Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Chem X ; 24: 101809, 2024 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-39310883

RESUMO

In the present study, bud yellow tea (BYT), small-leaf yellow tea (SYT) and large-leaf yellow tea (LYT) were produced from the same local "population" variety Huoshanjinjizhong (Camellia sinensis var. sinensis), and the effects of raw material tenderness on the chemical profile and bioactivities of these teas were investigated. The results showed that 11 crucial compounds were screened by headspace solid-phase microextraction-gas chromatography-mass spectrometry from 64 volatiles in these yellow teas, among which the heterocyclic compounds showed the greatest variations. In addition, 43 key compounds including organic acids, flavan-3-ols, amino acids, saccharides, glycosides and other compounds were screened by liquid chromatography-mass spectrometry from 1781 non-volatile compounds. BYT showed the best α-glucosidase inhibitory activity and antioxidant capacity among the selected yellow teas, which might be contributed by the higher content of galloylated catechins. These findings provided a better understanding of the chemical profile and bioactivities of yellow teas.

2.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732464

RESUMO

The enzymatic reaction stage (ECS) of oolong tea processing plays an important role in the formation of the flavor quality of the oolong tea. To investigate the dynamic changes in the volatile and non-volatile components in the leaves of oolong tea during the ECS, metabolomic studies were carried out using the leaf samples collected at different stages of the ECS of Aijiao oolong tea. Out of the identified 306 non-volatile metabolites and 85 volatile metabolites, 159 non-volatile metabolites and 42 volatile metabolites were screened out as key differential metabolites for dynamic changes during the ECS. A multivariate statistical analysis on the key differential metabolites showed that the accumulations of most metabolites exhibited dynamic changes, while some amino acids, nucleosides, and organic acids accumulated significantly after turning-over treatment. The evolution characteristics of 27 key precursors or transformed VOCs during the ECS of Aijiao oolong tea were clarified, and it was found that the synthesis of aroma substances was mainly concentrated in lipids as precursors and glycosides as precursor pathways. The results revealed the dynamic changes in the flavor metabolites in the ECS during the processing of Aijiao oolong tea, which provided valuable information for the formation of the characteristic flavor of Aijiao oolong tea.

3.
Food Chem ; 453: 139649, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38762947

RESUMO

The effects of ultra-high pressure (UHP) pretreatment (50-250 MPa) on the fish curing were studied. UHP increased the overall volatile compound concentration of cured fish. Among 50-250 MPa five treatment groups, 150 MPa UHP group exhibited the highest total free amino acid content (294.34 mg/100 g) with that of the control group being 92.39 mg/100 g. The activity of cathepsin L was increased under 50-200 MPa UHP treatment (62.28-58.15 U/L), compared with that in the control group (53.80 U/L). UHP treatment resulted in a significant increase in small molecule compounds, especially the amino acid dipeptides and ATP metabolic products. Under UHP treatments, the bacterial phyla Actinobacteriota (1.04-5.25 %), Bacteroidota (0.20-4.47 %), and Deinococcota (0.00-0.05 %) exhibited an increased abundance, and they promoted taste and flavor formation. Our results indicated that UHP is a promising pretreatment method to improve taste and flavour in cured fish by affecting the microorganisms, cathepsin, and proteins.


Assuntos
Biologia Computacional , Aromatizantes , Metabolômica , Paladar , Animais , Aromatizantes/química , Aromatizantes/metabolismo , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Pressão , Cyprinidae/metabolismo , Cyprinidae/microbiologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Humanos , Manipulação de Alimentos , Aminoácidos/metabolismo , Aminoácidos/análise
4.
J Sci Food Agric ; 104(12): 7524-7535, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38738583

RESUMO

BACKGROUND: The excessive salt intake associated with Douchi has become a topic of controversy. Addressing this concern and enhancing its market competitiveness necessitates the application of salt reduction fermentation in Douchi. Therefore, to promote the application of salt reduction fermentation in Douchi, a comprehensive study was undertaken aiming to investigate the differences in biogenic amines, volatile compounds and non-volatile compounds in Douchi with varying salt content. RESULTS: The findings unequivocally demonstrate that salt hampers the formation of metabolites in Douchi. As the salt content increased, there was a significant decrease (P < 0.05) in the levels of total acid, amino-type nitrogen and free amino acids in Douchi. Notably, when the salt content exceeded 80 g kg-1, there was a substantial reduction (P < 0.05) in putrescine, lactic acid and malic acid levels. Similarly, when the salt content surpassed 40 g kg-1, ß-phenethylamine and oxalic acid levels exhibited a significant decline (P < 0.05). Furthermore, the results of E-nose and principal component analysis based on headspace solid phase microextraction gas chromatography-mass spectrometry revealed notable discrepancies in the volatile compound content between Douchi samples with relatively low salt content (40 and 80 g kg-1) and those with relatively high salt content (120, 160 and 200 g kg-1) (P < 0.05). By employing partial least squares discriminant analysis, eight distinct volatile compounds, including o-xylene, benzaldehyde and 1-octen-one, were identified. These compounds exhibited higher concentrations in Douchi samples with relatively low salt content (40 and 80 g kg-1). The sensory results showed that Douchi samples with lower salt content exhibited higher scores in the soy sauce-like and Douchi aroma attributes. CONCLUSION: In conclusion, this study significantly enhances our understanding of the impact of salt on metabolites in Douchi and provides invaluable insights for the development of salt reduction fermentation in this context. © 2024 Society of Chemical Industry.


Assuntos
Aminas Biogênicas , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis , Aminas Biogênicas/análise , Aminas Biogênicas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Cloreto de Sódio/análise , Cloreto de Sódio/metabolismo
5.
Food Chem ; 450: 139376, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648695

RESUMO

Wuyi Rock Tea (WRT) has different characteristics of "rock flavor" due to different production areas. In this study, we investigated the flavor characteristics and key components of "rock flavor" and the influence of microorganisms on the substances by combining metabolomics and microbiomics with the Rougui WRTs from the Zhengyan, Banyan, and Waishan production areas. The results showed that Rougui has a strong floral and fruity aroma, which is mainly brought by hotrienol, and the sweet, smooth, and fresh taste is composed of epicatechin gallate, epigallocatechin, epigallocatechin gallate, caffeine, theanine, soluble sugar, and sweet and bitter amino acids. Bacteria Chryseobacterium, Pedobacter, Bosea, Agrobacterium, Stenotrophomonas, and Actinoplanes mainly influence the production of hotrienol, epicatechin gallate, and theanine. Fungi Pestalotiopsis, Fusarium, Elsinoe, Teichospora and Tetracladium mainly influence the production of non-volatile compounds. This study provides a reference for the biological formation mechanism of the characteristic aroma of WRT's "rock falvor".


Assuntos
Bactérias , Camellia sinensis , Aromatizantes , Fungos , Metabolômica , Paladar , Chá , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Aromatizantes/metabolismo , Aromatizantes/química , Chá/química , Chá/microbiologia , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/microbiologia , Fungos/metabolismo , Odorantes/análise , Humanos
6.
Food Chem ; 449: 139197, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581788

RESUMO

Abalone (Haliotis spp.) is a shellfish known for its exceptional nutritional value and significant economic worth. This study investigated the dynamic characteristics of non-volatile compounds over a year, including metabolites, lipids, nucleotides, and free amino acids (FAAs), which determined the nutritional quality and flavor of abalone. 174 metabolites and 371 lipids were identified and characterized, while 20 FAAs and 11 nucleotides were quantitatively assessed. These non-volatile compounds of abalone were fluctuated with months variation, which was consistent with the fluctuations of environmental factors, especially seawater temperature. Compared with seasonal variation, gender had less influence on these non-volatiles. June and July proved to be the optimal harvesting periods for abalone, with the levels of overall metabolites, lipids, FAAs, and nucleotides in abalone exhibiting a higher value in June and July over a year. Intriguingly, taurine covered 60% of the total FAAs and abalone could be used as dietary taurine supplementation.


Assuntos
Aminoácidos , Gastrópodes , Metabolômica , Estações do Ano , Frutos do Mar , Animais , Gastrópodes/química , Gastrópodes/metabolismo , Frutos do Mar/análise , Aminoácidos/metabolismo , Aminoácidos/análise , Aminoácidos/química , Lipídeos/química , Valor Nutritivo , Masculino , Feminino
7.
Food Chem ; 449: 139281, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608608

RESUMO

In this study, metabolomics and proteomics were performed to investigate the fluctuations of non-volatile compounds and proteins in tea leaves from three tea cultivars with varying colours during withering. A total of 2798 compounds were detected, exhibiting considerable variations in amino acids, phenylpropanoids, and flavonoids. The ZH1 cultivar displayed increased levels of amino acids but decreased levels of polyphenols, which might be associated with the up-regulation of enzymes responsible for protein degradation and subsequent amino acid production, as well as the down-regulation of enzymes involved in phenylpropanoid and flavonoid biosynthesis. The FUD and ZH1 cultivars had elevated levels of flavanols and flavanol-O-glycosides, which were regulated by the upregulation of FLS. The ZJ and ZH1 cultivars displayed elevated levels of theaflavin and peroxidase. This work presents a novel investigation into the alterations of metabolites and proteins between tea cultivars during withering, and helps with the tea cultivar selection and manufacturing development.


Assuntos
Camellia sinensis , Metabolômica , Folhas de Planta , Proteínas de Plantas , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/genética , Camellia sinensis/crescimento & desenvolvimento , Cor , Flavonoides/análise , Flavonoides/metabolismo , Flavonoides/química , Multiômica , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polifenóis/metabolismo , Polifenóis/química , Polifenóis/análise , Proteômica , Chá/química
8.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472815

RESUMO

To reveal the changes in the flavor quality of chicken osteopontin (CO) before and after enzymatic hydrolysis and a thermal reaction, the present study was carried out to evaluate the volatile compounds and non-volatile compounds in CO. The results show that the chicken boneset enzymatic solution (CBES) presented a notably richer aroma after the enzymatic hydrolysis treatment. At the same time, the concentrations of the total free amino acids (FAAs) and 5'-nucleotides in the CBES increased dramatically. The ERP (enzymatic reaction paste) scores and the ORC (osteopontin reactive cream) scores were exceptionally high in terms of the umami and salty flavor profiles. As precursors, FAAs and 5'-nucleotides also boosted the Maillard reaction, leading to the generation of wide volatile compounds. Compared to CO, CBES, and ORC, the sensory evaluation showed that ERP scored the highest. In summary, the enzymatic hydrolysis treatment coupled with the Maillard reaction significantly enhanced the flavor profile of CO. These findings offer valuable insights into the high-value utilization of bone by-products, making a significant advancement in the field.

9.
BMC Plant Biol ; 24(1): 104, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336608

RESUMO

BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.


Assuntos
Agrobacterium tumefaciens , Tumores de Planta , Agrobacterium tumefaciens/genética , Doenças das Plantas/microbiologia , Bactérias
10.
J Food Sci ; 89(2): 998-1011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161275

RESUMO

Effects of light or dark storage condition on the profile changes of volatile and non-volatile compounds were evaluated in dried and baked laver for 60 days. Volatile and non-volatile compounds were analyzed using gas chromatography-mass selective detection and high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry, respectively. Baked laver stored in light conditions for 60 days produced the most volatile compounds, whereas dried laver stored in the dark produced the least volatile compounds. Total 11 classes of volatile compounds were detected, including alkanes, alkenes, and ketones, with aldehydes being most abundant in dried laver stored under light. Metabolite analysis of non-volatile compounds led to the selection of 12 compounds with a higher variable importance projection (VIP) value of >1.0: 6 fatty acids (VIP 1.2-2.0), 2 flavanols (VIP 1.3-1.8), hydroxybenzoic acid (VIP 1.5), hydroxycinnamic acid (VIP 2.3), a phenolic acid ester (VIP 1.9), and phloroglucinol (VIP 1.2). Generally, levels of these compounds decreased more following storage in the light than under dark, irrespective of laver preparation. The content of linolenic acid was particularly affected by storage conditions, with light conditions causing a fourfold reduction in linolenic acid level compared with dark conditions, which could result in an increased formation of aldehydes. Gallic acid and sinapinic acid were detected in dried but not baked laver, as they are destroyed by heat treatment. Therefore, laver should be baked and stored in dark conditions to prevent the development of rancidity. PRACTICAL APPLICATION: Laver is one of the representative seaweeds, and the popularity among consumers increases. Although commercially available laver is prepared in dried or baked condition, scientific studies on the changes of metabolites, including volatile and non-volatile compounds during storage, are scarce. The results of this study can be applied to improve proper storage methods to maintain the quality of laver, which can be beneficial for consumers and food industry.


Assuntos
Algas Comestíveis , Porphyra , Compostos Orgânicos Voláteis , Porphyra/química , Aldeídos/análise , Ácidos Linolênicos , Compostos Orgânicos Voláteis/química
11.
J Sci Food Agric ; 104(5): 2587-2596, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37984850

RESUMO

BACKGROUND: Lactic acid bacteria (LABs) are widely present in foods and affect the flavour of fermented cultures. This study investigates the effects of fermentation with Lactobacillus acidophilus JYLA-16 (La), Lactobacillus plantarum JYLP-375 (Lp), and Lactobacillus rhamnosus JYLR-005 (Lr) on the flavour profile of blueberry juice. RESULTS: This study showed that all LABs strains preferentially used glucose rather than fructose as the carbon source during fermentation. Lactic acid was the main fermentation product, reaching 7.76 g L-1 in La-fermented blueberry juice, 5.86 g L-1 in Lp-fermented blueberry juice, and 6.41 g L-1 in Lr-fermented blueberry juice. These strains extensively metabolized quinic acid, whereas oxalic acid metabolism was almost unaffected. Sixty-four volatile compounds were identified using gas chromatography-ion mobility spectrometry (GC-IMS). All fermented blueberry juices exhibited decreased aldehyde levels. Furthermore, fermentation with La was dominated by alcohols, Lp was dominated by esters, and Lr was dominated by ketones. Linear discriminant analysis of the electronic nose and principal component analysis of the GC-IMS data effectively differentiated between unfermented and fermented blueberry juices. CONCLUSION: This study informs LABs selection for producing desirable flavours in fermented blueberry juice and provides a theoretical framework for flavour detection. © 2023 Society of Chemical Industry.


Assuntos
Mirtilos Azuis (Planta) , Lacticaseibacillus rhamnosus , Lactobacillales , Lactobacillus plantarum , Cromatografia Gasosa-Espectrometria de Massas , Alimentos , Lactobacillus plantarum/metabolismo , Lactobacillus acidophilus , Fermentação
12.
Food Res Int ; 174(Pt 1): 113567, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986440

RESUMO

The circulating non-fried roast (CNR) technology was firstly applied to roast mutton. The formation of (non)volatile compounds in the mutton roasted for 0-15 min was investigated. The samples roasted at varying times were discriminated using GC-O-MS and multivariate data analysis. A total of 40 volatile compounds were observed, in which 17 compounds were considered as key odorants with odor activity values (OAVs) higher than 1, such as dimethyl trisulfide and 2-ethyl-3,5-dimethylpyrazine. Composition and concentrations of volatile compounds were significantly changed during the process. The key nonvolatile compounds that contributed to flavor were 5'-inosine monophosphate (5'-IMP) and glutamic acid based on taste active values (TAVs) greater than 1. The reduced concentrations of most free amino acids and 5'-nucleotides decreased the equivalent umami concentrations (EUC). The higher thermal conductivity, lower thermal diffusivity and water activity were responsible for the formation of volatile compounds with increased roasting times. The CNR technology was an efficient tool to roast meat products.


Assuntos
Temperatura Alta , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Aromatizantes/análise , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas
13.
Foods ; 12(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37835360

RESUMO

Scenting tea with Jasminum sambac is beneficial to forming a unique taste of jasmine tea, which is regulated by numerous compounds. To investigate the relationship between metabolites in jasmine and jasmine tea, as well as the impact of metabolites on the characteristic taste of jasmine tea, the liquid chromatography-mass spectrometry, sensory evaluation, and multivariate analysis were applied in this study. A total of 585 and 589 compounds were identified in jasmine tea and jasmine, respectively. After scented, jasmine tea added 70 compounds, which were believed to come from jasmine flowers. Furthermore, seventy-four compounds were identified as key characteristic compounds of jasmine tea, and twenty-two key differential metabolite compounds were believed to be used to distinguish jasmine tea scented differently and contribute to the taste of jasmine tea. Additionally, the relationship between taste compounds and aroma quality was also explored, and it was found that five compounds were positively correlated with the aroma properties of jasmine tea and seven compounds were negatively correlated with the aroma properties of jasmine tea. Overall, these findings provided insights into the future study of the mechanism of taste formation in jasmine tea and provided the theoretical basis for the production of jasmine tea.

14.
Food Res Int ; 173(Pt 1): 113296, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803608

RESUMO

Suanyu is a famous traditional fermented aquatic food in south China. However, the quality of Suanyu is unstable due to natural fermentation based on the environment. This work screened suitable microbial fermenters (Enterococcus rivorum and Enterococcus lactis) from traditional fermented fish and optimized a suitable fermentation process. Effects of different fermentation (natural and mixed starters fermentation) and thermal treatments (microwave, frying and roasting) on the flavor of Suanyu were investigated. Compared to the natural fermentation group, the TVB-N content (31.5 mg/100 g) was lower, the total acidity (5.12 g/kg) and flavor compounds content were richer in the mixed starters fermentation group (P < 0.05). But there was no significant difference in histamine content (P > 0.05). The roasting treatment group contained higher contents of free amino acids, organic acids, nucleotides and richer key aroma components. The electronic nose was able to distinguish between the differently treated samples. The sensory evaluation result showed that roasted and fried samples had a more acceptable flavor and color. This work will provide a theoretical reference for the standardized production of Suanyu and the development of pre-cooked products.


Assuntos
Alimentos Fermentados , Paladar , Animais , Microbiologia de Alimentos , Fermentação , Culinária
15.
Foods ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685133

RESUMO

In this study, the flavor compounds of ivory shell (Babylonia areolata) and their changes caused by ammonia and salinity stresses were studied. Ammonia stress improved the contents of free amino acids (FAAs), 5'-adenosine monophosphate (AMP), citric acid, and some mineral ions such as Na+, PO43-, and Cl-. The FAA contents decreased with increasing salinity, while the opposite results were observed in most inorganic ions (e.g., K+, Na+, Mg2+, Mn2+, PO43-, and Cl-). Hyposaline and hypersaline stresses increased the AMP and citric acid contents compared to the control group. The equivalent umami concentration (EUC) values were 3.53-5.14 g monosodium glutamate (MSG)/100 g of wet weight, and the differences in EUC values among treatments were mainly caused by AMP. Hexanal, butanoic acid, and 4-(dimethylamino)-3-hydroxy- and (E, E)-3,5-octadien-2-one were the top three volatile compounds, and their profiles were significantly affected when ivory shells were cultured under different ammonia and salinity conditions.

16.
Food Chem X ; 19: 100840, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37680758

RESUMO

In this study, the bacterial communities and flavor metabolites of 27 traditional naturally fermented sauerkraut samples collected from nine regions of Heilongjiang Province in Northeast China were investigated. The dominant genera were Lactobacillus, Pseudomonas, Alcaligenes, Arcobacter, Pseudarcobacter, Lactococcus, Comamonas, Pediococcus, Prevotella, and Insolitispirillum. A total of 148 volatile compounds were detected in seven categories; esters and acids were the most abundant volatiles. Additionally, the highest content (15.96 mg/g) of lactic acid was detected in YC1. Acetic acid, oleic acid, palmitic acid, elaidic acid, and dehydroacetic acid were the key differential volatile compounds, which may be related to the bacterial communities. Spearman's correlation analysis revealed that Lactococcus and Lactobacillus were significantly positively correlated with flavor metabolites, suggesting that they may play a more significant role in flavor formation. The results of this study can help in the development of better quality of fermented vegetables.

17.
J Biosci Bioeng ; 136(3): 213-222, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429763

RESUMO

Daqu, a fermentation starter, was important source of key flavors of Chinese Baijiu. The quality of Chinese Baijiu could be significantly affected by the ester-synthesis microorganisms. In order to clarify the microbial community that promoted the ester formation in Daqu, the dynamic changes of microbial community and non-volatile profiles of Qing-flavor Daqu and Nong-flavor Daqu samples through the whole making process were investigated by Illumina MiSeq platform and liquid chromatograph-mass spectrometry (LC-MS). The non-volatile compounds related to ester synthesis were identified by comparing with ester synthesis pathway and partial least squares discriminant analysis (PLS-DA). Correlations between microbial community and non-volatile metabolites involved in ester synthesis of two types of Daqu were disclosed by Pearson correlation analysis. Results showed that a total of 50 key compounds involved in ester synthesis were identified and 25 primary functional microorganisms were screened in 39 samples. Among them, in Qing-flavor Daqu, the top three primary functional microorganisms that had strong correlations with ester-formation precursors were Lactobacillus, Pantoea, and Sphingomonas; Lactobacillus and Pantoea had significantly positive interactions with various microorganisms, but Sphingomonas did not interact with others. In Nong-flavor Daqu, the top three primary functional microorganisms that had strong correlations with ester-formation precursors were Candida, Apiotrichum, and Cutaneotrichosporon. Candida showed strong positive correlation with other microorganisms, whereas Apiotrichum and Cutaneotrichosporon had no interaction with other microorganisms. The study could help our understanding of the microbial metabolism process in Daqu and provided a scientific basis for a controllable and feasible fermentation system.


Assuntos
Bebidas Alcoólicas , Microbiota , Bebidas Alcoólicas/análise , Fermentação , Lactobacillus
18.
Food Chem ; 426: 136660, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354574

RESUMO

Ageing on lees is a slow process that carries microbiological and economic risks in the wineries. This study evaluates the possibility of enhancing the extraction of different compounds from the lees, using combined strategies, such as ultrasound (US) or microwaves (MW) and the addition of inactive dry yeasts (IDY), to reduce the lees ageing time. The complete chemical analysis of the wine was done, amino acids, polysaccharides, colour and volatile compounds, together with the sensory analysis. The combined treatments increased the release of total polysaccharides, mannoproteins and total monosaccharides in the wines, and some amino acids like proline. However, wines treated with US and MW, with and without lees, showed a decrease in tannins and colour intensity, and in some volatile compounds like fatty acid esters, acetates and terpenes. The wines treated with IDY and MW were the best valued for their floral and red berry flavours and less astringency.


Assuntos
Vinho , Vinho/análise , Micro-Ondas , Bebidas Alcoólicas/análise , Leveduras , Polissacarídeos/análise , Aminoácidos/análise , Fermentação
19.
Food Chem ; 420: 136146, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37075574

RESUMO

In this study, the influences of Lactobacillus plantarum JHT78 fermentation on the physiological properties, antioxidant activities, and volatile/non-volatile metabolites of watermelon juices were comprehensively investigated. The results indicated that total polyphenols flavonoids and anthocyanin in the watermelon juices remarkably increased through L. plantarum JHT78 fermentation. L. plantarum JHT78 fermentation enhanced the antioxidant activities, lipase inhibition, and α-glucosidase activities of watermelon juices. A total of 62 volatile compounds were detected using HS-SPME-GC-MS, mainly including 11 acids, 8 aldehydes, 7 ketones, and 7 alcohols. The abundance of 19 volatile compounds especially for acids remarkably increased for the fermentated watermelon juice. Furthermore, non-volatile compounds detected by UHPLC-QTOF-MS revealed that L. plantarum JHT78 significantly altered the non-volatile compounds of watermelon juices, especially increased indole-3-lactic acid. The results confirmed that L. plantarum JHT78 enhanced the functionality of watermelon juices thus providing a theoretical basis for the development of LAB on plant-based beverages.


Assuntos
Lactobacillus plantarum , Antioxidantes/química , Fermentação , Flavonoides/metabolismo , Lactobacillus plantarum/metabolismo
20.
Int. microbiol ; 26(1): 91-98, Ene. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-215920

RESUMO

Paddy is an important crop in Malaysia. There are various pathogens able to infect paddy causing a loss in yield’s production. In this study, dual culture method, volatile organic compound (VOC) analysis, and non-volatile compound analysis were used to assess the ability of mushroom to control fungal rice pathogens including Curvularia lunata, Bipolaris panici-miliacei, and Nigrospora sp. Four mushroom isolates were further analysed for their antagonistic activity against rice pathogen. The highest percentage inhibition of radial growth (PIRG) was recorded between 45.55 and 73.68% observed in isolate 42b. The 4 isolates with the highest PIRG based on the dual culture analysis were then tested for their production of VOCs and non-volatile compound. Internal transcribed spacer (ITS) region analysis of the 4 mushroom isolates revealed their identity as Coprinellus disseminates (isolate 12b), Marasmiellus palmivorus (isolate 42b), Trametes maxima (isolate 56e), and Lentinus sajor-caju (isolate 60a). This study showed that mushroom isolates have the potential of antagonistic effect on various fungal rice pathogens tested by the production of secondary metabolites and mycoparasitic interaction.(AU)


Assuntos
Humanos , Oryza , Agaricales , Compostos Orgânicos Voláteis , Micotoxicose , Genes Fúngicos , Microbiologia , Malásia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA