Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Parallel Distrib Comput ; 149: 149-162, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33380769

RESUMO

3D image registration is one of the most fundamental and computationally expensive operations in medical image analysis. Here, we present a mixed-precision, Gauss-Newton-Krylov solver for diffeomorphic registration of two images. Our work extends the publicly available CLAIRE library to GPU architectures. Despite the importance of image registration, only a few implementations of large deformation diffeomorphic registration packages support GPUs. Our contributions are new algorithms to significantly reduce the run time of the two main computational kernels in CLAIRE: calculation of derivatives and scattered-data interpolation. We deploy (i) highly-optimized, mixed-precision GPU-kernels for the evaluation of scattered-data interpolation, (ii) replace Fast-Fourier-Transform (FFT)-based first-order derivatives with optimized 8th-order finite differences, and (iii) compare with state-of-the-art CPU and GPU implementations. As a highlight, we demonstrate that we can register 2563 clinical images in less than 6 seconds on a single NVIDIA Tesla V100. This amounts to over 20× speed-up over the current version of CLAIRE and over 30× speed-up over existing GPU implementations.

2.
Front Chem ; 8: 590184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363108

RESUMO

We describe using the Newton Krylov method to solve the coupled cluster equation. The method uses a Krylov iterative method to compute the Newton correction to the approximate coupled cluster amplitude. The multiplication of the Jacobian with a vector, which is required in each step of a Krylov iterative method such as the Generalized Minimum Residual (GMRES) method, is carried out through a finite difference approximation, and requires an additional residual evaluation. The overall cost of the method is determined by the sum of the inner Krylov and outer Newton iterations. We discuss the termination criterion used for the inner iteration and show how to apply pre-conditioners to accelerate convergence. We will also examine the use of regularization technique to improve the stability of convergence and compare the method with the widely used direct inversion of iterative subspace (DIIS) methods through numerical examples.

3.
SIAM J Sci Comput ; 41(5): C548-C584, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34650324

RESUMO

With this work we release CLAIRE, a distributed-memory implementation of an effective solver for constrained large deformation diifeomorphic image registration problems in three dimensions. We consider an optimal control formulation. We invert for a stationary velocity field that parameterizes the deformation map. Our solver is based on a globalized, preconditioned, inexact reduced space Gauss‒Newton‒Krylov scheme. We exploit state-of-the-art techniques in scientific computing to develop an eifective solver that scales to thousands of distributed memory nodes on high-end clusters. We present the formulation, discuss algorithmic features, describe the software package, and introduce an improved preconditioner for the reduced space Hessian to speed up the convergence of our solver. We test registration performance on synthetic and real data. We Demonstrate registration accuracy on several neuroimaging datasets. We compare the performance of our scheme against diiferent flavors of the Demons algorithm for diifeomorphic image registration. We study convergence of our preconditioner and our overall algorithm. We report scalability results on state-of-the-art supercomputing platforms. We Demonstrate that we can solve registration problems for clinically relevant data sizes in two to four minutes on a standard compute node with 20 cores, attaining excellent data fidelity. With the present work we achieve a speedup of (on average) 5× with a peak performance of up to 17× compared to our former work.

4.
J Comput Phys ; 331: 227-256, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28042172

RESUMO

The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42 - 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80-90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.

5.
SIAM J Imaging Sci ; 8(2): 1030-1069, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27617052

RESUMO

We propose numerical algorithms for solving large deformation diffeomorphic image registration problems. We formulate the nonrigid image registration problem as a problem of optimal control. This leads to an infinite-dimensional partial differential equation (PDE) constrained optimization problem. The PDE constraint consists, in its simplest form, of a hyperbolic transport equation for the evolution of the image intensity. The control variable is the velocity field. Tikhonov regularization on the control ensures well-posedness. We consider standard smoothness regularization based on H1- or H2-seminorms. We augment this regularization scheme with a constraint on the divergence of the velocity field (control variable) rendering the deformation incompressible (Stokes regularization scheme) and thus ensuring that the determinant of the deformation gradient is equal to one, up to the numerical error. We use a Fourier pseudospectral discretization in space and a Chebyshev pseudospectral discretization in time. The latter allows us to reduce the number of unknowns and enables the time-adaptive inversion for nonstationary velocity fields. We use a preconditioned, globalized, matrix-free, inexact Newton-Krylov method for numerical optimization. A parameter continuation is designed to estimate an optimal regularization parameter. Regularity is ensured by controlling the geometric properties of the deformation field. Overall, we arrive at a black-box solver that exploits computational tools that are precisely tailored for solving the optimality system. We study spectral properties of the Hessian, grid convergence, numerical accuracy, computational efficiency, and deformation regularity of our scheme. We compare the designed Newton-Krylov methods with a globalized Picard method (preconditioned gradient descent). We study the influence of a varying number of unknowns in time. The reported results demonstrate excellent numerical accuracy, guaranteed local deformation regularity, and computational efficiency with an optional control on local mass conservation. The Newton-Krylov methods clearly outperform the Picard method if high accuracy of the inversion is required. Our method provides equally good results for stationary and nonstationary velocity fields for two-image registration problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA