Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Mol Biol Rep ; 51(1): 828, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033258

RESUMO

Niemann-Pick disease type C (NPC) is a rare neurodegenerative condition resulted from mutations in NPC1 and NPC2 genes. This cellular lipid transferring disorder mainly involves endocytosed cholesterol trafficking. The accumulation of cholesterol and glycolipids in late endosomes and lysosomes results in progressive neurodegeneration and death. Recently, genome editing technologies, particularly CRISPR/Cas9 have offered the opportunity to create disease models to screen novel therapeutic options for this disorder. Moreover, these methods have been used for the purpose of gene therapy. This review summarizes the studies that focused on the application of CRISPR/Cas9 technology for exploring the mechanism of intracellular cholesterol transferring, and screening of novel agents for treatment of NPC.


Assuntos
Sistemas CRISPR-Cas , Colesterol , Edição de Genes , Terapia Genética , Doença de Niemann-Pick Tipo C , Sistemas CRISPR-Cas/genética , Humanos , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Edição de Genes/métodos , Terapia Genética/métodos , Colesterol/metabolismo , Animais , Proteína C1 de Niemann-Pick , Modelos Animais de Doenças
2.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G25-G35, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38713618

RESUMO

Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Colesterol , Proteínas do Citoesqueleto , Proteínas com Domínio LIM , Proteínas de Membrana Transportadoras , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Células CACO-2 , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Colesterol/metabolismo , Colesterol/sangue , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Receptores de LDL/metabolismo , Receptores de LDL/genética , Mucosa Intestinal/metabolismo , Enterócitos/metabolismo , Absorção Intestinal , Dieta Hiperlipídica , Proteínas de Homeodomínio
3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1025858

RESUMO

Ebola viruses belong to the Filoviridae family,which is highly contagious and likely to cause a variety of symptoms,including severe haemorrhagic fever in humans and primates,with a case fatality rate of up to 90%.Niemann-Pick C1(NPC1)protein is an important receptor expressed in the endosomal membrane of host cells during Ebola virus infection,and its interaction with the glycoprotein(GP)cleaved by cathepsin of Ebola virus is a key link in the viral infection host,mediating the fusion of the viral envelope and endosomal membrane before releasing the viral genome to the host cell.Recent years have seen some small molecule inhibitors and monoclonal antibody gene therapy drugs devel-oped by using NPC1 protein as a target of broad-spectrum anti-filovirus drugs.This article introduces the structure of NPC1 and its role in Ebola virus infection,and summarizes small molecule inhibitors,monoclonal antibody drugs and gene therapy drugs targeting NPC1.

4.
Cell Commun Signal ; 21(1): 352, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098077

RESUMO

Viruses communicate with their hosts through interactions with proteins, lipids, and carbohydrate moieties on the plasma membrane (PM), often resulting in viral absorption via receptor-mediated endocytosis. Many viruses cannot multiply unless the host's cholesterol level remains steady. The large endo/lysosomal membrane protein (MP) Niemann-Pick C1 (NPC1), which is involved in cellular cholesterol transport, is a crucial intracellular receptor for viral infection. NPC1 is a ubiquitous housekeeping protein essential for the controlled cholesterol efflux from lysosomes. Its human absence results in Niemann-Pick type C disease, a deadly lysosomal storage disorder. NPC1 is a crucial viral receptor and an essential host component for filovirus entrance, infection, and pathogenesis. For filovirus entrance, NPC1's cellular function is unnecessary. Furthermore, blocking NPC1 limits the entry and replication of the African swine fever virus by disrupting cholesterol homeostasis. Cell entrance of quasi-enveloped variants of hepatitis A virus and hepatitis E virus has also been linked to NPC1. By controlling cholesterol levels, NPC1 is also necessary for the effective release of reovirus cores into the cytoplasm. Drugs that limit NPC1's activity are effective against several viruses, including SARS-CoV and Type I Feline Coronavirus (F-CoV). These findings reveal NPC1 as a potential therapeutic target for treating viral illnesses and demonstrate its significance for several viral infections. This article provides a synopsis of NPC1's function in viral infections and a review of NPC1 inhibitors that may be used to counteract viral infections. Video Abstract.


Assuntos
Vírus da Febre Suína Africana , Viroses , Humanos , Animais , Suínos , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick , Vírus da Febre Suína Africana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Colesterol/metabolismo
5.
J Liposome Res ; : 1-13, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905576

RESUMO

Yamanashi et al., conducted a study on the absorption of cholesterol and ß-sitosterol, as well as the inhibitory effect of ezetimibe (EZE). They used CaCo-2 cells to simulate the intestines and investigated how different mixed micelles, acting as carriers, were absorbed into these cells through the Niemann-Pick C1-like 1 (NPC1L1) protein. The study focused on the impact of micelle shape, size, and zeta potential on absorption and the inhibitory effect of EZE. I utilized small-angle X-ray scattering and a zeta potential measuring device to measure these characteristics. The findings revealed a two-step mechanism: NPC1L1 selectively bound micelles based on their shape and size, and once bound, the absorption was regulated by the molecular structure of the micelle components. EZE's inhibitory effect changed with micelle composition, influencing micelle size and shape. EZE initially acted on the micelle's shape and size, and then NPC1L1 selectively bound micelles based on their shape and size, allowing EZE to directly inhibit absorption by interacting with NPC1L1. This groundbreaking discovery challenges existing concepts and holds significant implications for researchers in drug development, as well as physicians and pharmacists.

6.
Food Sci Nutr ; 11(9): 5091-5101, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701206

RESUMO

Curcumin is a polyphenol extracted from the rhizome of turmeric, and our previous research showed that curcumin inhibited cholesterol absorption and had cholesterol-lowering effect. Bisphenol A (BPA), a common plasticizer, is widely used in the manufacture of food packaging and is associated with non-alcoholic fatty liver disease (NAFLD). We hypothesized that curcumin could protect against BPA-induced hepatic steatosis by inhibiting cholesterol absorption and synthesis. Male CD-1 mice fed BPA-contaminated diet with or without curcumin for 24 weeks were used to test our hypothesis. We found that chronic low-dose BPA exposure significantly increased the levels of serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol and the contents of liver TG and TC, resulting in liver fat accumulation and hepatic steatosis while curcumin supplementation could alleviate BPA-induced dyslipidemia and hepatic steatosis. Moreover, the anti-steatosis and cholesterol-lowering effects of curcumin against BPA coincided with a significant reduction in intestinal cholesterol absorption and liver cholesterol synthesis, which was modulated by suppressing the expression of sterol regulatory element-binding protein-2 (SREBP-2), Niemann-Pick C1-like 1 (NPC1L1), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in the small intestine and liver. In addition, the expression levels of liver lipogenic genes such as liver X receptor alpha (LXRα), SREBP-1c, acetyl-CoA carboxylase 1 (ACC1), and ACC2 were also markedly down-regulated by curcumin. Overall, our findings indicated that curcumin inhibited BPA-induced intestinal cholesterol absorption and liver cholesterol synthesis by suppressing SREBP-2, NPC1L1, and HMGCR expression, subsequently reducing liver cholesterol accumulation and fat synthesis, thereby preventing hepatic steatosis and NAFLD.

7.
Pharmacol Res ; 194: 106854, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460003

RESUMO

Mixed hyperlipidemia, characterized by high levels of triglycerides and cholesterol, is a key risk factor leading to atherosclerosis and other cardiovascular diseases. Existing clinical drugs usually only work on a single indicator, decreasing either triglyceride or cholesterol levels. Developing dual-acting agents that reduce both triglycerides and cholesterol remains a great challenge. Pancreatic triglyceride lipase (PTL) and Niemann-Pick C1-like 1 (NPC1L1) have been identified as crucial proteins in the transport of triglycerides and cholesterol. Here, cinaciguat, a known agent used in the treatment of acute decompensated heart failure, was identified as a potent dual inhibitor targeting PTL and NPC1L1. We presented in vitro evidence from surface plasmon resonance analysis that cinaciguat interacted with PTL and NPC1L1. Furthermore, cinaciguat exhibited potent PTL-inhibition activity. Fluorescence-labeled cholesterol uptake analysis and confocal imaging showed that cinaciguat effectively inhibited cholesterol uptake. In vivo evaluation showed that cinaciguat significantly reduced the plasma levels of triglycerides and cholesterol, and effectively alleviated high-fat diet-induced intestinal microbiota dysbiosis and metabolic disorders. These results collectively suggest that cinaciguat has the potential to be further developed for the therapy of mixed hyperlipidemia.


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Lipidoses , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Hiperlipidemias/tratamento farmacológico , Disbiose/tratamento farmacológico , Colesterol/metabolismo , Triglicerídeos , Lipase , Ezetimiba
8.
Curr Issues Mol Biol ; 45(6): 4948-4969, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367064

RESUMO

Adenosine plays an important role in modulating immune cell function, particularly T cells and myeloid cells, such as macrophages and dendritic cells. Cell surface adenosine A2A receptors (A2AR) regulate the production of pro-inflammatory cytokines and chemokines, as well as the proliferation, differentiation, and migration of immune cells. In the present study, we expanded the A2AR interactome and provided evidence for the interaction between the receptor and the Niemann-Pick type C intracellular cholesterol transporter 1 (NPC1) protein. The NPC1 protein was identified to interact with the C-terminal tail of A2AR in RAW 264.7 and IPMФ cells by two independent and parallel proteomic approaches. The interaction between the NPC1 protein and the full-length A2AR was further validated in HEK-293 cells that permanently express the receptor and RAW264.7 cells that endogenously express A2AR. A2AR activation reduces the expression of NPC1 mRNA and protein density in LPS-activated mouse IPMФ cells. Additionally, stimulation of A2AR negatively regulates the cell surface expression of NPC1 in LPS-stimulated macrophages. Furthermore, stimulation of A2AR also altered the density of lysosome-associated membrane protein 2 (LAMP2) and early endosome antigen 1 (EEA1), two endosomal markers associated with the NPC1 protein. Collectively, these results suggested a putative A2AR-mediated regulation of NPC1 protein function in macrophages, potentially relevant for the Niemann-Pick type C disease when mutations in NPC1 protein result in the accumulation of cholesterol and other lipids in lysosomes.

9.
J Thromb Haemost ; 21(7): 1957-1966, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37054918

RESUMO

BACKGROUND: Pathophysiologic platelet activation leads to thrombo-occlusive diseases such as myocardial infarction or ischemic stroke. Niemann-Pick C1 protein (NPC1) is involved in the regulation of lysosomal lipid trafficking and calcium ion (Ca2+) signaling, and its genetic mutation causes a lysosomal storage disorder. Lipids and Ca2+ are key players in the complex orchestration of platelet activation. OBJECTIVES: The present study aimed to determine the impact of NPC1 on Ca2+ mobilization during platelet activation in thrombo-occlusive diseases. METHODS: Using MK/platelet-specific knockout mice of Npc1 (Npc1Pf4∆/Pf4∆), ex vivo and in vitro approaches as well as in vivo models of thrombosis, we investigated the effect of Npc1 on platelet function and thrombus formation. RESULTS: We showed that Npc1Pf4∆/Pf4∆ platelets display increased sphingosine levels and a locally impaired membrane-associated and SERCA3-dependent Ca2+ mobilisation compared to platelets from wildtype littermates (Npc1lox/lox). Further, we observed decreased platelet. CONCLUSION: Our findings highlight that NPC1 regulates membrane-associated and SERCA3-dependent Ca2+ mobilization during platelet activation and that MK/platelet-specific ablation of Npc1 protects against experimental models of arterial thrombosis and myocardial or cerebral ischemia/reperfusion injury.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Camundongos , Animais , Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Camundongos Knockout
10.
J Infect Dis ; 228(Suppl 7): S479-S487, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119290

RESUMO

BACKGROUND: Our previous study demonstrated that the fruit bat (Yaeyama flying fox)-derived cell line FBKT1 showed preferential susceptibility to Ebola virus (EBOV), whereas the human cell line HEK293T was similarly susceptible to EBOV and Marburg virus (MARV). This was due to 3 amino acid differences of the endosomal receptor Niemann-Pick C1 (NPC1) between FBKT1 and HEK293T (ie, TET and SGA, respectively, at positions 425-427), as well as 2 amino acid differences at positions 87 and 142 of the viral glycoprotein (GP) between EBOV and MARV. METHODS/RESULTS: To understand the contribution of these amino acid differences to interactions between NPC1 and GP, we performed molecular dynamics simulations and binding free energy calculations. The average binding free energies of human NPC1 (hNPC1) and its mutant having TET at positions 425-427 (hNPC1/TET) were similar for the interaction with EBOV GP. In contrast, hNPC1/TET had a weaker interaction with MARV GP than wild-type hNPC1. As expected, substitutions of amino acid residues at 87 or 142 in EBOV and MARV GPs converted the binding affinity to hNPC1/TET. CONCLUSIONS: Our data provide structural and energetic insights for understanding potential differences in the GP-NPC1 interaction, which could influence the host tropism of EBOV and MARV.


Assuntos
Quirópteros , Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Animais , Humanos , Proteína C1 de Niemann-Pick , Marburgvirus/metabolismo , Células HEK293 , Internalização do Vírus , Glicoproteínas/metabolismo , Ebolavirus/metabolismo , Aminoácidos
11.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 2): 45-50, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748341

RESUMO

Niemann-Pick C1 protein (NPC1) is a membrane protein that primarily resides in late endosomes and lysosomes, and plays an important role in cholesterol homeostasis in the cell. The second luminal domain of NPC1 (NPC1-C) serves as the intracellular receptor for Ebola and Marburg viruses. Here, the recombinant production of nonglycosylated and glycosylated NPC1-C and a new crystal form of the nonglycosylated protein are reported. The crystals belonged to space group P21 and diffracted to 2.3 Šresolution. The structure is similar to other reported structures of NPC1-C, with differences observed in the protruding loops when compared with NPC1-C in complex with Ebola virus glycoprotein or NPC2.


Assuntos
Glicoproteínas de Membrana , Proteína C1 de Niemann-Pick , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cristalografia por Raios X , Glicoproteínas/química , Lisossomos/metabolismo
12.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364321

RESUMO

Isoliquiritigenin (ISL) is a flavonoid with a chalcone structure extracted from the natural herb Glycyrrhiza glabra. Its anti-inflammatory, antibacterial, antioxidant, and anticancer activities have been extensively studied. Moreover, ISL also possess hypolipidemic and atherosclerosis-reducing effects. However, its cholesterol-lowering mechanisms have not been reported yet. Niemann Pick C1 Like 1 (NPC1L1) is a specific transporter of cholesterol uptake. In this study, we found for the first time that ISL downregulates NPC1L1 expression and competitively inhibits cellular cholesterol uptake by binding to NPC1L1 in a concentration-dependent manner in vitro. This study provides a theoretical basis for further investigation of the molecular mechanisms of its cholesterol-lowering effect in vivo and inspired emerging drug research for cholesterol-lowering purposes through NPC1L1 inhibition.


Assuntos
Anticolesterolemiantes , Chalconas , Chalconas/farmacologia , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Colesterol/metabolismo , Anticolesterolemiantes/farmacologia
13.
Antiviral Res ; 206: 105399, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007601

RESUMO

Filoviruses enter cells through macropinocytosis and trafficking into the endosomes in which they bind to the receptor Niemann-Pick C1 protein (NPC1) for membrane fusion and entry into the cytoplasm. The endosomal receptor-binding is critical step for filovirus entry. Designing inhibitors to block receptor binding will prevent viral entry. Using available binding structural information from the co-crystal structures of the viral GP with the receptor NPC1 or with monoclonal antibodies, we have conducted structure-based design of peptide inhibitors to target the receptor binding site (RBS). The designed peptides were tested for their inhibition activity against pseudo-typed or replication-competent viruses in a cell-based assay. The results indicate that these peptides exhibited strong activities against both Ebola and Marburg virus infection. It is expected that these peptides can be further developed for therapeutic use to treat filovirus infection and combat the outbreaks.


Assuntos
Filoviridae , Receptores Virais , Inibidores de Proteínas Virais de Fusão , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular , Ebolavirus/fisiologia , Endossomos/metabolismo , Filoviridae/química , Filoviridae/efeitos dos fármacos , Doença pelo Vírus Ebola , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Inibidores de Proteínas Virais de Fusão/química , Inibidores de Proteínas Virais de Fusão/farmacologia , Internalização do Vírus/efeitos dos fármacos
14.
Pathogens ; 11(5)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631123

RESUMO

Bluetongue virus (BTV), an arbovirus of ruminants, is a causative agent of numerous epidemics around the world. Due to the emergence of novel reassortant BTV strains and new outbreaks, there is an unmet need for efficacious antivirals. In this study, we used an improved haploid screening platform to identify the relevant host factors for BTV infection. Our screening tool identified and validated the host factor Niemann-Pick C1 (NPC1), a lysosomal membrane protein that is involved in lysosomal cholesterol transport, as a critical factor in BTV infection. This finding prompted us to investigate the possibility of testing imipramine, an antidepressant drug known to inhibit NPC1 function by interfering with intracellular cholesterol trafficking. In this study, we evaluated the sensitivity of BTV to imipramine using in vitro assays. Our results demonstrate that imipramine pretreatment inhibited in vitro replication and progeny release of BTV-4, BTV-8, and BTV-16. Collectively, our findings highlight the importance of NPC1 for BTV infection and recommend the reprofiling of imipramine as a potential antiviral drug against BTV.

15.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458715

RESUMO

Eight naphtho-gamma-pyrones (NγPs) (1-8), together with four known biosynthetically related coumarin derivatives (9-12), were isolated from the potato dextrose agar media of a marine-derived fungus Aspergillus niger S-48. Among them, natural compounds 1 and 2 were tentatively subjected to benzohydrazide reaction to evaluate the importance of pyran rings in NγPs. Their structures were elucidated by extensive 1D and 2D NMR spectroscopic data and MS spectra. Compounds 1-4 showed obvious activity for reducing cholesterol absorption verging on ezetimibe. This work highlighted the potential of natural NγPs as NPC1L1 inhibitors.


Assuntos
Aspergillus niger , Pironas , Aspergillus , Colesterol , Espectroscopia de Ressonância Magnética , Pironas/química
16.
BMC Med ; 20(1): 93, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35307033

RESUMO

BACKGROUND: The effect of ezetimibe, Niemann-Pick C1-like 1 inhibitor, on liver fat is not clearly elucidated. Our primary objective was to evaluate the efficacy of ezetimibe plus rosuvastatin versus rosuvastatin monotherapy to reduce liver fat using magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) in patients with non-alcoholic fatty liver disease (NAFLD). METHODS: A randomized controlled, open-label trial of 70 participants with NAFLD confirmed by ultrasound who were assigned to receive either ezetimibe 10 mg plus rosuvastatin 5 mg daily or rosuvastatin 5 mg for up to 24 weeks. The liver fat change was measured as average values in each of nine liver segments by MRI-PDFF. Magnetic resonance elastography (MRE) was used to measure liver fibrosis change. RESULTS: Combination therapy significantly reduced liver fat compared with monotherapy by MRI-PDFF (mean difference: 3.2%; p = 0.020). There were significant reductions from baseline to study completion by MRI-PDFF for both the combination and monotherapy groups, respectively (18.1 to 12.3%; p < 0.001 and 15.0 to 12.4%; p = 0.003). Individuals with higher body mass index, type 2 diabetes, insulin resistance, and severe liver fibrosis were likely to be good responders to treatment with ezetimibe. MRE-derived change in liver fibrosis was not significantly different (both groups, p > 0.05). Controlled attenuation parameter (CAP) by transient elastography was significantly reduced in the combination group (321 to 287 dB/m; p = 0.018), but not in the monotherapy group (323 to 311 dB/m; p = 0.104). CONCLUSIONS: Ezetimibe and rosuvastatin were found to be safe to treat participants with NAFLD. Furthermore, ezetimibe combined with rosuvastatin significantly reduced liver fat in this population. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov (registration number: NCT03434613 ).


Assuntos
Diabetes Mellitus Tipo 2 , Técnicas de Imagem por Elasticidade , Inibidores de Hidroximetilglutaril-CoA Redutases , Hepatopatia Gordurosa não Alcoólica , Ezetimiba/uso terapêutico , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia
17.
Eur J Med Chem ; 230: 114111, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063734

RESUMO

Cholesterol is an important component of cell membrane. However, elevated level of serum cholesterol is a key risk factor for heart disease. Niemann-Pick C1-Like 1 (NPC1L1) is the crucial target involving in cholesterol cellar uptake. Ezetimibe is the first, and only, NPC1L1 inhibitor approved for the treatment of hypercholesterolemia through decreasing cholesterol absorption for nearly two decades. That means that the development of NPC1L1 inhibitors encounters much challenge, as well as offers exciting therapeutic opportunities. Substantial efforts have been undertaken to develop NPC1L1 inhibitors. The present review describes the mechanism of cholesterol transport by NPC1L1, highlights the development of NPC1L1 inhibitors, and discusses the current challenges.


Assuntos
Anticolesterolemiantes , Hipercolesterolemia , Anticolesterolemiantes/farmacologia , Transporte Biológico , Colesterol/farmacologia , Ezetimiba/farmacologia , Ezetimiba/uso terapêutico , Humanos , Absorção Intestinal , Proteínas de Membrana Transportadoras/metabolismo
18.
Hear Res ; 414: 108409, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953289

RESUMO

Niemann-Pick C1 (NPC1) is a fatal neurodegenerative disease caused by aberrant cholesterol metabolism. The progression of the disease can be slowed by removing excess cholesterol with high-doses of 2-hyroxypropyl-beta-cyclodextrin (HPßCD). Unfortunately, HPßCD causes hearing loss; the initial first phase involves a rapid destruction of outer hair cells (OHCs) while the second phase, occurring 4-6 weeks later, involves the destruction of inner hair cells (IHCs), pillar cells, collapse of the organ of Corti and spiral ganglion neuron degeneration. To determine whether the first and/or second phase of HPßCD-induced cochlear damage is linked, in part, to excess oxidative stress or neuroinflammation, rats were treated with a single-dose of 3000 mg/kg HPßCD alone or together with one of two combination therapies. Each combination therapy was administered from 2-days before to 6-weeks after the HPßCD treatment. Combination 1 consisted of minocycline, an antibiotic that suppresses neuroinflammation, and HK-2, a multifunctional redox modulator that suppresses oxidative stress. Combination 2 was comprised of minocycline plus N-acetyl cysteine (NAC), which upregulates glutathione, a potent antioxidant. To determine if either combination therapy could prevent HPßCD-induced hearing impairment and cochlear damage, distortion product otoacoustic emissions (DPOAE) were measured to assess OHC function and the cochlear compound action potential (CAP) was measured to assess the function of IHCs and auditory nerve fibers. Cochleograms were prepared to quantify the amount of OHC, IHC and pillar cell (PC) loss. HPßCD significantly reduced DPOAE and CAP amplitudes and caused significant OHC, IHC and OPC losses with losses greater in the high-frequency base of the cochlea than the apex. Neither minocycline + HK-2 (MIN+ HK-2) nor minocycline + NAC (MIN+NAC) prevented the loss of DPOAEs, CAPs, OHCs, IHCs or IPCs caused by HPßCD. These results suggest that oxidative stress and neuroinflammation are unlikely to play major roles in mediating the first or second phase of HPßCD-induced cochlear damage. Thus, HPßCD-induced ototoxicity must be mediated by some other unknown cell-death pathway possibly involving loss of trophic support from damaged support cells or disrupted cholesterol metabolism.


Assuntos
Ciclodextrinas , Perda Auditiva , Doenças Neurodegenerativas , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cóclea , Ciclodextrinas/farmacologia , Células Ciliadas Auditivas Externas/fisiologia , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Emissões Otoacústicas Espontâneas , Ratos
19.
Emerg Microbes Infect ; 11(1): 195-207, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34919035

RESUMO

Ebola virus disease (EVD) is a severe and frequently lethal disease caused by Ebola virus (EBOV). The latest occasional EVD outbreak (2013-2016) in Western African, which was accompanied by a high fatality rate, showed the great potential of epidemic and pandemic spread. Antiviral therapies against EBOV are very limited, strain-dependent (only antibody therapies are available) and mostly restricted to symptomatic treatment, illustrating the urgent need for novel antiviral strategies. Thus, we evaluated the effect of the clinically widely used antifungal itraconazole and the antidepressant fluoxetine for a repurposing against EBOV infection. While itraconazole, similar to U18666A, directly binds to and inhibits the endosomal membrane protein Niemann-Pick C1 (NPC1), fluoxetine, which belongs to the structurally unrelated group of weakly basic, amphiphile so-called "functional inhibitors of acid sphingomyelinase" (FIASMA) indirectly acts on the lysosome-residing acid sphingomyelinase via enzyme detachment leading to subsequent lysosomal degradation. Both, the drug-induced endolysosomal cholesterol accumulation and the altered endolysosomal pH, might interfere with the fusion of viral and endolysosomal membrane, preventing infection with EBOV. We further provide evidence that cholesterol imbalance is a conserved cross-species mechanism to hamper EBOV infection. Thus, exploring the endolysosomal host-pathogen interface as a suitable antiviral treatment may offer a general strategy to combat EBOV infection.


Assuntos
Antivirais/farmacologia , Colesterol/metabolismo , Ebolavirus/efeitos dos fármacos , Endossomos/metabolismo , Fluoxetina/farmacologia , Doença pelo Vírus Ebola/metabolismo , Itraconazol/farmacologia , Ebolavirus/genética , Ebolavirus/fisiologia , Endossomos/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Humanos , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Internalização do Vírus/efeitos dos fármacos
20.
Endocr Pract ; 28(1): 102-109, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34547473

RESUMO

OBJECTIVE: Cardiovascular disease is the number one cause of death. Achieving American Heart Association low-density lipoprotein (LDL) cholesterol treatment goals is very difficult for many patients. The importance of a low cholesterol diet is controversial and not emphasized by most physicians. Of critical importance is determining whether each individual is a "hyper- or hypo-absorber" of dietary cholesterol. Furthermore, the quantity of each individual's baseline daily dietary cholesterol and saturated fat intake is important in assessing the effect of added egg yolk cholesterol and saturated fat on blood LDL cholesterol. METHODS: Gut cholesterol is absorbed via a specific enteric receptor (the Niemann- Pick-like receptor). Dietary cholesterol contributes one fourth of the absorbed cholesterol, while the remaining gut cholesterol is derived from secreted bile cholesterol. This dietary quantity of cholesterol is significant when other determinants are constant. For some individuals, dietary cholesterol has no adverse effects and in others, a significant elevation in blood LDL cholesterol may occur. RESULTS: There are no readily available blood tests to determine the effect of egg yolk cholesterol and saturated fat on an individual's plasma LDL cholesterol. However, a one month trial of a low cholesterol and saturated fat diet will provide the needed information to make clinical decisions. CONCLUSION: This article delineates the mechanisms that are altered by genetic and environmental factors that determine the net effects of dietary cholesterol and saturated fat on circulating LDL cholesterol. It then makes a practical clinical recommendation based on these mechanisms.


Assuntos
Colesterol , Gorduras na Dieta , LDL-Colesterol , Humanos , Intestinos , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA