Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612521

RESUMO

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.


Assuntos
Di-Hidroergotamina , Escopolamina , Animais , Ratos , Histamina , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Encéfalo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Antagonistas dos Receptores H2 da Histamina
2.
Mol Neurobiol ; 61(1): 450-464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37626269

RESUMO

Mild cognitive impairment (MCI) is defined as inter-stage between normal cognitive aging and major neurocognitive disorder (MND). This state of decay is a crucial factor in treatment to prevent the progression to MND. In this study, our group developed a virtual screening process to evaluate 2568 phytochemical compounds against 5 key proteins associated with MCI and MND. As a result, two potential candidates were identified: carpaine, found in Carica papaya leaves, and punicalagin, present in Punica granatum. A model of cognitive impairment (CI) was developed in 10-month-old male Sprague Dawley rats by administering aluminum chloride (AlCl3) at a dose of 100 mg/kg/day for 30 days. After AlCl3 administration period, one of the groups received carpaine and punicalagin in a phytochemical extract (PE) by oral gavage for 30 days. Novel object recognition test (NOR) was assessed at three different time points (T1 - before CI, T2 - after CI, and T3 - after PE treatment). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were identified in the hippocampus of rats at the end of the study period. After administration of AlCl3, a reduction in discrimination index vs control rats (CI = 0.012 ± 0.08 vs Control = 0.076 ± 0.03), was observed. After phytochemical extract treatment, a significant increase in discrimination index values was observed in the PE group 0.4643 ± 0.13 vs CI group 0.012 ± 0.08. Additionally, the evaluation of immunohistochemistry showed an increase in GFAP positivity in the hippocampus of the CI groups, while a slight decrease was observed in the PE group. This work addressed a comprehensive methodology that utilized in silico tools to identify phytochemical compounds (carpaine and punicalagin) as potential candidates for affecting key proteins in CI. The phytochemical extract containing carpaine and punicalagin resulted in a trend in the decrease of GFAP expression in the hippocampus and improved recognition memory in rats with CI induced by age and AlCl3 administration.


Assuntos
Carica , Disfunção Cognitiva , Taninos Hidrolisáveis , Punica granatum , Camundongos , Ratos , Masculino , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Carica/química , Modelos Animais de Doenças , Ratos Sprague-Dawley , Disfunção Cognitiva/tratamento farmacológico , Compostos Fitoquímicos , Sementes
3.
J Chem Neuroanat ; 132: 102317, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482145

RESUMO

The prevalence of autism spectrum disorder (ASD), a neurodevelopmental condition that impacts social interaction and sensory processing, is rising. Valproic acid (VPA) exposure during pregnancy causes autistic-like traits in offspring. Olanzapine (OLZ), an atypical antipsychotic, is used to treat ASD. We assessed the impact of OLZ on behavior, neuromorphology, and nitric oxide (NO) levels in the hippocampus using prenatal VPA treatment in rats. It is commonly known that ASD patients exhibit sensory abnormalities. As such, we utilized the tail flick test to validate the ASD model. In the novel object recognition test (NORT), VPA exposure reduces the discrimination index (DI) in the first introduction to the novel object. Moreover, OLZ and vehicle-treated rats perform differently in the second exposition to the DI of the novel object, suggesting that OLZ reverses VPA-induced deficits in recognition memory. The latency to find the hidden platform in the Morris water maze test of memory and learning improves in VPA-exposed rats after OLZ administration, indicating that OLZ improves spatial memory in these rats. Administration of prenatal VPA induces neuronal hypotrophy and reduces spine density in pyramidal neurons of the CA1 region of the hippocampus. Treatment with OLZ corrects the neuromorphological changes brought on by VPA. In the CA1 region of the hippocampus, VPA treatment increases the number of neurons, which normalizes with OLZ treatment. OLZ increases the NO levels in the dorsal hippocampus in control rats. In rats exposed to VPA, the second-generation antipsychotic OLZ reduces memory-related and neuroplastic alterations. The current findings support the use of OLZ in this illness and further validate the use of prenatal VPA as a model of ASD.


Assuntos
Antipsicóticos , Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Masculino , Animais , Humanos , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Olanzapina/efeitos adversos , Transtorno do Espectro Autista/induzido quimicamente , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Neurônios , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Comportamento Animal , Comportamento Social
4.
Neurobiol Stress ; 17: 100440, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252485

RESUMO

Stress-related disorders display differences at multiple levels according to sex. While most studies have been conducted in male rodents, less is known about comparable outcomes in females. In this study, we found that the chronic restraint stress model (2.5 h/day for 14 days) triggers different somatic responses in male and female adult rats. Chronic restraint produced a loss in sucrose preference and novel location preference in male rats. However, chronic restraint failed to produce loss of sucrose preference in females, while it improved spatial performance. We then characterized the molecular responses associated with these behaviors in the hippocampus, comparing the dorsal and ventral poles. Notably, sex- and hippocampal pole-specific transcriptional signatures were observed, along with a significant concordance between the female ventral and male dorsal profiles. Functional enrichment analysis revealed both shared and specific terms associated with each pole and sex. By looking into signaling pathways that were associated with these terms, we found an ample array of sex differences in the dorsal and, to a lesser extent, in the ventral hippocampus. These differences were mainly present in synaptic TrkB signaling, Akt pathway, and glutamatergic receptors. Unexpectedly, the effects of stress on these pathways were rather minimal and mostly dissociated from the sex-specific behavioral outcomes. Our study suggests that female rats are resilient and males susceptible to the restraint stress exposure in the sucrose preference and object location tests, while the activity of canonical signaling pathways is primarily determined by sex rather than stress in the dorsal and ventral hippocampus.

5.
Eur J Neurosci ; 55(1): 78-90, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34904283

RESUMO

Strategies for improving memory are increasingly studied, and exposure to a novel experience can be an efficient neuromodulator. Novelty effects on memory depend on D1-family dopamine receptors (D1Rs) activation. Here, we evaluated the novelty effect on memory persistence of Wistar rats and investigated the contribution of D1Rs and their signalling pathways by protein kinase A (PKA) and C (PKC). Animals with infusion cannulae inserted into the CA1 hippocampus area were trained on the novel object recognition (NOR) task, which involved exploring two different objects. After training, some rats received intrahippocampal infusions of vehicle or D1Rs agonist; others explored a novel environment for 5 min and were infused with a variety of drugs targeting D1Rs and their signalling pathways. We demonstrated that pharmacological stimulation of D1Rs or novelty exposure promoted NOR memory persistence for 14 days and that the novelty effect depended on D1Rs activation. To determine if the D1 and D5 receptor subtypes were necessary for the impact of novelty exposure on memory, we blocked or stimulated PKA or PKC-protein kinases activated mainly by D1 and D5, respectively. Only PKA inhibition impaired the effect of novelty on memory persistence. After novelty and D1Rs blocking, PKA but not PKC stimulation maintained the memory persistence effect. Thus, we concluded that novelty promoted memory persistence by a mechanism-dependent on activating hippocampal D1Rs and PKA pathway.


Assuntos
Dopamina , Memória , Animais , Proteínas Quinases Dependentes de AMP Cíclico , Dopamina/metabolismo , Hipocampo/fisiologia , Memória/fisiologia , Ratos , Ratos Wistar , Receptores de Dopamina D1/metabolismo
6.
Behav Brain Res ; 410: 113349, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33971246

RESUMO

Reserpine (RES) is an irreversible inhibitor of VMAT2 used to study Parkinson's disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low dose of reserpine was proposed as a model capable of emulating progressive neurochemical, motor and non-motor impairments in PD. Conversely, compared to Wistar rats, Spontaneously Hypertensive Rats (SHR) are resistant to motor changes induced by repeated treatment with a low dose of RES. However, such resistance has not yet been investigated for RES-induced non-motor impairments. We aimed to assess whether SHR would have differential susceptibility to the object recognition deficit induced by repeated low-dose reserpine treatment. We submitted male Wistar and SHR rats to repeated RES treatment (15 s.c. injections of 0.1 mg/kg, every other day) and assessed object memory acquisition and retrieval 48 h after the 6th RES injection (immediately before the appearance of motor impairments). Only RES Wistar rats displayed memory impairment after reserpine treatment. On the other hand, untreated SHR rats displayed object recognition memory deficit, but RES treatment restored such deficits. We also performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last RES injection. In a different set of animals submitted to the same treatment, we quantified DA, 5-HT and products of lipid peroxidation in the prefrontal cortex (PFC) and hippocampus (HPC). SHR presented increased constitutive levels of DA in the PFC and reduced immunoreactivity to TH in the medial PFC and dorsal HPC. Corroborating the behavioral findings, RES treatment restored those constitutive alterations in SHR. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potentially relevant targets to the study of susceptibility to diseases related to dopaminergic alterations.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Dopamina/metabolismo , Hipocampo , Doença de Parkinson Secundária/induzido quimicamente , Córtex Pré-Frontal , Reconhecimento Psicológico/efeitos dos fármacos , Reserpina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Endogâmicos SHR/metabolismo , Ratos Wistar/metabolismo , Reserpina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
7.
Behav Brain Res, v. 410, 113349, maio. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3731

RESUMO

Reserpine (RES) is an irreversible inhibitor of VMAT2 used to study Parkinson’s disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low dose of reserpine was proposed as a model capable of emulating progressive neurochemical, motor and non-motor impairments in PD. Conversely, compared to Wistar rats, Spontaneously Hypertensive Rats (SHR) are resistant to motor changes induced by repeated treatment with a low dose of RES. However, such resistance has not yet been investigated for RES-induced non-motor impairments. We aimed to assess whether SHR would have differential susceptibility to the object recognition deficit induced by repeated low-dose reserpine treatment. We submitted male Wistar and SHR rats to repeated RES treatment (15 s.c. injections of 0.1 mg/kg, every other day) and assessed object memory acquisition and retrieval 48 h after the 6th RES injection (immediately before the appearance of motor impairments). Only RES Wistar rats displayed memory impairment after reserpine treatment. On the other hand, untreated SHR rats displayed object recognition memory deficit, but RES treatment restored such deficits. We also performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last RES injection. In a different set of animals submitted to the same treatment, we quantified DA, 5-HT and products of lipid peroxidation in the prefrontal cortex (PFC) and hippocampus (HPC). SHR presented increased constitutive levels of DA in the PFC and reduced immunoreactivity to TH in the medial PFC and dorsal HPC. Corroborating the behavioural findings, RES treatment restored those constitutive alterations in SHR. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potentially relevant targets to the study of susceptibility to diseases related to dopaminergic alterations.

8.
J Psychopharmacol ; 34(7): 750-758, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255391

RESUMO

BACKGROUND: Methylphenidate (MPH) is a stimulant drug mainly prescribed to treat cognitive impairments in attention-deficit/hyperactivity disorder (ADHD). We demonstrated that neonatal hypoxia-ischemia (HI) induced attentional deficits in rats and MPH administration reversed these deficits. However, MPH effects on memory deficits after the HI procedure have not been evaluated yet. AIMS: We aimed to analyze learning and memory performance of young hypoxic-ischemic rats after MPH administration and associate their performance with brain-derived neurotrophic factor (BDNF) levels in the prefrontal cortex and hippocampus. METHODS: Male Wistar rats were divided into four groups (n=11-13/group): control saline (CTS), control MPH (CTMPH), HI saline (HIS) and HIMPH. The HI procedure was conducted at post-natal day (PND) 7 and memory tasks between PND 30 and 45. MPH administration (2.5 mg/kg, i.p.) occurred 30 min prior to each behavioral session and daily, for 15 days, for the BDNF assay (n=5-7/group). RESULTS: As expected, hypoxic-ischemic animals demonstrated learning and memory deficits in the novel-object recognition (NOR) and Morris water maze (MWM) tasks. However, MPH treatment did not improve learning and memory deficits of these animals in the MWM-and even disrupted the animals' performance in the NOR task. Increased BDNF levels were found in the hippocampus of HIMPH animals, which seem to have been insufficient to improve memory deficits observed in this group. CONCLUSIONS: The MPH treatment was not able to improve memory deficits resulting from the HI procedure considering a dose of 2.5 mg/kg. Further studies investigating different MPH doses would be necessary to determine a dose-response relationship in this model.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Metilfenidato/farmacologia , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/patologia , Ratos , Ratos Wistar
9.
Neurochem Res ; 44(2): 485-497, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673958

RESUMO

Cadmium (Cd) is a toxic metal and classified as a carcinogen whose exposure could affect the function of the central nervous system. There are studies that suggest that Cd promotes neurodegeneration in different regions of the brain, particularly in the hippocampus. It is proposed that its mechanism of toxicity maybe by an oxidative stress pathway, which modifies neuronal morphology and causes the death of neurons and consequently affecting cognitive tasks. However, this mechanism is not yet clear. The aim of the present work was to study the effect of Cd administration on recognition memory for 2, 3 and 4 months, neuronal morphology and immunoreactivity for caspase-3 and 9 in rat hippocampi. The results show that the administration of Cd decreased recognition memory. Likewise, it caused the dendritic morphology of the CA1, CA3 and dentate gyrus regions of the hippocampus to decrease with respect to the time of administration of this heavy metal. In addition, we observed a reduction in the density of dendritic spines as well as an increase in the immunoreactivity of caspase-3 and 9 in the same hippocampal regions of the animals treated with Cd. These results suggest that Cd affects the structure and function of the neurons of the hippocampus, which contribute to the deterioration of recognition memory. Our results suggest that the exposure to Cd represents a critical health problem, which if not addressed quickly, could cause much more serious problems in the quality of life of the human population, as well as in the environment in which they develop.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Cádmio/administração & dosagem , Dendritos/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Ratos Wistar
10.
J Pharm Pharmacol ; 70(8): 1059-1068, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29766510

RESUMO

OBJECTIVES: To determine whether the drug saxagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor which is utilized for the treatment of Diabetes Mellitus, has neuroprotective effects in the animal model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA) in rats. METHODS: Male Wistar rats (weighing 280-300 g) received a bilateral infusion of 6-OHDA in the substantia nigra. Twenty-four hours later, they were treated with saxagliptin (1 mg/kg, p.o) once daily, for 21 days. The motor function was evaluated using the open field and rotarod (RT) tests. In addition, cognition was assessed with the novel object recognition test (ORT). After the evaluation of the behavioural tests, the animals were transcardially perfused to perform immunohistochemistry staining for tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc). KEY FINDINGS: Saxagliptin impaired the memory of animals in the sham group. CONCLUSIONS: Saxagliptin treatment did not exhibit neuroprotection and it did not improve the cognitive and motor deficits in the 6-OHDA model of PD. Interestingly, when saxagliptin was administered to the sham animals, a cognitive decline was observed. Therefore, this drug should be investigated as a possible treatment for PTSD.


Assuntos
Adamantano/análogos & derivados , Comportamento Animal/efeitos dos fármacos , Dipeptídeos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Adamantano/administração & dosagem , Adamantano/uso terapêutico , Animais , Dipeptídeos/administração & dosagem , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Masculino , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Doença de Parkinson Secundária/fisiopatologia , Ratos Wistar , Resultado do Tratamento
11.
Synapse ; 71(10): e21987, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28545157

RESUMO

The aging brain shows biochemical and morphological changes in the dendrites of pyramidal neurons from the limbic system associated with memory loss. Prolame (N-(3-hydroxy-1,3,5 (10)-estratrien-17ß-yl)-3-hydroxypropylamine) is a non-feminizing aminoestrogen with antithrombotic activity that prevents neuronal deterioration, oxidative stress, and neuroinflammation. Our aim was to evaluate the effect of prolame on motor and cognitive processes, as well as its influence on the dendritic morphology of neurons at the CA1, CA3, and granule cells of the dentate gyrus (DG) regions of hippocampus (HP), and medium spiny neurons of the nucleus accumbens (NAcc) of aged mice. Dendritic morphology was assessed with the Golgi-Cox stain procedure followed by Sholl analysis. Prolame (60 µg/kg) was subcutaneously injected daily for 60 days in 18-month-old mice. Immediately after treatment, locomotor activity in a new environment and recognition memory using the Novel Object Recognition Task (NORT) were evaluated. Prolame-treated mice showed a significant increase in the long-term exploration quotient, but locomotor activity was not modified in comparison to control animals. Prolame-treated mice showed a significant increase in dendritic spines density and dendritic length in neurons of the CA1, CA3, and DG regions of the HP, whereas dendrites of neurons in the NAcc remained unmodified. In conclusion, prolame administration promotes hippocampal plasticity processes but not in the NAcc neurons of aged mice, thus improving long-term recognition memory. Prolame could become a pharmacological alternative to prevent or delay the brain aging process, and thus the emergence of neurodegenerative diseases that affect memory.

12.
Neurol Res ; 39(7): 649-659, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28398193

RESUMO

OBJECTIVE: Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS: Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS: SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION: In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.


Assuntos
Transtornos da Memória/metabolismo , Mitocôndrias/metabolismo , Acetilcolinesterase/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Dilatação Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos Wistar , Reconhecimento Psicológico/fisiologia , Escopolamina
13.
Neurosci Lett ; 632: 169-74, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27589891

RESUMO

Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Proteínas Repressoras/genética , Animais , Ansiedade/genética , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Heterozigoto , Camundongos , Camundongos Knockout , Atividade Motora/genética
14.
Physiol Behav ; 140: 79-88, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25496978

RESUMO

The forced swim test (FST) is widely used to evaluate the antidepressant-like activity of compounds and is sensitive to stimuli that cause depression-like behaviors in rodents. The immobility behavior observed during the test has been considered to represent behavioral despair. In addition, some studies suggest that the FST impairs rats' performance on cognitive tests, but these findings have rarely been explored. Thus, we investigated the effects of the FST on behavioral tests related to neuropsychiatric diseases that involve different cognitive components: novel object recognition (NOR), the object location test (OLT) and prepulse inhibition (PPI). Brain-derived neurotrophic factor (BDNF) levels in the frontal cortex and hippocampus were evaluated. The rats were forced to swim twice (15-min session followed by a 5-min session 24h later) and underwent cognitive tests 24h after the last swimming exposure. The FST impaired the rats' performance on the OLT and reduced the PPI and acoustic startle responses, whereas the NOR was not affected. The cognitive impairments were not correlated with an immobility behavior profile, but a significant negative correlation between the frontal BDNF levels and immobility behavior was identified. These findings suggest a protective role of BDNF against behavioral despair and demonstrate a deleterious effect of the FST on spatial memory and pre-attentive processes, which point to the FST as a tool to induce cognitive impairments analogous to those observed in depression and in other neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Reação de Congelamento Cataléptica/fisiologia , Lobo Frontal/metabolismo , Estresse Fisiológico , Natação/psicologia , Estimulação Acústica , Acústica , Análise de Variância , Animais , Comportamento Exploratório/fisiologia , Masculino , Inibição Pré-Pulso/fisiologia , Ratos , Ratos Wistar , Reconhecimento Psicológico , Estatística como Assunto , Fatores de Tempo
15.
Toxicon ; 76: 23-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23994427

RESUMO

Potassium channels regulate many neuronal functions, including neuronal excitability and synaptic plasticity, contributing, by these means, to mnemonic processes. In particular, A-type K(+) currents (IA) play a key role in hippocampal synaptic plasticity. Therefore, we evaluated the effect of the peptidic toxin Tx3-1, a selective blocker of IA currents, extracted from the venom of the spider Phoneutria nigriventer, on memory of mice. Administration of Tx3-1 (i.c.v., 300 pmol/site) enhanced both short- and long-term memory consolidation of mice tested in the novel object recognition task. In comparison, 4-aminopyridine (4-AP; i.c.v., 30-300 pmol/site), a non-selective K(+) channel blocker did not alter long-term memory and caused toxic side effects such as circling, freezing and tonic-clonic seizures. Moreover, Tx3-1 (i.c.v., 10-100 pmol/site) restored memory of Aß25-35-injected mice, and exhibited a higher potency to improve memory of Aß25-35-injected mice when compared to control group. These results show the effect of the selective blocker of IA currents Tx3-1 in both short- and long-term memory retention and in memory impairment caused by Aß25-35, reinforcing the role of IA in physiological and pathological memory processes.


Assuntos
Memória/efeitos dos fármacos , Neuropeptídeos/farmacologia , Neurotoxinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Aranha/química , 4-Aminopiridina/efeitos adversos , 4-Aminopiridina/farmacologia , Animais , Masculino , Camundongos , Neuropeptídeos/isolamento & purificação , Neurotoxinas/isolamento & purificação , Bloqueadores dos Canais de Potássio/isolamento & purificação , Canais de Potássio , Reconhecimento Psicológico , Aranhas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA