Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.237
Filtrar
1.
Ageing Res Rev ; 100: 102414, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39002647

RESUMO

The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.

2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000543

RESUMO

Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, ß-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following ß-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.


Assuntos
Diferenciação Celular , Sistema Enzimático do Citocromo P-450 , Doenças Neurodegenerativas , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Linhagem Celular Tumoral , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios/metabolismo
3.
Neurosurg Focus ; 57(1): E2, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950436

RESUMO

The history behind the biological, mechanistic, and clinical insights into concussion provides awareness of the current understanding and future areas for study. Although the initial description of concussion appeared in the 10th century, the potential long-term structural consequences were first defined by Harrison Martland, M.D., who performed a postmortem study of former boxers in 1928. He found evidence of perivascular microhemorrhage that he believed eventually evolved into a "replacement gliosis" underlying a clinical syndrome that he named "punch drunk," which was characterized by acute confusion with chronic cognitive and physical symptoms developing in those with prolonged exposure. Further research into the potential long-term consequences of repetitive concussions, particularly in athletics and the military, led to an understanding of chronic traumatic encephalopathy. To ameliorate possible long-term risks, research has been focused on preventative and therapeutic measures for concussion. In this review article, the authors present the history of concussion and the long-term sequelae of repeated head injury. Specifically, they consider how the understanding of concussion has evolved from antiquity into the modern era, and how this change in understanding of head injury has led to an appreciation of the fact that its long-term implications sometimes manifest as the clinical and histopathological entity of chronic traumatic encephalopathy.


Assuntos
Concussão Encefálica , Humanos , Concussão Encefálica/história , História do Século XX , História do Século XIX , História do Século XVIII , História Medieval , História do Século XVII , História do Século XVI , História do Século XXI , História Antiga , Traumatismos em Atletas/história , Encefalopatia Traumática Crônica/história , Encefalopatia Traumática Crônica/patologia , História do Século XV
4.
Immune Netw ; 24(3): e20, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974208

RESUMO

The brain and lungs, vital organs in the body, play essential roles in maintaining overall well-being and survival. These organs interact through complex and sophisticated bi-directional pathways known as the 'lung-brain axis', facilitated by their close proximity and neural connections. Numerous studies have underscored the mediation of the lung-brain axis by inflammatory responses and hypoxia-induced damage, which are pivotal to the progression of both pulmonary and neurological diseases. This review aims to delve into how pulmonary diseases, including acute/chronic airway diseases and pulmonary conditions, can instigate neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Additionally, we highlight the emerging research on the lung microbiome which, drawing parallels between the gut and lungs in terms of microbiome contents, may play a significant role in modulating brain health. Ultimately, this review paves the way for exciting avenues of future research and therapeutics in addressing respiratory and neurological diseases.

5.
JIMD Rep ; 65(4): 233-238, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974615

RESUMO

Riboflavin transporter deficiency (RTD) is a genetic disorder of reduced riboflavin (vitamin B2) uptake that causes progressive, multifocal neurological dysfunction. Most patients present in early childhood; if patients present later in life, symptoms usually develop more gradually. We report three previously healthy young adults, who developed rapidly progressive neurological symptoms after decreasing dietary intake of meat and dairy. After a diagnostic odyssey, the diagnosis of a riboflavin transporter deficiency was made. Treatment with high dose oral riboflavin (20-40 mg/kg/day) partially reversed symptoms. This case series highlights that reduced riboflavin intake as a result of dietary changes can unmask RTD at a later age. We emphasize the importance of early recognition of this progressive and potentially lethal disease and show that timely treatment with high dose riboflavin is highly effective.

6.
MedComm (2020) ; 5(7): e640, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39006762

RESUMO

Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.

7.
Drug Discov Today ; : 104093, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992420

RESUMO

As the global population ages, the need to prolong lifespan and healthspan becomes increasingly imperative. Understanding the molecular determinants underlying cognitive resilience, together with changes during aging and the (epi)genetic factors that predispose an individual to decreased cognitive resilience, open avenues for researching novel therapies. This review provides a critical and timely appraisal of the molecular mechanisms underlying cognitive resilience, framed within a critical analysis of emerging therapeutic strategies to mitigate age-related cognitive decline. Significant insights from both animals and human subjects are discussed herein, directed either toward active pharmaceutical ingredients (drug repositioning or macromolecules), or, alternatively, advanced cellular therapies.

8.
Drug Discov Today ; : 104094, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997001

RESUMO

Histone deacetylases (HDACs) are a special class of hydrolase enzymes, which through epigenetic control of cellular acetylation, play regulatory roles in various processes including chromatin packing, cytokine signaling, and gene expression. Widespread influence on cell function has implicated dysregulated HDAC activity in human disease. While traditionally an oncology target, in the past decade, there has been a notable rise in inhibition strategies within several therapeutic areas beyond cancer. This review highlights advances in four of these indications, neurodegenerative disease, metabolic disorders, cardiovascular disease, and viral infections, focusing on the role of deacetylases in disease, small molecule drug discovery, and clinical progress.

9.
AIMS Neurosci ; 11(2): 63-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988882

RESUMO

Huntington's disease (HD), a rare autosomal dominant neurodegenerative disease, causes the gradual deterioration of neurons in the basal ganglia, specifically in the striatum. HD displays a wide range of symptoms, from motor disturbances such as chorea, dystonia, and bradykinesia to more debilitating symptoms such as cognitive decline, behavioral abnormalities, and psychiatric disturbances. Current research suggests the potential use of dietary interventions as viable strategies for slowing the progression of HD. Most notably, the Mediterranean, vegan, carnivore, paleo, and ketogenic diets have gained attention due to their hypothesized impact on neuroprotection and symptomatic modulation in various neurodegenerative disorders. Despite substantial nutritional differences among these diets, they share a fundamental premise-that dietary factors have an influential impact in modifying pertinent biological pathways linked to neurodegeneration. Understanding the intricate interactions between these dietary regimens and HD pathogenesis could open avenues for personalized interventions tailored to the individual's specific needs and genetic background. Ultimately, elucidating the multifaceted effects of these diets on HD offers a promising framework for developing comprehensive therapeutic approaches that integrate dietary strategies with conventional treatments.

10.
AIMS Neurosci ; 11(2): 166-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988889

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and intricate neurodegenerative disease that impacts upper and lower motor neurons within the central nervous system, leading to their progressive destruction. Despite extensive research, the pathogenesis of this multifaceted disease remains elusive. The United States Food and Drug Administration (FDA) has granted approval for seven medications designed to address ALS and mitigate its associated symptoms. These FDA-sanctioned treatments are Qalsody, Relyvrio, Radicava, Rilutek, Tiglutik, Exservan, and Nuedexta. In this review, the effects of these seven drugs on ALS based on their mechanism of action, dosing, and clinical presentations are comprehensively summarized. Each medication offers a distinct approach to manage ALS, aiming to alleviate the burdensome symptoms and slow the disease's progression, thereby improving the quality of life for individuals affected by this neurological condition. However, despite these advancements in pharmaceutical interventions, finding a definitive cure for ALS remains a significant challenge. Continuous investigation into ALS pathophysiology and therapeutic avenues remains imperative, necessitating further research collaborations and innovative approaches to unravel the complex mechanisms underlying this debilitating condition.

11.
Neuroscience ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964450

RESUMO

Neurological disorders are a diverse group of conditions that can significantly impact individuals' quality of life. The maintenance of neural microenvironment homeostasis is essential for optimal physiological cellular processes. Perturbations in this delicate balance underlie various pathological manifestations observed across various neurological disorders. Current treatments for neurological disorders face substantial challenges, primarily due to the formidable blood-brain barrier and the intricate nature of neural tissue structures. These obstacles have resulted in a paucity of effective therapies and inefficiencies in patient care. Exosomes, nanoscale vesicles that contain a complex repertoire of biomolecules, are identifiable in various bodily fluids. They hold substantial promise in numerous therapeutic interventions due to their unique attributes, including targeted drug delivery mechanisms and the ability to cross the BBB, thereby enhancing their therapeutic potential. In this review, we investigate the therapeutic potential of exosomes across a range of neurological disorders, including neurodegenerative disorders, traumatic brain injury, peripheral nerve injury, brain tumors, and stroke. Through both in vitro and in vivo studies, our findings underscore the beneficial influence of exosomes in enhancing the neural microenvironment following neurological diseases, offering promise for improved neural recovery and management in these conditions.

12.
Rev Neurosci ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38967133

RESUMO

The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.

13.
Ageing Res Rev ; 99: 102395, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950867

RESUMO

The blood brain barrier (BBB) is an indispensable structure that maintains the central nervous system (CNS) microenvironment for a correct neuronal function. It is composed by highly specialized microvessels, surrounded by astrocytes, pericytes, neurons and microglia cells, which tightly control the influx and efflux of substances to the brain parenchyma. During aging, the BBB becomes impaired, and it may contribute to the development of neurodegenerative and neurological disorders including Alzheimer's disease and other dementias. Restoring the BBB can be a strategy to prevent disease onset and development, reducing the symptoms of these conditions. This work critically reviews the major mechanisms underlying BBB breakdown in healthy and unhealthy aging, as well as biomarkers and methodologies that accurately assess its impairment. Complementarily, potential therapeutic targets are discussed as new strategies to restore the normal function of the BBB in aging.

14.
Mol Neurobiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954254

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease in adults. Currently, there are no known drugs or clinical approaches that have demonstrated efficacy in treating ALS. Mitochondrial function and autophagy have been identified as crucial mechanisms in the development of ALS. While Bax inhibitor 1 (BI1) has been implicated in neurodegenerative diseases, its exact mechanism remains unknown. This study investigates the therapeutic impact of BI1 overexpression on ALS both in vivo and in vitro, revealing its ability to mitigate SOD1G93A-induced apoptosis, nuclear damage, mitochondrial dysfunction, and axonal degeneration of motor neurons. At the same time, BI1 prolongs onset time and lifespan of ALS mice, improves motor function, and alleviates neuronal damage, muscle damage, neuromuscular junction damage among other aspects. The findings indicate that BI1 can inhibit pathological TDP43 morphology and initially stimulate autophagy through interaction with TDP43. This study establishes a solid theoretical foundation for understanding the regulation of autophagy by BI1 and TDP43 while shedding light on the pathogenesis of ALS through their interaction - offering new concepts and targets for clinical implementation and drug development.

15.
Ageing Res Rev ; : 102386, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969143

RESUMO

Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce malfunction of psycho-motor functions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-ß, huntingtin, and tau, and accumulation of its associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. Cannabidiol has gained attention as a promising therapeutic drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as its clinical applications in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.

16.
Front Neurol ; 15: 1396002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836001

RESUMO

Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement leads to progressive declines of speech and swallowing functions, significantly impacting social, emotional, and physical health, and quality of life. Standard clinical tools for bulbar assessment focus primarily on clinical symptoms and functional outcomes. However, ALS is known to have a long, clinically silent prodromal stage characterized by complex subclinical changes at various levels of the bulbar motor system. These changes accumulate over time and eventually culminate in clinical symptoms and functional declines. Detection of these subclinical changes is critical, both for mechanistic understanding of bulbar neuromuscular pathology and for optimal clinical management of bulbar dysfunction in ALS. To this end, we developed a novel multimodal measurement tool based on two clinically readily available, noninvasive instruments-facial surface electromyography (sEMG) and acoustic techniques-to hierarchically assess seven constructs of bulbar/speech motor control at the neuromuscular and acoustic levels. These constructs, including prosody, pause, functional connectivity, amplitude, rhythm, complexity, and regularity, are both mechanically and clinically relevant to bulbar involvement. Methods: Using a custom-developed, fully automated data analytic algorithm, a variety of features were extracted from the sEMG and acoustic recordings of a speech task performed by 13 individuals with ALS and 10 neurologically healthy controls. These features were then factorized into 10 composite outcome measures using confirmatory factor analysis. Statistical and machine learning techniques were applied to these composite outcome measures to evaluate their reliability (internal consistency), validity (concurrent and construct), and efficacy for early detection and progress monitoring of bulbar involvement in ALS. Results: The composite outcome measures were demonstrated to (1) be internally consistent and structurally valid in measuring the targeted constructs; (2) hold concurrent validity with the existing clinical and functional criteria for bulbar assessment; and (3) outperform the outcome measures obtained from each constituent modality in differentiating individuals with ALS from healthy controls. Moreover, the composite outcome measures combined demonstrated high efficacy for detecting subclinical changes in the targeted constructs, both during the prodromal stage and during the transition from prodromal to symptomatic stages. Discussion: The findings provided compelling initial evidence for the utility of the multimodal measurement tool for improving early detection and progress monitoring of bulbar involvement in ALS, which have important implications in facilitating timely access to and delivery of optimal clinical care of bulbar dysfunction.

17.
Front Neurosci ; 18: 1401706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846716

RESUMO

Amyotrophic lateral sclerosis (ALS) continues to pose a significant challenge due to the disease complexity and heterogeneous manifestations. Despite recent drug approvals, there remains a critical need for the development of more effective therapies. This review explores the underlying mechanisms involved; including neuroinflammation, glutamate mediated excitotoxicity, mitochondrial dysfunction, and hypermetabolism, and how researchers are trying to develop novel drugs to target these pathways. While progress has been made, the unmet need of ALS patients highlights the urgency for continued research and resource allocation in the pursuit of effective treatments.

18.
Neuroimage Clin ; 43: 103620, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38823250

RESUMO

CA1 subfield and subiculum of the hippocampus contain a series of dentate bulges, which are also called hippocampus dentation (HD). There have been several studies demonstrating an association between HD and brain disorders. Such as the number of hippocampal dentation correlates with temporal lobe epilepsy. And epileptic hippocampus have a lower number of dentation compared to contralateral hippocampus. However, most studies rely on subjective assessment by manual searching and counting in HD areas, which is time-consuming and labor-intensive to process large amounts of samples. And to date, only one objective method for quantifying HD has been proposed. Therefore, to fill this gap, we developed an automated and objective method to quantify HD and explore its relationship with neurodegenerative diseases. In this work, we performed a fine-scale morphological characterization of HD in 2911 subjects from four different cohorts of ADNI, PPMI, HCP, and IXI to quantify and explore differences between them in MR T1w images. The results showed that the degree of right hippocampal dentation are lower in patients with Alzheimer's disease than samples in mild cognitive impairment or cognitively normal, whereas this change is not significant in Parkinson's disease progression. The innovation of this paper that we propose a quantitative, robust, and fully automated method. These methodological innovation and corresponding results delineated above constitute the significance and novelty of our study. What's more, the proposed method breaks through the limitations of manual labeling and is the first to quantitatively measure and compare HD in four different brain populations including thousands of subjects. These findings revealed new morphological patterns in the hippocampal dentation, which can help with subsequent fine-scale hippocampal morphology research.

19.
Neuroimage ; 296: 120663, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843963

RESUMO

INTRODUCTION: Timely diagnosis and prognostication of Alzheimer's disease (AD) and mild cognitive impairment (MCI) are pivotal for effective intervention. Artificial intelligence (AI) in neuroradiology may aid in such appropriate diagnosis and prognostication. This study aimed to evaluate the potential of novel diffusion model-based AI for enhancing AD and MCI diagnosis through superresolution (SR) of brain magnetic resonance (MR) images. METHODS: 1.5T brain MR scans of patients with AD or MCI and healthy controls (NC) from Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) were superresolved to 3T using a novel diffusion model-based generative AI (d3T*) and a convolutional neural network-based model (c3T*). Comparisons of image quality to actual 1.5T and 3T MRI were conducted based on signal-to-noise ratio (SNR), naturalness image quality evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE). Voxel-based volumetric analysis was then conducted to study whether 3T* images offered more accurate volumetry than 1.5T images. Binary and multiclass classifications of AD, MCI, and NC were conducted to evaluate whether 3T* images offered superior AD classification performance compared to actual 1.5T MRI. Moreover, CNN-based classifiers were used to predict conversion of MCI to AD, to evaluate the prognostication performance of 3T* images. The classification performances were evaluated using accuracy, sensitivity, specificity, F1 score, Matthews correlation coefficient (MCC), and area under the receiver-operating curves (AUROC). RESULTS: Analysis of variance (ANOVA) detected significant differences in image quality among the 1.5T, c3T*, d3T*, and 3T groups across all metrics. Both c3T* and d3T* showed superior image quality compared to 1.5T MRI in NIQE and BRISQUE with statistical significance. While the hippocampal volumes measured in 3T* and 3T images were not significantly different, the hippocampal volume measured in 1.5T images showed significant difference. 3T*-based AD classifications showed superior performance across all performance metrics compared to 1.5T-based AD classification. Classification performance between d3T* and actual 3T was not significantly different. 3T* images offered superior accuracy in predicting the conversion of MCI to AD than 1.5T images did. CONCLUSIONS: The diffusion model-based MRI SR enhances the resolution of brain MR images, significantly improving diagnostic and prognostic accuracy for AD and MCI. Superresolved 3T* images closely matched actual 3T MRIs in quality and volumetric accuracy, and notably improved the prediction performance of conversion from MCI to AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/classificação , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/classificação , Idoso , Feminino , Masculino , Prognóstico , Idoso de 80 Anos ou mais , Inteligência Artificial , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Pessoa de Meia-Idade , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem/métodos , Neuroimagem/normas
20.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895243

RESUMO

Mounting evidence implicates trans-synaptic connectome-based spread as a shared mechanism behind different tauopathic conditions, yet also suggests there is divergent spatiotemporal progression between them. A potential parsimonious explanation for this apparent contradiction could be that different conditions incur differential rates and directional biases in tau transmission along fiber tracts. In this meta-analysis we closely examined this hypothesis and quantitatively tested it using spatiotemporal tau pathology patterns from 11 distinct models across 4 experimental studies. For this purpose we developed and employed the NexIS:dir, a mathematical model that extends previous work by incorporating net directionality. Our data unambiguously supports the directional transmission hypothesis. First, retrograde bias is an unambiguously better predictor of tau progression than anterograde bias. Second, while spread exhibits retrograde character, the best NexIS:dir models incorporate the mixed effects of both retrograde- and anterograde-directed spread, with notable tau-strain-specific differences. We also found a nontrivial association between directionality bias and tau strain aggressiveness, with more virulent strains exhibiting less retrograde character. Taken together, our study implicates directional transmission bias in tau transmission along fiber tracts as a general feature of tauopathy spread and a strong candidate explanation for the diversity of spatiotemporal tau progression between conditions. This simple and parsimonious mechanism may potentially fill a critical gap in our knowledge of the spatiotemporal ramification of divergent tauopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...