Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 16(8): 1886-1900, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009886

RESUMO

Despite the re-emergence of the pioneering "Coley's toxin" concept in anti-cancer immune therapies highlighted by check-point inhibitors and CAR-T approaches, fundamental mechanisms responsible for the immune-enhancing efficacy of low-dose "Coley's toxin" remain poorly understood. This study examines the novel reprogramming of immune-enhancing neutrophils by super-low dose endotoxin conducive for anti-cancer therapies. Through integrated analyses including scRNAseq and functional characterizations, we examined the efficacy of reprogrammed neutrophils in treating experimental cancer. We observed that neutrophils trained by super-low dose endotoxin adopt a potent immune-enhancing phenotype characterized by CD177loCD11bloCD80hiCD40hiDectin2hi. Both murine and human neutrophils trained by super-low dose endotoxin exhibit relieved suppression of adaptive T cells as compared to un-trained neutrophils. Functionally, neutrophils trained by super-low dose endotoxin can potently reduce tumor burden when transfused into recipient tumor-bearing mice. Mechanistically, Super-low dose endotoxin enables the generation of immune-enhancing neutrophils through activating STAT5 and reducing innate suppressor IRAK-M. Together, our data clarify the long-held mystery of "Coley's toxin" in rejuvenating anti-tumor immune defense, and provide a proof-of-concept in developing innate neutrophil-based anti-tumor therapeutics.


Assuntos
Endotoxinas , Neutrófilos , Neutrófilos/imunologia , Animais , Camundongos , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT5/metabolismo , Linhagem Celular Tumoral
2.
J Control Release ; 367: 661-675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301928

RESUMO

Bacteria have shown great potential in anti-tumor treatment, and an attenuated strain of Salmonella named VNP20009 has been shown to be safe in clinical trials. However, colonized bacteria recruit neutrophils into the tumor, which release NETs to capture and eliminate bacteria, compromising bacterial-based tumor treatment. In this study, we report a neutrophil hitchhiking nanoparticles (SPPS) that block the formation of NET to enhance bacteria-mediated tumor therapy. In the 4 T1 tumor-bearing mouse model, following 24 h of bacterial therapy, there was an approximately 3.0-fold increase in the number of neutrophils in the bloodstream, while the amount of SPPS homing to tumor tissue through neutrophil hitchhiking increased approximately 2.0-fold. It is worth noting that the NETs in tumors significantly decreased by approximately 2.0-fold through an intracellular ROS scavenging-mediated NETosis reprogramming, thereby increasing bacterial vitality by 1.9-fold in tumors. More importantly, the gene drug (siBcl-2) loaded in SPPS can be re-encapsulated in apoptotic bodies by reprogramming neutrophils from NETosis to apoptosis, and enable the redelivery of drugs to tumor cells, further boosting the antitumor efficacy with a synergistic effect, resulting in about 98% tumor inhibition rate and 90% survival rate.


Assuntos
Armadilhas Extracelulares , Neoplasias , Animais , Camundongos , Neutrófilos , Modelos Animais de Doenças , Neoplasias/tratamento farmacológico , Bactérias
3.
ACS Nano ; 15(11): 17515-17527, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34709030

RESUMO

Ineffective antigen cross-presentation in the tumor microenvironment compromises the generation of antitumor immune responses. Radiotherapy-radiodynamic therapy (RT-RDT) with nanoscale metal-organic frameworks (nMOFs) induces robust adaptive immune responses despite modest activation of canonical antigen presenting dendritic cells. Here, using transplantable and autochthonous murine tumor models, we demonstrate that RT-RDT induces antitumor immune responses via early neutrophil infiltration and reprogramming. Intravenous or intratumoral injection of nMOFs recruited peripheral CD11b+Ly6G+CD11c- neutrophils into tumors. The activation of nMOFs by low-dose X-rays significantly increased the population of CD11b+Ly6G+CD11c+ hybrid neutrophils with upregulated expression of the co-stimulatory molecules CD80 and CD86 as well as major histocompatibility complex class II molecules. Thus, nMOF-enabled RT-RDT reshapes a favorable tumor microenvironment for antitumor immune responses by reprogramming tumor-infiltrating neutrophils to function as non-canonical antigen presenting cells for effective cross-presentation of tumor antigens.


Assuntos
Estruturas Metalorgânicas , Neutrófilos , Camundongos , Animais , Células Apresentadoras de Antígenos , Apresentação de Antígeno , Estruturas Metalorgânicas/farmacologia
4.
Mol Ther ; 28(1): 89-99, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31607540

RESUMO

Tumor-associated immune-suppressive neutrophils are prevalent in various cancers, including colorectal cancer. However, mechanisms of immune-suppressive neutrophils are not well understood. We report that a key innate suppressor, IRAK-M (interleukin-1 receptor-associated kinase M), is critically involved in the establishment of immune-suppressive neutrophils. In contrast to the wild-type (WT) neutrophils exhibiting immune-suppressive signatures of CD11bhighPD-L1highCD80low, IRAK-M-deficient neutrophils are rewired with reduced levels of inhibitory molecules PD-L1 and CD11b, as well as enhanced expression of stimulatory molecules CD80 and CD40. The reprogramming of IRAK-M-deficient neutrophils is mediated by reduced activation of STAT1/3 and enhanced activation of STAT5. As a consequence, IRAK-M-deficient neutrophils demonstrate enhanced capability to promote, instead of suppress, the proliferation and activation of effector T cells both in vitro and in vivo. Functionally, we observed that the transfusion of IRAK-M-/- neutrophils can potently render an enhanced anti-tumor immune response in the murine inflammation-induced colorectal cancer model. Collectively, our study defines IRAK-M as an innate suppressor for neutrophil function and reveals IRAK-M as a promising target for rewiring neutrophils in anti-cancer immunotherapy.


Assuntos
Transferência Adotiva/métodos , Neoplasias Colorretais/terapia , Imunidade Inata/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Neutrófilos/imunologia , Animais , Azoximetano/farmacologia , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Antígenos CD11/metabolismo , Antígenos CD40/metabolismo , Colite/induzido quimicamente , Colite/complicações , Neoplasias Colorretais/etiologia , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Linfócitos T/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA