that alpha activity (8-12 Hz) reflects concurrent local and global effects on network dynamics. Pairwise allegiance of brain regions to communities on average increased near the stimulation site, whereas TMS-induced changes to flexibility were generally invariant to distance and stimulation site. In contrast, communities within the beta (13-20 Hz) band demonstrated a high level of spatial specificity, particularly within a cluster comprising paracentral areas. Together, these results suggest that focal magnetic neurostimulation to distinct cortical sites can help identify both local and global effects on brain network dynamics, and highlight fundamental differences in the manifestation of network reconfigurations within alpha and beta frequency bands.

6.
Hum Brain Mapp ; 41(17): 4829-4845, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32857461

RESUMO

Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross-sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting-state-fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph-theoretic analysis to investigate the time-evolving modular structure of the whole-brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network-specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Rede Nervosa/fisiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos
7.
Artigo em Inglês | MEDLINE | ID: mdl-31972187

RESUMO

BACKGROUND: The fundamental pathophysiology of major depressive disorder (MDD) could be characterized by functional brain networks which tightly and dynamically connect into groups as communities, making the flexible brain possible to external multifarious demands. We aim to scrutinize what brain dynamics go awry in MDD and antidepressants effects on multi-dimensional symptoms. METHODS: Thirty-five patients and thirty-five controls underwent resting-state functional magnetic resonance imaging (MRI). Patients were scanned before and after 8 or 12 weeks of pharmacotherapy. Group independent component analysis decomposed resting-state images to instinct networks and networks' integrated flexibility was calculated. Network flexibility between patients at baseline and after therapy were compared. RESULTS: All patients completed the clinical trial and MRI scans. Following antidepressants treatment, we found significant normalization of reduced network flexibility in default mode network (DMN) and cognitive control network (CCN) of MDD patients. Selectively significant correlations between network flexibility and multi-dimensional symptoms such as anxiety/somatization and hysteresis factor were also found. CONCLUSIONS: "Hypoflexible" CCN may involve in anxiety syndrome. Low flexibility in DMN may be indicative of hysteresis. These suggest an important pathophysiology of depressive manifestation of MDD. The antidepressant-induced normalization of the "hypoflexibility" suggests a selective pathway through which antidepressants may alleviate symptoms in depression.


Assuntos
Antidepressivos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Adulto , Antidepressivos/farmacologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Neuroimage Clin ; 19: 883-891, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946512

RESUMO

Previous studies investigating brain activation present during upper limb movement after stroke have greatly detailed activity alterations in the ipsi- and contralesional primary motor cortices (M1). Despite considerable interest in M1, investigations into the integration and coordination of large-scale functional networks subserving motor, sensory, and cognitive control after stroke remain scarce. The purpose of this study was to assess non-static functional connectivity within whole-brain networks involved in the production of isometric, visually-paced hand grips. Seventeen stroke patients and 24 healthy controls underwent functional MRI while performing a series of 50 isometric hand grips with their affected hand (stroke patients) or dominant hand (control subjects). We used task-based multivariate functional connectivity to derive spatial and temporal information of whole-brain networks specifically underlying hand movement. This technique has the advantage of extracting within-network commonalities across groups and identifying connectivity differences between these groups. We further used a nonparametric statistical approach to identify group differences in regional activity within these task-specific networks and assess whether such alterations were related to the degree of motor impairment in stroke patients. Our whole-brain multivariate analysis revealed group differences in two networks: (1) a motor network, including pre- and postcentral gyri, dorsal and ventral premotor cortices, as well as supplementary motor area, in which stroke patients showed reduced task-related activation compared to controls, and (2) a default-mode network (DMN), including the posterior cingulate cortex, precuneus, and medial prefrontal cortex, in which patients showed less deactivation than controls. Within-network group differences revealed decreased activity in ipsilesional primary sensorimotor cortex in stroke patients, which also positively correlated with lower levels of motor impairment. Moreover, the temporal information extracted from the functional networks revealed that stroke patients did not show a reciprocal DMN deactivation peak following activation of their motor network. This finding suggests that allocation of functional resources to motor areas during hand movement may impair their ability to efficiently switch from one network to another. Taken together, our study expands our understanding of functional reorganization during motor recovery after a stroke, and suggests that modulation of ipsilesional sensorimotor activity may increase the integrity of a whole-brain motor network, contribute to better motor performance, and optimize network flexibility.


Assuntos
Encéfalo/fisiopatologia , Atividade Motora/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA