Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Front Pharmacol ; 15: 1432902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224779

RESUMO

Sunobinop is a novel, potent, selective partial agonist at nociceptin/orphanin FQ peptide (NOP) receptors. The primary objective of this randomized, double-blind, placebo-controlled study was to assess the next-day residual effects of an evening dose of sunobinop in healthy participants. Participants were randomized into 1 of 5 treatment sequences. Treatment consisted of 1 dose each of sunobinop 0.2, 0.6, 2, and 6 mg suspension and placebo suspension. Key pharmacodynamic (PD) measures included the digit symbol substitution test (DSST), Karolinska sleepiness scale (KSS), and body sway. The randomized safety population consisted of 25 participants. The DSST, KSS, and body sway showed dose-dependent effects following the administration of sunobinop, with no significant differences versus placebo at sunobinop doses <2 mg. At sunobinop 2 mg, PD effects were relatively small in magnitude and inconsistent. The last timepoint where significant differences between sunobinop 2 mg and placebo on the DSST, KSS, and body sway were observed was at 12 h, 16.5 h, and 13.5 h postdose, respectively. Sunobinop 6 mg resulted in larger and consistent PD effects, with significant differences from placebo at all timepoints up to 16.5-18 h postdose. Somnolence was the most frequently reported adverse event (AE), and all AEs were mild-to-moderate. No deaths occurred during the study or discontinuations due to an AE. Overall, a nighttime oral dose of sunobinop up to 2 mg was safe and generally well tolerated in healthy participants with limited next-day residual effects that were consistent with other sedative/hypnotic drugs.

2.
Neurotherapeutics ; : e00424, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39004556

RESUMO

The myelin sheath plays crucial roles in brain development and neuronal functions. In the central nervous system, myelin is generated by oligodendrocytes, that differentiate from oligodendrocyte progenitor cells (OPC). In demyelinating diseases, the differentiation capacity of OPC is impaired and remyelination is dampened. Boosting remyelination by promoting OPC differentiation is a novel strategy for the treatment of demyelinating diseases. The opioid system, which consists of four receptors and their ligands, has been implicated in OPC differentiation and myelin formation. However, the exact roles of each opioid receptor and the relevant pharmacological molecules in OPC differentiation and myelin formation remain elusive. In the present study, specific agonists and antagonists of each opioid receptor were used to explore the function of opioid receptors in OPC differentiation. Nociceptin/orphanin FQ receptor (NOPR) specific antagonist LY2940094 was found to stimulate OPC differentiation and myelination in both in vitro and in vivo models. Unexpectedly, other NOPR ligands did not affect OPC differentiation, and NOPR knockdown did not mimic or impede the effect of LY2940094. LY2940094 was found to modulate the expression of the oligodendrocytes differentiation-associated transcription factors ID4 and Myrf, although the exact mechanism remains unclear. Since LY2940094 has been tested clinically to treat depression and alcohol dependency and has displayed an acceptable safety profile, it may provide an alternative approach to treat demyelinating diseases.

3.
Biomedicines ; 12(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38927539

RESUMO

A complication of diabetes is neuropathic pain, which is difficult to control with medication. We have confirmed that neuropathic pain due to mechanical allodynia in diabetic mice is mediated by a characteristic neuropeptide in the spinal cord. We evaluated the strength of mechanical allodynia in mice using von Frey filaments. When mice were intravenously injected with streptozotocin, mechanical allodynia appeared 3 days later. Antibodies of representative neuropeptides were intrathecally (i.t.) administered to allodynia-induced mice 7 days after the intravenous administration of streptozotocin, and allodynia was reduced by anti-cholecystokinin octapeptide antibodies, anti-nociceptin/orphanin FQ antibodies, and anti-hemokinin-1 antibodies. In contrast, i.t.-administered anti-substance P antibodies, anti-somatostatin antibodies, and anti-angiotensin II antibodies did not affect streptozotocin-induced diabetic allodynia mice. Mechanical allodynia was attenuated by the i.t. administration of CCK-B receptor antagonists and ORL-1 receptor antagonists. The mRNA level of CCK-B receptors in streptozotocin-induced diabetic allodynia mice increased in the spinal cord, but not in the dorsal root ganglion. These results indicate that diabetic allodynia is caused by cholecystokinin octapeptide, nociceptin/orphanin FQ, and hemokinin-1 released from primary afferent neurons in the spinal cord that transmit pain to the brain via the spinal dorsal horn.

4.
Peptides ; 179: 171268, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943841

RESUMO

This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).


Assuntos
Peptídeos Opioides , Receptores Opioides , Humanos , Peptídeos Opioides/metabolismo , Animais , Receptores Opioides/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Analgésicos Opioides/farmacologia , Comportamento/efeitos dos fármacos
5.
Neuropharmacology ; 257: 110048, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901642

RESUMO

Maintenance therapy with buprenorphine and methadone is the gold standard pharmacological treatment for opioid use disorder (OUD). Despite these compounds demonstrating substantial efficacy, a significant number of patients do not show optimal therapeutic responses. The abuse liability of these medications is also a concern. Here we used rats to explore the therapeutic potential of the new long-acting pan-opioid agonist Cebranopadol in OUD. We tested the effect of cebranopadol on heroin self-administration and yohimbine-induced reinstatement of heroin seeking. In addition, we evaluated the abuse liability potential of cebranopadol in comparison to that of heroin under fixed ratio 1 (FR1) and progressive ratio (PR) operant self-administration contingencies. Oral administration of cebranopadol (0, 25, 50 µg/kg) significantly attenuated drug self-administration independent of heroin dose (1, 7, 20, 60µg/inf). Cebranopadol also reduced the break point for heroin (20 µg/inf). Finally, pretreatment with cebranopadol significantly attenuated yohimbine-induced reinstatement of drug seeking. In abuse liability experiments under FR1 contingency, rats maintained responding for heroin (1, 7, 20, 60µg/inf) to a larger extent than cebranopadol (0.03, 0.1, 0.3, 1.0, 6.0µg/inf). Under PR contingency, heroin maintained responding at high levels at all except the lowest dose, while the break point (BP) for cebranopadol did not differ from that of saline. Together, these data indicate that cebranopadol is highly efficacious in attenuating opioid self-administration and stress-induced reinstatement, while having limited abuse liability properties. Overall, the data suggest clinical potential of this compound for OUD treatment.


Assuntos
Heroína , Transtornos Relacionados ao Uso de Opioides , Autoadministração , Ioimbina , Animais , Masculino , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Ratos , Heroína/administração & dosagem , Ioimbina/farmacologia , Ratos Sprague-Dawley , Compostos de Espiro/farmacologia , Compostos de Espiro/administração & dosagem , Compostos de Espiro/uso terapêutico , Comportamento de Procura de Droga/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Indóis/farmacologia , Indóis/administração & dosagem
6.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611824

RESUMO

Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.


Assuntos
Analgésicos , Peptídeos , Animais , Humanos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Peptídeos/farmacologia , Morfina , Dor , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico
7.
Clin Pharmacol Drug Dev ; 13(7): 790-800, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38476082

RESUMO

Sunobinop is an investigational, potent, selective partial agonist at the nociceptin/orphanin FQ peptide receptor in vitro. Three phase 1 studies were conducted to evaluate the safety, tolerability, and pharmacokinetics (PK) of escalating single- and multiple-dose administration of sunobinop in healthy participants. Study 1 was a randomized, double-blind, placebo-controlled, single-ascending dose study. Study 2 was a randomized, double-blind, placebo-controlled, multiple-ascending dose study. Study 3 was a randomized, open-label, single-dose, 4-way crossover study of oral and sublingual sunobinop comparing morning (AM) and bedtime (PM) administration. Seventy participants were included. Systemic exposure (peak plasma concentration [Cmax], area under the plasma concentration-time curve from time 0 to the time of last quantifiable concentration [AUC0-t], and area under the plasma concentration-time curve from time 0 extrapolated to infinity [AUCinf]) of sunobinop was characterized by dose proportionality from 0.6 to 2 mg and increased less than proportionally from 3 to 30 mg. The PKs of sunobinop were similar, regardless of AM or PM administration, for both the oral and sublingual formulations. The majority of absorbed sunobinop was excreted unchanged in the urine within 8 hours of dosing, thereby showing rapid elimination with no appreciable accumulation following 14 consecutive days of once-daily dosing and suggesting exclusive renal elimination. Most treatment-emergent adverse events (TEAEs) were mild in severity; 1 severe TEAE occurred and all TEAEs resolved by the end of the studies. Sunobinop was generally well-tolerated and safe across the range of doses evaluated and presents a clinical profile suitable for continued development.


Assuntos
Área Sob a Curva , Estudos Cross-Over , Voluntários Saudáveis , Humanos , Masculino , Adulto , Método Duplo-Cego , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Administração Oral , Relação Dose-Resposta a Droga , Administração Sublingual , Esquema de Medicação , Receptor de Nociceptina , Receptores Opioides/metabolismo , Adolescente , Morfinanos/farmacocinética , Morfinanos/administração & dosagem , Morfinanos/efeitos adversos , Naltrexona/análogos & derivados
8.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338936

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Receptor de Nociceptina , Nociceptina , Animais , Ratos , Analgésicos Opioides , Lesões Encefálicas Traumáticas/genética , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , RNA Mensageiro/metabolismo
9.
Behav Brain Res ; 462: 114895, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38316167

RESUMO

The nucleus accumbens (NAc) is a critical region for regulating the appetitive and consummatory aspects of motivated behavior. Previous work has shown differential effects of NAc µ-, δ-, and κ- receptor stimulation on food intake and for shifting motivation within an effort-based choice (EBC) task. However, the motivational role of the nociceptin opioid peptide (NOP) receptor, a fourth member of the opioid receptor family, is less well understood. These experiments therefore characterized the effect of NAc injections of nociceptin, the endogenous ligand for the NOP receptor, on consummatory and appetitive motivation. Three groups of male Sprague-Dawley rats received nociceptin injections into the NAc core prior to testing in a progressive ratio lever pressing task, an EBC task, or a palatable feeding assay. In the feeding experiment, 10 nmol of nociceptin increased consumption in the first 30 min, but this increase was not sustained through the end of the 2-hr session. Additionally, nociceptin injections did not alter breakpoint in the progressive ratio task. However, in the EBC task, nociceptin significantly decreased breakpoint for sugar pellets without affecting consumption of rat chow. These data suggest that NAc NOP receptor stimulation transiently increases consummatory motivation toward palatable diets and inhibits appetitive motivation when alternate food options are freely available. This pattern of effects contrasts with those obtained following NAc stimulation of other opioid receptors, suggesting that the four opioid receptor classes each serve unique roles in modulating food-directed motivation within the NAc core.


Assuntos
Comportamento Alimentar , Motivação , Nociceptina , Núcleo Accumbens , Animais , Masculino , Ratos , Nociceptina/metabolismo , Receptor de Nociceptina , Peptídeos Opioides/metabolismo , Ratos Sprague-Dawley , Receptores Opioides/metabolismo
10.
Neuropeptides ; 104: 102414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382179

RESUMO

The occurrence of cardiovascular events in diabetic patients during the perioperative period is related to the activation of sympathetic nerves. Basic research shows that serum nociceptin/orphanin FQ (N/OFQ) levels in diabetic neuropathy rats increased, and N/OFQ reduces the release of norepinephrine (NE). We hypothesize that N/OFQ will affect the sympathetic nervous system during perioperative myocardium of diabetic patients. 66 patients with unilateral knee arthroplasty were divided into diabetes group (D group) and non-diabetes group (N group). Measured blood glucose, serum NE, N/OFQ concentrations at the 30 min before anesthesia (T0), 1 h after surgery (T1), 24 h after surgery (T2) and the cardiac troponinI (cTnI) concentration at T0 and T2. Compared with N group, the concentration of blood glucose, N/OFQ and cTnI in D group was higher and the NE was lower at T0 (P < 0.05). At T1, the blood glucose, N/OFQ, NE concentrations of D group increased, only the blood glucose increased in N group (P < 0.05). Serum N/OFQ of D group from T0 to T1 was correlated with the change trend of blood glucose, NE concentration from T0 to T1 and cTnI from T0 to T2(r = 0.386, P = 0.027; r = 0.350, P = 0.046; r = 0.363, P = 0.038). The outcomes demonstrated that the preoperative serum N/OFQ concentration in diabetic patients was increased, and the increase in N/OFQ concentration during the operation was related to the increase in NE and cTnI concentrations, perioperative N/OFQ may mediate myocardial injury through sympathetic nervous system.


Assuntos
Diabetes Mellitus , Peptídeos Opioides , Humanos , Ratos , Animais , Glicemia , Nociceptina , Sistema Nervoso Simpático
11.
Psychopharmacology (Berl) ; 241(5): 1001-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270614

RESUMO

RATIONALE: Recently, we demonstrated that the activation of the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) signaling facilitates depressive-like behaviors. Additionally, literature findings support the ability of the N/OFQ-NOP system to modulate the hypothalamic-pituitary-adrenal (HPA) axis. OBJECTIVES: Considering that dysfunctional HPA axis is strictly related to stress-induced psychopathologies, we aimed to study the role of the HPA axis in the pro-depressant effects of NOP agonists. METHODS: Mice were treated prior to stress with the NOP agonist Ro 65-6570, and immobility time in the forced swimming task and corticosterone levels were measured. Additionally, the role of endogenous glucocorticoids and CRF was investigated using the glucocorticoid receptor antagonist mifepristone and the CRF1 antagonist antalarmin in the mediation of the effects of Ro 65-6570. RESULTS: The NOP agonist in a dose-dependent manner further increased the immobility of mice in the second swimming session compared to vehicle. By contrast, under the same conditions, the administration of the NOP antagonist SB-612111 before stress reduced immobility, while the antidepressant nortriptyline was inactive. Concerning in-serum corticosterone in mice treated with vehicle, nortriptyline, or SB-612111, a significant decrease was observed after re-exposition to stress, but no differences were detected in Ro 65-6570-treated mice. Administration of mifepristone or antalarmin blocked the Ro 65-6570-induced increase in the immobility time in the second swimming session. CONCLUSIONS: Present findings suggest that NOP agonists increase vulnerability to depression by hyperactivating the HPA axis and then increasing stress circulating hormones and CRF1 receptor signaling.


Assuntos
Cicloeptanos , Imidazóis , Peptídeos Opioides , Piperidinas , Receptores Opioides , Compostos de Espiro , Camundongos , Animais , Receptores Opioides/fisiologia , Peptídeos Opioides/metabolismo , Glucocorticoides/farmacologia , Nortriptilina/farmacologia , Receptor de Nociceptina , Corticosterona/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Mifepristona/farmacologia , Sistema Hipófise-Suprarrenal/metabolismo
12.
China Modern Doctor ; (36): 7-10,14, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1038248

RESUMO

@#Objective To evaluate the relationship between perioperative myocardial injury(PMI)and serum N/OFQ levels in elderly patients with coronary heart disease.Methods Totally 120 elderly patients who underwent hip fracture surgery under general anesthesia from January 2022 to May 2023 were included,including 60 patients with coronary heart disease(CHD group)and 60 patients without coronary heart disease(control group).The venous blood of patients was collected 10 minutes before anesthesia induction(T0),12 hours after surgery(T1)and 24 hours after surgery(T2)to detect the content of N/OFQ and high-sensitivity myocardial troponin I(hs-cTnI)in serum.Record perioperative adverse cardiovascular events(PACE)and the use of vasoactive drugs during surgery.Results Compared with the control group,the N/OFQ and hs cTnI levels at T0 and T1 in the CHD group were significantly increased(P<0.05).There was a positive correlation between N/OFQ and hs-cTnI levels at T1 and T2 in CHD and control group(P<0.05).The use of PACE and intraoperative vasoactive drugs in the CHD group was higher than that in the control group(P<0.05).Conclusion There is a correlation between the increased N/OFQ content and PMI in elderly patients with coronary heart disease after surgery,which may become an early predictive indicator of PMI.

13.
Front Pharmacol ; 14: 1272969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920208

RESUMO

Traumatic brain injury (TBI) affects more than 2.5 million people in the U.S. each year and is the leading cause of death and disability in children and adults ages 1 to 44. Approximately 90% of TBI cases are classified as mild but may still lead to acute detrimental effects such as impaired cerebral blood flow (CBF) that result in prolonged impacts on brain function and quality of life in up to 15% of patients. We previously reported that nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor antagonism reversed mild blast TBI-induced vestibulomotor deficits and prevented hypoxia. To explore mechanisms by which the NOP receptor-N/OFQ pathway modulates hypoxia and other TBI sequelae, the ability of the NOP antagonist, SB-612111 (SB), to reverse TBI-induced CBF and associated injury marker changes were tested in this study. Male Wistar rats randomly received sham craniotomy or craniotomy + TBI via controlled cortical impact. Injury severity was assessed after 1 h (modified neurological severity score (mNSS). Changes in CBF were assessed 2 h post-injury above the exposed cortex using laser speckle contrast imaging in response to the direct application of increasing concentrations of vehicle or SB (1, 10, and 100 µM) to the brain surface. TBI increased mNSS scores compared to baseline and confirmed mild TBI (mTBI) severity. CBF was significantly impaired on the ipsilateral side of the brain following mTBI, compared to contralateral side and to sham rats. SB dose-dependently improved CBF on the ipsilateral side after mTBI compared to SB effects on the respective ipsilateral side of sham rats but had no effect on contralateral CBF or in uninjured rats. N/OFQ levels increased in the cerebral spinal fluid (CSF) following mTBI, which correlated with the percent decrease in ipsilateral CBF. TBI also activated ERK and cofilin within 3 h post-TBI; ERK activation correlated with increased CSF N/OFQ. In conclusion, this study reveals a significant contribution of the N/OFQ-NOP receptor system to TBI-induced dysregulation of cerebral vasculature and suggests that the NOP receptor should be considered as a potential therapeutic target for TBI.

14.
Neurobiol Learn Mem ; 205: 107841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832816

RESUMO

The Nociceptin/Orphanin FQ (N/OFQ) system has been shown to modulate various aspects of long-term memory. It is therefore important to study the effects on memory impairment by nociceptin receptor (NOP) agonists under preclinical development. In the present study, we investigated the effect of systemic injection of two small molecule selective NOP agonists, AT-202 and AT-524, in the object location memory task in male and female mice. Since high doses of NOP agonists have been shown to induce sedation, we first determined the sedative doses for the two compounds and found them to be higher in female than in male mice. We then observed that sub-sedative doses of NOP agonists administered before learning, induced memory impairment during a test session performed 24 h later. Again, female mice were less sensitive to the amnesic effects than males. On the contrary, in male mice, NOP agonists did not produce amnesia when they were injected after learning, suggesting that they do not affect the consolidation of object location memory. Finally, repeated administration of high doses of NOP agonists over 7 days did not impair long-term spatial memory. Together, our data show for the first time that NOP receptor agonists impair the acquisition of object location memory with sex-dependent potency but do not affect memory consolidation, and that repeated stimulation of the receptor does not compromise long-term episodic-like spatial memory.


Assuntos
Peptídeos Opioides , Receptores Opioides , Feminino , Camundongos , Masculino , Animais , Peptídeos Opioides/farmacologia , Receptor de Nociceptina , Aprendizagem , Memória de Longo Prazo , Hipnóticos e Sedativos
15.
Peptides ; 169: 171095, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704079

RESUMO

This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).


Assuntos
Analgesia , Analgésicos não Narcóticos , Animais , Humanos , Feminino , Gravidez , Peptídeos Opioides/farmacologia , Analgésicos Opioides , Tolerância a Medicamentos
16.
Bioorg Med Chem ; 92: 117421, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37573822

RESUMO

The development of SAR around substituted N-piperidinyl indole-based nociceptin opioid receptor (NOP) ligands led to the discovery of a novel series of 2-substituted N-piperidinyl indoles that provide both selective NOP full agonists and bifunctional NOP full agonists-µ opioid (MOP) receptor partial agonists. 2-substituted N-piperidinyl indoles have improved potency at the NOP receptor and are NOP full agonists, compared to our previously reported 3-substituted N-piperidinyl indoles that are selective NOP partial agonists. SAR in this series of 2-substituted N-piperidinyl indoles shows that 2-substitution versus 3-substitution on the indole moiety affects their intrinsic activity and opioid receptor selectivity. Molecular docking of these 2-substituted N-piperidinyl indoles in an active-state NOP homology model and MOP receptor structures provides a rationale for the differences observed in the binding, functional profiles and selectivity of 2-substituted versus 3-substituted N-piperidinyl indoles.


Assuntos
Analgésicos Opioides , Receptores Opioides , Analgésicos Opioides/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Receptores Opioides/agonistas , Receptores Opioides/metabolismo , Peptídeos Opioides , Receptor de Nociceptina , Indóis/farmacologia , Relação Estrutura-Atividade , Nociceptina
17.
Life Sci ; 328: 121892, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364634

RESUMO

The apelin receptor (APJ) and the opioid-related nociceptin receptor 1 (ORL1) are family A G protein-coupled receptors that participate in a variety of physiological processes. The distribution and function of APJ and ORL1 in the nervous system and peripheral tissues are similar; however, the detailed mechanism of how these two receptors modulate signaling and physiological effects remains unclear. Here, we examined whether APJ and ORL1 form dimers, and investigated signal transduction pathways. The endogenous co-expression of APJ and ORL1 in SH-SY5Y cells was confirmed by western blotting and RT-PCR. Bioluminescence and fluorescence resonance energy transfer assays, as well as a proximity ligation assay and co-immunoprecipitation experiments, demonstrated that APJ and ORL1 heterodimerize in HEK293 cells. We found that the APJ-ORL1 heterodimer is selectively activated by apelin-13, which causes the dimer to couple to Gαi proteins and reduce the recruitment of GRKs and ß-arrestins to the dimer. We showed that the APJ-ORL1 dimer exhibits biased signaling, in which G protein-dependent signaling pathways override ß-arrestin-dependent signaling pathways. Our results demonstrate that the structural interface of the APJ-ORL1 dimer switches from transmembrane domain TM1/TM2 in the inactive state to TM5 in the active state. We used mutational analysis and BRET assays to identify key residues in TM5 (APJ L2185.55, APJ I2245.61, and ORL1 L2295.52) responsible for the receptor-receptor interaction. These results provide important information on the APJ-ORL1 heterodimer and may assist the design of new drugs targeting biased signaling pathways for treatment of pain and cardiovascular and metabolic diseases.


Assuntos
Neuroblastoma , Humanos , Apelina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo , Transdução de Sinais
18.
Front Physiol ; 14: 1164031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346481

RESUMO

The present review considers the putative hormonal opioid peptides in birds. In birds and all other vertebrates, there are four opioid related genes encoding a series of peptides. These genes are, respectively, proenkephalin (PENK), prodynorphin (PDYN), pronociceptin (PNOC) and proopiomelanocortin (POMC). Proenkephalin (PENK) encodes Met- and Leu-enkephalin together with peptides containing met enkephalin motifs in birds, mammals and reptiles. Proopiomelanocortin (POMC) encodes ß endorphin together with adrenocorticotropic hormone (ACTH), and melanocyte stimulating hormone (MSH). Prodynorphin (PDYN) encoding dynorphins A and B with α- and ß-neoendorphins together intermediate polypeptides across the vertebrates. Pronociceptin (PNOC) encodes nociceptin together with possibly putative avian nocistatin and a non-opioid peptide derived from the C terminal of pronociceptin. There is a high degree of identity in the sequences of enkephalin peptides, dynorphin-A and B and nociceptin in birds and, to a less extent, across vertebrates. The opioid peptides exert effects related to pain together with other biological actions such as growth/development acting via a series of opioid receptors. What is unclear, particularly in birds, is the biological roles and interactions (additivity, antagonistic and synergistic) for the individual opioid peptides, the processing of the prohormones in different tissues and the physiological relevance of the different peptides and, particularly, of the circulating forms.

19.
Life Sci ; 326: 121803, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245840

RESUMO

Major depressive disorder (MDD) afflicts approximately 5 % of the world population, and about 30-50 % of patients who receive classical antidepressant medications do not achieve complete remission (treatment resistant depressive patients). Emerging evidence suggests that targeting opioid receptors mu (MOP), kappa (KOP), delta (DOP), and the nociceptin/orphanin FQ receptor (NOP) may yield effective therapeutics for stress-related psychiatric disorders. As depression and pain exhibit significant overlap in their clinical manifestations and molecular mechanisms involved, it is not a surprise that opioids, historically used to alleviate pain, emerged as promising and effective therapeutic options in the treatment of depression. The opioid signaling is dysregulated in depression and numerous preclinical studies and clinical trials strongly suggest that opioid modulation can serve as either an adjuvant or even an alternative to classical monoaminergic antidepressants. Importantly, some classical antidepressants require the opioid receptor modulation to exert their antidepressant effects. Finally, ketamine, a well-known anesthetic whose extremely efficient antidepressant effects were recently discovered, was shown to mediate its antidepressant effects via the endogenous opioid system. Thus, although opioid system modulation is a promising therapeutical venue in the treatment of depression further research is warranted to fully understand the benefits and weaknesses of such approach.


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Depressão/tratamento farmacológico , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Receptores Opioides mu
20.
Br J Pharmacol ; 180(17): 2298-2314, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37021779

RESUMO

BACKGROUND AND PURPOSE: In animal models of sepsis, increased activation of the Nociceptin/Orphanin FQ (N/OFQ) receptor NOP is associated with mortality and NOP antagonists improved survival. We have explored the role of the N/OFQ-NOP system in freshly isolated volunteer human B- and T-cells incubated with lipopolysaccharide (LPS) and peptidoglycan G (PepG) as a model of in vitro sepsis. EXPERIMENTAL APPROACH: B- and T-cell NOP expression was measured using the NOP fluorescent probe N/OFQATTO594 , N/OFQ content was measured using immunofluorescence, N/OFQ release was tracked using a CHOhNOPGαiq5 biosensor assay and NOP function was measured using transwell migration and cytokine/chemokine release using a 25-plex assay format. Cells were challenged with LPS/PepG. KEY RESULTS: CD19-positive B-cells bound N/OFQATTO594 ; they also contain N/OFQ. Stimulation with CXCL13/IL-4 increased N/OFQ release. N/OFQ trended to reduced migration to CXCL13/IL-4. Surface NOP expression was unaffected by LPS/PepG, but this treatment increased GM-CSF release in an N/OFQ sensitive manner. CD3-positive T-cells did not bind N/OFQATTO594 ; they did contain N/OFQ. Stimulation with CXCL12/IL-6 increased N/OFQ release. When incubated with LPS/PepG, NOP surface expression was induced leading to N/OFQATTO594 binding. In LPS/PepG-treated cells, N/OFQ reduced migration to CXCL12/IL-6. LPS/PepG increased GM-CSF release in an N/OFQ sensitive manner. CONCLUSIONS AND IMPLICATIONS: We suggest both a constitutive and sepsis-inducible N/OFQ-NOP receptor autocrine regulation of B- and T-cell function, respectively. These NOP receptors variably inhibit migration and reduce GM-CSF release. These data provide mechanistic insights to the detrimental role for increased N/OFQ signalling in sepsis and suggest a potential role for NOP antagonists as treatments.


Assuntos
Receptores Opioides , Sepse , Animais , Humanos , Receptores Opioides/metabolismo , Receptor de Nociceptina , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Lipopolissacarídeos/farmacologia , Interleucina-4 , Interleucina-6 , Peptídeos Opioides/fisiologia , Sepse/tratamento farmacológico , Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA