Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
ACS Chem Neurosci ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348888

RESUMO

Caffeoylquinic acids (CQAs) and feruloylquinic acids (FQAs), as cinnamoylquinic acids, have neurogenesis promotion effects. We studied for the first time the neurogenesis-enhancing effect of 3,4,5-tri-feruloylquinic acid (TFQA) compared to 3,4,5-tri-caffeoylquinic acid (TCQA), which has a similar structure, and explored their different cellular and molecular mechanisms in neural stem cells (NSCs) of mice brains. After 2 weeks of incubation, we first assessed the number and size of NSCs in TCQA and TFQA treatments. In NSCs treated for TCQA and TFQA, the NSC proliferation gene expression as well as neuronal and glial cell differentiation gene expressions improved. In the microarray assay, the erythroblastic oncogene B (ErbB) signaling pathway, as the common signaling of TCQA and TFQA treatments, was focused on and discussed. In our study, TCQA and TFQA treatments in NSCs showed a significant performance on improving synapse growth and neurogenesis compared with no treatment of NSCs. The two treatments in NSCs also had a significant activation of the ErbB signaling pathway, protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) kinases. In particular, the TCQA-expressed proliferation gene myelocytomatosis oncogene (Myc) had the greatest connections significantly. TFQA treatment remarkably regulated the differentiation gene jun proto-oncogene (Jun), which was the gene with greatest direct relations, while Myc was also induced in TFQA treatment. In the overall quantitative real-time polymerase chain reaction (PCR) assay, TFQA had more outstanding neural proliferation and differentiation capabilities than TCQA in NSCs. Our study suggests that TFQA has greater therapeutic potential in neurogenesis promotion and neurodegenerative diseases compared with TCQA.

2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928255

RESUMO

Activation of neural stem cells (NSCs) correlates with improved functional outcomes in mouse models of injury. In the murine brain, NSCs have been extensively characterized and comprise (1) primitive NSCs (pNSCs) and (2) definitive NSCs (dNSCs). pNSCs are the earliest cells in the NSC lineage giving rise to dNSCs in the embryonic and adult mouse brain. pNSCs are quiescent under baseline conditions and can be activated upon injury. Herein, we asked whether human pNSCs and dNSCs can be isolated during the maturation of human cerebral organoids (COs) and activated by drugs known to regulate mouse NSC behavior. We demonstrate that self-renewing, multipotent pNSC and dNSC populations are present in human COs and express genes previously characterized in mouse NSCs. The drug NWL283, an inhibitor of apoptosis, reduced cell death in COs but did not improve NSC survival. Metformin, a drug used to treat type II diabetes that is known to promote NSC activation in mice, was found to expand human NSC pools. Together, these findings are the first to identify and characterize human pNSCs, advancing our understanding of the human NSC lineage and highlighting drugs that enhance their activity.


Assuntos
Células-Tronco Neurais , Organoides , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Organoides/metabolismo , Organoides/citologia , Organoides/efeitos dos fármacos , Animais , Camundongos , Diferenciação Celular , Metformina/farmacologia , Células Cultivadas , Encéfalo/metabolismo , Encéfalo/citologia
3.
ACS Appl Mater Interfaces ; 16(26): 33246-33258, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38905518

RESUMO

Herein we report the assessment of the effects of shockwave (SW) impacts on adult rat hippocampal progenitor cell (AHPC) neurospheres (NSs), which are used as in vitro brain models, for enhancing our understanding of the mechanisms of traumatic brain injury (TBI). The assessment has been achieved by using culture dishes and a new microchip. The microchip allows the chemicals released from the brain models cultured inside the cell culture chamber under SW impacts to diffuse to the nanosensors in adjacent sensor chambers through built-in diffusion barriers, which are used to prevent the cells from entering the sensor chambers, thereby mitigating the biofouling issues of the sensor surface. Experiments showed the negative impact of the SW on the viability, proliferation, and differentiation of the cells within the NSs. A qPCR gene expression analysis was performed and appeared to confirm some of the immunocytochemistry (ICC) results. Finally, we demonstrated that the microchip can be used to monitor lactate dehydrogenase (LDH) released from the AHPC-NSs subjected to SW impacts. As expected, LDH levels changed when AHPC-NSs were injured by SW impacts, verifying this chip can be used for assessing the degrees of injuries to AHPC-NSs by monitoring LDH levels. Taken together, these results suggest the feasibility of using the chip to better understand the interactions between SW impacts and in vitro brain models, paving the way for potentially establishing in vitro TBI models on a chip.


Assuntos
Lesões Encefálicas Traumáticas , Hipocampo , Animais , Ratos , Hipocampo/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Dispositivos Lab-On-A-Chip , Sobrevivência Celular , L-Lactato Desidrogenase/metabolismo , Proliferação de Células , Encéfalo/metabolismo , Encéfalo/patologia , Ondas de Choque de Alta Energia , Células Cultivadas , Diferenciação Celular
4.
Biomech Model Mechanobiol ; 23(4): 1319-1329, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38613619

RESUMO

The formulation of more accurate models to describe tissue mechanics necessitates the availability of tools and instruments that can precisely measure the mechanical response of tissues to physical loads and other stimuli. In this regard, neuroscience has trailed other life sciences owing to the unavailability of representative live tissue models and deficiency of experimentation tools. We previously addressed both challenges by employing a novel instrument called the cantilevered-capillary force apparatus (CCFA) to elucidate the mechanical properties of mouse neurospheres under compressive forces. The neurospheres were derived from murine stem cells, and our study was the first of its kind to investigate the viscoelasticity of living neural tissues in vitro. In the current study, we demonstrate the utility of the CCFA as a broadly applicable tool to evaluate tissue mechanics by quantifying the effect that oxidative stress has on the mechanical properties of neurospheres. We treated mouse neurospheres with non-cytotoxic levels of hydrogen peroxide and subsequently evaluated the storage and loss moduli of the tissues under compression and tension. We observed that the neurospheres exhibit viscoelasticity consistent with neural tissue and show that elastic modulus decreases with increasing size of the neurosphere. Our study yields insights for establishing rheological measurements as biomarkers by laying the groundwork for measurement techniques and showing that the influence of a particular treatment may be misinterpreted if the size dependence is ignored.


Assuntos
Estresse Mecânico , Animais , Camundongos , Viscosidade , Peróxido de Hidrogênio/farmacologia , Módulo de Elasticidade , Estresse Oxidativo , Fenômenos Biomecânicos , Força Compressiva , Reologia
5.
Cancers (Basel) ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611021

RESUMO

Neuroblastoma (NB) is an embryonal tumor arising from the sympathetic central nervous system. The epidermal growth factor (EGF) plays a role in NB growth and metastatic behavior. Recently, we have demonstrated that cathepsin D (CD) contrasts EGF-induced NB cell growth in 2D by downregulating EGFR/MAPK signaling. Aggressive NB is highly metastatic to the bone and the brain. In the metastatic process, adherent cells detach to form clusters of suspended cells that adhere once they reach the metastatic site and form secondary colonies. Whether CD is involved in the survival of metastatic NB clones is not known. Therefore, in this study, we addressed how CD differentially affects cell growth in suspension versus the adherent condition. To mimic tumor heterogeneity, we co-cultured transgenic clones silenced for or overexpressing CD. We compared the growth kinetics of such mixed clones in 2D and 3D models in response to EGF, and we found that the Over CD clone had an advantage for growth in suspension, while the CD knocked-down clone was favored for the adherent growth in 2D. Interestingly, on switching from 3D to 2D culture conditions, the expression of E-cadherin and of N-cadherin increased in the KD-CD and Over CD clones, respectively. The fact that CD plays a dual role in cancer cell growth in 2D and 3D conditions indicates that during clonal evolution, subclones expressing different level of CD may arise, which confers survival and growth advantages depending on the metastatic step. By searching the TCGA database, we found up to 38 miRNAs capable of downregulating CD. Interestingly, these miRNAs are associated with biological processes controlling cell adhesion and cell migration. The present findings support the view that during NB growth on a substrate or when spreading as floating neurospheres, CD expression is epigenetically modulated to confer survival advantage. Thus, epigenetic targeting of CD could represent an additional strategy to prevent NB metastases.

6.
J Neurovirol ; 30(2): 131-145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478163

RESUMO

The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Células-Tronco Neurais , Neurogênese , RNA-Seq , Transcriptoma , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Células-Tronco Neurais/virologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Animais , Herpes Simples/genética , Herpes Simples/virologia , Herpes Simples/metabolismo , Antivirais/farmacologia , Diferenciação Celular , Camundongos , Transdução de Sinais , Colesterol/metabolismo , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica , Movimento Celular
7.
Cell Rep Methods ; 4(3): 100716, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38430913

RESUMO

Oncolytic virus (OV) clinical trials have demonstrated remarkable efficacy in subsets of patients with glioblastoma (GBM). However, the lack of tools to predict this response hinders the advancement of a more personalized application of OV therapy. In this study, we characterize an ex vivo co-culture system designed to examine the immune response to OV infection of patient-derived GBM neurospheres in the presence of autologous peripheral blood mononuclear cells (PBMCs). Co-culture conditions were optimized to retain viability and functionality of both tumor cells and PBMCs, effectively recapitulating the well-recognized immunosuppressive effects of GBM. Following OV infection, we observed elevated secretion of pro-inflammatory cytokines and chemokines, including interferon γ, tumor necrosis factor α, CXCL9, and CXCL10, and marked changes in immune cell activation markers. Importantly, OV treatment induced unique patient-specific immune responses. In summary, our co-culture platform presents an avenue for personalized screening of viro-immunotherapies in GBM, offering promise as a potential tool for future patient stratification in OV therapy.


Assuntos
Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Leucócitos Mononucleares/patologia , Imunoterapia
8.
Neurosci Lett ; 824: 137674, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38355005

RESUMO

Adult neural stem cells (NSCs) located in the two canonical neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ), express the glial fibrillary acidic protein (GFAP). Recently, proliferative activity has been described in the hypothalamus although the characterization of hypothalamic neural stem/progenitor cells (NSPCs) is still uncertain. We therefore investigated whether hypothalamic GFAP-positive cells, as in the SVZ and SGZ, also have neurogenic potential. We used a transgenic mouse line expressing green fluorescent protein (GFP) under the control of the GFAP promoter. GFAP-GFP expressing cells are localized in the ependymal layer as well as in the parenchyma of the mediobasal hypothalamus (MBH) and express Sox2, a marker for NSCs. Interestingly, no sexual dimorphism was observed in the numbers of GFP + and GFP-Sox2 + cells. After cells sorting, these cells were able to generate neurospheres in vitro and give rise to neurons, astrocytes and oligodendrocytes. Taken together, these results show that hypothalamic GFAP-expressing cells form a population of NSPCs.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Linhagem da Célula , Proteína Glial Fibrilar Ácida/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Camundongos Transgênicos , Hipotálamo/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
9.
Cells ; 13(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38334634

RESUMO

Few models allow the study of neurite damage in the human central nervous system. We used here dopaminergic LUHMES neurons to establish a culture system that allows for (i) the observation of highly enriched neurites, (ii) the preparation of the neurite fraction for biochemical studies, and (iii) the measurement of neurite markers and metabolites after axotomy. LUHMES-based spheroids, plated in culture dishes, extended neurites of several thousand µm length, while all somata remained aggregated. These cultures allowed an easy microscopic observation of live or fixed neurites. Neurite-only cultures (NOC) were produced by cutting out the still-aggregated somata. The potential application of such cultures was exemplified by determinations of their protein and RNA contents. For instance, the mitochondrial TOM20 protein was highly abundant, while nuclear histone H3 was absent. Similarly, mitochondrial-encoded RNAs were found at relatively high levels, while the mRNA for a histone or the neuronal nuclear marker NeuN (RBFOX3) were relatively depleted in NOC. Another potential use of NOC is the study of neurite degeneration. For this purpose, an algorithm to quantify neurite integrity was developed. Using this tool, we found that the addition of nicotinamide drastically reduced neurite degeneration. Also, the chelation of Ca2+ in NOC delayed the degeneration, while inhibitors of calpains had no effect. Thus, NOC proved to be suitable for biochemical analysis and for studying degeneration processes after a defined cut injury.


Assuntos
Neuritos , Neurônios , Humanos , Neuritos/metabolismo , Células Cultivadas , Axotomia
10.
Front Bioeng Biotechnol ; 11: 1251195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901842

RESUMO

High failure rates in clinical trials for neurodegenerative disorders such as Alzheimer's disease have been linked to an insufficient predictive validity of current animal-based disease models. This has created an increasing demand for alternative, human-based models capable of emulating key pathological phenotypes in vitro. Here, a three-dimensional Alzheimer's disease model was developed using a compartmentalized microfluidic device that combines a self-assembled microvascular network of the human blood-brain barrier with neurospheres derived from Alzheimer's disease-specific neural progenitor cells. To shorten microfluidic co-culture times, neurospheres were pre-differentiated for 21 days to express Alzheimer's disease-specific pathological phenotypes prior to the introduction into the microfluidic device. In agreement with post-mortem studies and Alzheimer's disease in vivo models, after 7 days of co-culture with pre-differentiated Alzheimer's disease-specific neurospheres, the three-dimensional blood-brain barrier network exhibited significant changes in barrier permeability and morphology. Furthermore, vascular networks in co-culture with Alzheimer's disease-specific microtissues displayed localized ß-amyloid deposition. Thus, by interconnecting a microvascular network of the blood-brain barrier with pre-differentiated neurospheres the presented model holds immense potential for replicating key neurovascular phenotypes of neurodegenerative disorders in vitro.

11.
Front Pharmacol ; 14: 1242109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795025

RESUMO

Introduction: Methamphetamine (METH) abuse by pregnant drug addicts causes toxic effects on fetal neurodevelopment; however, the mechanism underlying such effect of METH is poorly understood. Methods: In the present study, we applied three-dimensional (3D) neurospheres derived from the embryonic rat hippocampal tissue to investigate the effect of METH on neurodevelopment. Through the combination of whole genome transcriptional analyses, the involved cell signalings were identified and investigated. Results: We found that METH treatment for 24 h significantly and concentration-dependently reduced the size of neurospheres. Analyses of genome-wide transcriptomic profiles found that those down-regulated differentially expressed genes (DEGs) upon METH exposure were remarkably enriched in the cell cycle progression. By measuring the cell cycle and the expression of cell cycle-related checkpoint proteins, we found that METH exposure significantly elevated the percentage of G0/G1 phase and decreased the levels of the proteins involved in the G1/S transition, indicating G0/G1 cell cycle arrest. Furthermore, during the early neurodevelopment stage of neurospheres, METH caused aberrant cell differentiation both in the neurons and astrocytes, and attenuated migration ability of neurospheres accompanied by increased oxidative stress and apoptosis. Conclusion: Our findings reveal that METH induces an aberrant cell cycle arrest and neuronal differentiation, impairing the coordination of migration and differentiation of neurospheres.

12.
BMC Vet Res ; 19(1): 193, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803301

RESUMO

BACKGROUND: • Neural stem/progenitor cells (NSPCs) are multipotent self-renewing cells that can be isolated from the brain or spinal cord. As they need to be isolated from neural tissues, it is difficult to study human NSPCs. To facilitate NSPC research, we attempted to isolate NSPCs from dogs, as dogs share the environment and having many similar diseases with humans. We collected and established primary cultures of ependymal and subependymal cells from the central canal of the cervical spinal cord of adult dogs. To isolate pure NSPCs, we employed the monolayer culture and selective medium culture methods. We further tested the ability of the NSPCs to form neurospheres (using the suspension culture method) and evaluated their differentiation potential. RESULTS: • The cells had the ability to grow as cultures for up to 10 passages; the growth curves of the cells at the 3rd, 6th, and 9th passages showed similar patterns. The NSPCs were able to grow as neurospheres as well as monolayers, and immunostaining at the 3rd, 6th, and 9th passages showed that these cells expressed NSPC markers such as nestin and SOX2 (immunofluorescent staining). Monolayer cultures of NSPCs at the 3rd, 6th, and 9th passages were cultured for approximately 14 days using a differentiation medium and were observed to successfully differentiate into neural lineage and glial cells (astrocytes, neurons, and oligodendrocytes) at all the three passages tested. CONCLUSION: • It is feasible to isolate and propagate (up to at least 10 passages) canine cervical spinal cord-derived NSPCs with the capacity to differentiate into neuronal and glial cells. To the best of our knowledge this is the first study to successfully isolate, propagate, and differentiate canine NSPCs derived from cervical spinal cord in the adult canine, and we believe that these cells will contribute to the field of spinal cord regeneration in veterinary and comparative medicine.


Assuntos
Medula Cervical , Células-Tronco Neurais , Cães , Animais , Humanos , Células Cultivadas , Neurônios , Medula Espinal , Diferenciação Celular/fisiologia
13.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686310

RESUMO

Neural injuries disrupt the normal functions of the nervous system, whose complexities limit current treatment options. Because of their enhanced therapeutic effects, neurospheres have the potential to advance the field of regenerative medicine and neural tissue engineering. Methodological steps can pose challenges for implementing neurosphere assemblies; for example, conventional static cultures hinder yield and throughput, while the presence of the necrotic core, time-consuming methodology, and high variability can slow their progression to clinical application. Here we demonstrate the optimization of primary neural cell-derived neurospheres, developed using a high-throughput, stress-free, 3D bioreactor. This process provides a necessary baseline for future studies that could develop co-cultured assemblies of stem cells combined with endothelial cells, and/or biomaterials and nanomaterials for clinical therapeutic use. Neurosphere size and neurite spreading were evaluated under various conditions using Image J software. Primary neural cells obtained from the hippocampi of three-day-old rat pups, when incubated for 24 h in a reactor coated with 2% Pluronic and seeded on Poly-D-Lysine-coated plates establish neurospheres suitable for therapeutic use within five days. Most notably, neurospheres maintained high cell viability of ≥84% and expressed the neural marker MAP2, neural marker ß-Tubulin III, and glial marker GFAP at all time points when evaluated over seven days. Establishing these factors reduces the variability in developing neurospheres, while increasing the ease and output of the culture process and maintaining viable cellular constructs.


Assuntos
Células Endoteliais , Tecido Nervoso , Animais , Ratos , Neurônios , Neuritos , Neuroglia
14.
J Physiol Sci ; 73(1): 19, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704979

RESUMO

Neural stem cells (NSCs) are maintained in the adult mammalian brain throughout the animal's lifespan. NSCs in the subependymal zone infrequently divide and generate transit amplifying cells, which are destined to become olfactory bulb neurons. When transit amplifying cells are depleted, they are replenished by the quiescent NSC pool. However, the cellular basis for this recovery process remains largely unknown. In this study, we traced NSCs and their progeny after transit amplifying cells were eliminated by intraventricular infusion of cytosine ß-D-arabinofuranoside. We found that although the number of neurosphere-forming NSCs decreased shortly after the treatment, they were restored to normal levels 3 weeks after the cessation of treatment. More importantly, the depletion of transit amplifying cells did not induce a significant expansion of the NSC pool by symmetric divisions. Our data suggest that the size of the NSC pool is hardly affected by brain damage due to antimitotic drug treatment.


Assuntos
Encéfalo , Células-Tronco Neurais , Animais , Neurônios , Infusões Intraventriculares , Longevidade , Mamíferos
15.
Cell Mol Life Sci ; 80(9): 260, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594553

RESUMO

Oligodendrocytes are generated via a two-step mechanism from pluripotent neural stem cells (NSCs): after differentiation of NSCs to oligodendrocyte precursor/NG2 cells (OPCs), they further develop into mature oligodendrocytes. The first step of this differentiation process is only incompletely understood. In this study, we utilized the neurosphere assay to investigate NSC to OPC differentiation in a time course-dependent manner by mass spectrometry-based (phospho-) proteomics. We identify doublecortin-like kinase 1 (Dclk1) as one of the most prominently regulated proteins in both datasets, and show that it undergoes a gradual transition between its short/long isoform during NSC to OPC differentiation. This is regulated by phosphorylation of its SP-rich region, resulting in inhibition of proteolytic Dclk1 long cleavage, and therefore Dclk1 short generation. Through interactome analyses of different Dclk1 isoforms by proximity biotinylation, we characterize their individual putative interaction partners and substrates. All data are available via ProteomeXchange with identifier PXD040652.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Diferenciação Celular , Quinases Semelhantes a Duplacortina , Oligodendroglia , Fosforilação , Proteínas Serina-Treonina Quinases , Proteômica
16.
J Med Life ; 16(5): 689-698, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37520471

RESUMO

This study aimed to compare the differentiation and survival of human neural stem/progenitor cells of various origins in vitro and after transplantation into the injured spinal cord of laboratory animals. Rats with simulated spinal cord injury were transplanted with neurosphere cells obtained by directed differentiation of HUES6 cell lines. Fluorescence microscopy was used to visualize the obtained results. HUES6#1 and iPSC#1 neurospheres showed a wide range of markers associated with glial differentiation. The expression of the proliferation marker Ki67 did not exceed 25%, both in the lines of early and late neurospheres. Although neurospheres did not fully differentiate into astrocytes in vitro, they massively approached the GFAP+ astrocyte phenotype when exposed to the transplanted environment. PSC-derived neurospheres transplanted into the site of SM injury without additional growth factors showed only moderate survival, a significant degree of differentiation into astrocytes, and moderate differentiation into neurons. The difference in the survival and differentiation of HUES6#1 and iPSC#1 neurospheres, both in vitro and in vivo, can be explained by the difference in the regulatory behavior of signaling molecules corresponding to the source of origin of PSCs. Derivatives of human PSCs of various origins obtained according to the described differentiation protocol did not mature into astrocytic populations, nor did the glycogenic transition of PSC-derived NSCs occur in vitro. The study demonstrated the impact of the injured spinal cord microenvironment on the differentiation of transplanted HUES6#1 and iPSC#1 into astrocytes. The results showed that HUES6-derived neurospheres generated 90% of GFAP+ astrocytes and 5-10% of early neurons, while iPSC-derived neurospheres generated an average of 74% GFAP+ astrocytes and 5% of early neurons in vivo.


Assuntos
Neurônios , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Células Cultivadas , Diferenciação Celular/fisiologia , Traumatismos da Medula Espinal/cirurgia
17.
IBRO Neurosci Rep ; 14: 235-243, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388489

RESUMO

Full-term amniotic fluid stem cell (AFSC) is an underexplored reserve of broadly multipotent stem cells with potential applications in cell replacement therapy. One aspect worth exploring is the potential of AFSCs to differentiate into neural lineages. Previously, we have shown that full-term AFSC lines established from term gestation amniotic fluid, known as R3 and R2, differentiated into neural lineage through the monolayer adherent method suggesting their neurogenic potential. The neural commitment of the cells through the formation of multicellular aggregates has never been shown before. Here, we explored the ability of R3 to commit to neural fate via the formation of three-dimensional multicellular aggregates, namely embryoid bodies (EBs) and neurospheres, exhibiting distinct characteristics resembling EBs and neurospheres as obtained from other published pluripotent and neural stem cells (NSCs), respectively. Different cell seeding densities of the cells cultured in their respective induction medium generated two distinct types of aggregates with the appropriate sizes for EBs (300-350 µm) and neurospheres (50-100 µm). The neurospheres expressed a significantly high level of Nestin than EBs. However, EBs stained positive for TUJ1, suggesting the presence of early post-mitotic neurons representing the ectodermal lineage. In contrast, the presence of the NSC population in neurosphere culture was validated with positive expression of Sox1. Notably, dissociated cells from both aggregates differentiated into MAP2-positive neural cells, highlighting the ability of both types of multicellular aggregates to commit to the neural fate. In conclusion, this study highlights the first evidence of neurosphere formation from full-term AFSCs in addition to neural fate commitment via EBs formation. Findings from this study allow researchers to select the suitable approach for neural cell generation and expansion according to research needs.

18.
Front Cell Dev Biol ; 11: 1196472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377739

RESUMO

Introduction: Impairment of both the central and peripheral nervous system is a major cause of mortality and disability. It varies from an affection of the brain to various types of enteric dysganglionosis. Congenital enteric dysganglionosis is characterized by the local absence of intrinsic innervation due to deficits in either migration, proliferation or differentiation of neural stem cells. Despite surgery, children's quality of life is reduced. Neural stem cell transplantation seems a promising therapeutic approach, requiring huge amounts of cells and multiple approaches to fully colonize the diseased areas completely. A combination of successful expansion and storage of neural stem cells is needed until a sufficient amount of cells is generated. This must be combined with suitable cell transplantation strategies, that cover all the area affected. Cryopreservation provides the possibility to store cells for long time, unfortunately with side effects, i.e., upon vitality. Methods: In this study we investigate the impact of different freezing and thawing protocols (M1-M4) upon enteric neural stem cell survival, protein and gene expression, and cell function. Results: Freezing enteric nervous system derived neurospheres (ENSdN) following slow-freezing protocols (M1-3) resulted in higher survival rates than flash-freezing (M4). RNA expression profiles were least affected by freezing protocols M1/2, whereas the protein expression of ENSdN remained unchanged after treatment with protocol M1 only. Cells treated with the most promising freezing protocol (M1, slow freezing in fetal calf serum plus 10% DMSO) were subsequently investigated using single-cell calcium imaging. Freezing of ENSdN did not alter the increase in intracellular calcium in response to a specific set of stimuli. Single cells could be assigned to functional subgroups according to response patterns and a significant shift towards cells responding to nicotine was observed after freezing. Discussion: The results demonstrate that cryopreservation of ENSdN is possible with reduced viability, only slight changes in protein/gene expression patterns and without an impact on the neuronal function of different enteric nervous system cell subtypes, with the exception of a subtle upregulation of cells expressing nicotinergic acetylcholine receptors. In summary, cryopreservation presents a good method to store sufficient amounts of enteric neural stem cells without neuronal impairment, in order to enable subsequent transplantation of cells into compromised tissues.

19.
Brain Behav ; 13(7): e3043, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37165750

RESUMO

INTRODUCTION: Spinal cord injury (SCI) leads to inflammation, axonal degeneration, and gliosis. A combined treatment of exercise and neural stem cells (NSC) has been proposed to improve neural repair. This study evaluated a combined treatment of high-intensity interval training (HIIT) with NSC generation from adipose-derived stem cells (ADSCs) on a contusive model of SCI in rats. MATERIALS AND METHODS: In vitro, rat ADSCs were isolated from the perinephric regions of Sprague-Dawley rats using enzymatic digestion. The ADSCs were transdifferentiated into neurospheres using B27, EGF, and bFGF. After production of NSC, they were labeled using green fluorescent protein (GFP). For the in vivo study, rats were divided into eight groups: control group, sham operation group, sham operation + HIIT group, sham operation + NSC group, SCI group, SCI + HIIT group, SCI + NSC group, and SCI/HIIT/NSC group. Laminectomy was carried out at the T12 level using the impactor system. HIIT was performed three times per week. To assess behavioral function, the Basso-Beattie-Bresnahan (BBB) locomotor test and H-reflex was carried out once a week for 12 weeks. We examined glial fibrillary acidic protein (GFAP), S100ß, and NF200 expression. RESULTS: NSC transplantation, HIIT and combined therapy with NSC transplantation, and the HIIT protocol improved locomotor function with decreased maximum H to maximum M reflexes (H/M ratio) and increased the Basso-Beattie-Bresnahan score. CONCLUSION: Combined therapy in contused rats using the HIIT protocol and neurosphere-derived NSC transplantation improves functional and histological outcomes.


Assuntos
Treinamento Intervalado de Alta Intensidade , Células-Tronco Neurais , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/terapia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Medula Espinal , Recuperação de Função Fisiológica
20.
Mol Neurobiol ; 60(8): 4472-4487, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37118325

RESUMO

The study of psychiatric and neurological diseases requires the substrate in which the disorders occur, that is, the nervous tissue. Currently, several types of human bio-specimens are being used for research, including postmortem brains, cerebrospinal fluid, induced pluripotent stem (iPS) cells, and induced neuronal (iN) cells. However, these samples are far from providing a useful predictive, diagnostic, or prognostic biomarker. The olfactory epithelium is a region close to the brain that has received increased interest as a research tool for the study of brain mechanisms in complex neuropsychiatric and neurological diseases. The olfactory sensory neurons are replaced by neurogenesis throughout adult life from stem cells on the basement membrane. These stem cells are multipotent and can be propagated in neurospheres, proliferated in vitro and differentiated into multiple cell types including neurons and glia. For all these reasons, olfactory epithelium provides a unique resource for investigating neuronal molecular markers of neuropsychiatric and neurological diseases. Here, we describe the isolation and culture of human differentiated neurons and glial cells from olfactory epithelium of living subjects by an easy and non-invasive exfoliation method that may serve as a useful tool for the research in brain diseases.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Separação Celular , Neurogênese , Neuroglia , Neurônios , Mucosa Olfatória , Humanos , Membrana Basal/citologia , Biomarcadores/análise , Adesão Celular , Técnicas de Cultura de Células/métodos , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Meios de Cultura/química , Citometria de Fluxo , Imuno-Histoquímica , Magnetismo , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neurônios/citologia , Mucosa Olfatória/citologia , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA