Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.149
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38822868

RESUMO

Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.

2.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822881

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Humanos , Cisplatino/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Células A549 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Linhagem Celular Tumoral , Elementos de Resposta Antioxidante/genética , Antineoplásicos/farmacologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo
3.
Neurochem Res ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822984

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) develops in 30-70% of hospitalized patients with sepsis. In intensive care units (ICUs), propofol is often administered to ensure an appropriate level of sedation in mechanically ventilated patients. Ferroptosis is a newly identified mode of cellular death characterized by the peroxidation of membrane lipids and excessive iron. This study was conducted to explore the interplay between propofol, sepsis, and ferroptosis. METHODS: An acute systemic inflammatory model was constructed via the intraperitoneal administration of lipopolysaccharide (LPS). Nissl and Fluoro-Jade C (FJC) staining were employed to display neuronal damage and degeneration. Western blotting and immunofluorescence (IF) staining of Bax and Bcl-2 were used to confirm the neural apoptosis. QPCR of cytokines and DHE staining were used to indicate neuroinflammation. To validate ferroptosis, we assessed the content of malondialdehyde (MDA), GSH, and tissue iron, accompanied by transcription level of CHAC1, PTGS2 and GPX4. Additionally, we examined the content of acyl-CoA synthetase long-chain family member 4 (ACSL4), xCT (SLC7A11, solute carrier family 7 member 11), and glutathione peroxidase 4 (GPX4). The IF staining of Iba1-labeled microglia and GFAP-marked astrocytes were used to measure the gliosis. Erastin was pre-pretreated to confirm the anti-ferroptotic capability of propofol. ML385 was preconditioned to explore the role of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in propofol-repressed ferroptosis. RESULTS: Propofol dose-dependently inhibited the decrease of Nissl-positive neurons and the increase of FJC-stained neurons in septic hippocampus and cortex. Neural cytokines, oxidative stress, apoptosis and gliosis were reduced by propofol. Propofol repressed the level of MDA, iron, CHAC1, PTGS2, ACLS4 and restored the content of GSH, GPX4, xCT, Nrf2 and HO-1, thus inhibiting sepsis-induced ferroptosis. All protections from propofol could be reversed by eratsin and ML385 pretreatment. CONCLUSION: Propofol protected against sepsis-induced brain damage, neuroinflammation, neuronal apoptosis and gliosis through the activation of the Nrf2/HO-1 axis to combat ferroptosis.

4.
Exp Neurol ; : 114822, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823676

RESUMO

Post-stroke depression (PSD) is a complication of cerebrovascular disease, which can increase mortality after stroke. CRH is one of the main signaling peptides released after activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. It affects synaptic plasticity by regulating inflammation, oxidative stress and autophagy in the central nervous system. And the loss of spines exacerbates depression-like behavior. Therefore, synaptic deficits induced by CRH may be related to post-stroke depression. However, the underlying mechanism remains unclear. The Keap1-Nrf2 complex is one of the core components of the antioxidant response. As an autophagy associated protein, p62 participates in the Keap1-NrF2 pathway through its Keap1 interaction domain. Oxidative stress is involved in the feedback regulation between Keap1-Nrf2 pathway and p62.However, whether the relationship between CRH and the Keap1-Nrf2-p62 pathway is involved in PSD remains unknown. This study found that serum levels of CRH in 22 patients with PSD were higher than those in healthy subjects. We used MCAO combined with CUMS single-cage SD rats to establish an animal model of PSD. Animal experiments showed that CRHR1 antagonist prevented synaptic loss in the hippocampus of PSD rats and alleviated depression-like behavior. CRH induced p62 accumulation in the prefrontal cortex of PSD rats through CRHR1. CRHR1 antagonist inhibited Keap1-Nrf2-p62 pathway by attenuating oxidative stress. In addition, we found that abnormal accumulation of p62 induces PSD. It alleviates depression-like behavior by inhibiting the expression of p62 and promoting the clearance of p62 in PSD rats. These findings can help explore the pathogenesis of PSD and design targeted treatments for PSD.

5.
Toxicol Rep ; 12: 564-573, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798986

RESUMO

The flavonoid compound Isorhamnetin (IRMN) is known for its considerable pharmacological properties, which include antioxidant and anti-inflammatory effects, as well as significant protective actions on heart health. However, the potential of IRMN to guard against heart damage caused by cisplatin (CP), a common chemotherapeutic agent, and the specific mechanisms involved, remain unexplored areas. This research was designed to investigate how IRMN counters CP-induced heart toxicity. In our study, mice were orally given IRMN at 50 or 150 mg/kg/day for a week, followed by CP injections (5 mg/kg/day) on the third and sixth days. The animals were euthanized under sodium pentobarbital anesthesia (50 mg/kg, intraperitoneally) on the eighth day to collect blood and heart tissues for further examination. Our findings reveal that IRMN administration significantly reduced the heart damage and the elevation of heart injury markers such as cardiac troponin I, creatine kinase, and lactate dehydrogenase induced by CP. IRMN also effectively lowered oxidative stress markers, including reactive oxygen species and malondialdehyde, while boosting ATP production and antioxidants like superoxide dismutase, catalase, and glutathione. The compound's capability to diminish the levels of pro-inflammatory cytokines like tumor necrosis factor-alpha and interleukin-6, alongside modulating apoptosis-regulating proteins (enhancing Bcl-2 while suppressing Bax and Caspase-3 expression), further underscores its cardioprotective effect. Notably, IRMN modulated the p62-Keap1-Nrf2 signaling pathway, suggesting a mechanism through which it exerts its protective effects against CP-induced cardiac injury. These insights underscore the potential of IRMN as an effective adjunct in cancer therapy, offering a strategy to mitigate the cardiotoxic side effects of cisplatin.

6.
Toxicol Res (Camb) ; 13(3): tfae080, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799411

RESUMO

The protein, Nuclear factor-E2-related factor 2 (Nrf2), is a transitory protein that acts as a transcription factor and is involved in the regulation of many cytoprotective genes linked to xenobiotic metabolism and antioxidant responses. Based on the existing clinical and experimental data, it can be inferred that neurodegenerative diseases are characterized by an excessive presence of markers of oxidative stress (OS) and a reduced presence of antioxidant defense systems in both the brain and peripheral tissues. The presence of imbalances in the homeostasis between oxidants and antioxidants has been recognized as a substantial factor in the pathogenesis of neurodegenerative disorders. The dysregulations include several cellular processes such as mitochondrial failure, protein misfolding, and neuroinflammation. These dysregulations all contribute to the disruption of proteostasis in neuronal cells, leading to their eventual mortality. A noteworthy component of Nrf2, as shown by recent research undertaken over the last decade, is to its role in the development of resistance to OS. Nrf2 plays a pivotal role in regulating systems that defend against OS. Extant research offers substantiation for the protective and defensive roles of Nrf2 in the context of neurodegenerative diseases. The purpose of this study is to provide a comprehensive analysis of the influence of Nrf2 on OS and its function in regulating antioxidant defense systems within the realm of neurodegenerative diseases. Furthermore, we evaluate the most recent academic inquiries and empirical evidence about the beneficial and potential role of certain Nrf2 activator compounds within the realm of therapeutic interventions.

7.
Immunol Invest ; : 1-19, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809063

RESUMO

BACKGROUND: Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. METHODS: CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. RESULTS: TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. CONCLUSION: Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.

8.
Biogerontology ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811414

RESUMO

There has been substantial research interest in finding activities/agents that slow the onset and reduce the severity of numerous age-related diseases/conditions. This assessment indicates that the most studied agent intended to promote health in human population investigations for a broad spectrum of diseases are the statins, with large-scale epidemiological studies addressing numerous health endpoints. The key findings are that statin treatment consistently reduces the occurrence and attenuates the course of numerous non-communicable and contagious pathologies and numerous types of cancer with high mortality rates by about 20-50%. That one agent could affect such a broad based and consistently positive trends in epidemiological studies is unexpected and impressive, along with consistent cell and animal model research. Underlying mechanisms have been proposed that significantly contribute to the spectrum of salutary effects of statins, especially the capacity to activate Nrf2 showing hormetic dose responses in multiple organs and cell types, due to its bioavailability and broad tissue distribution. The widespread use of statins, which has the capacity to enhance human health span, should be considered for experimental exploration as a novel public health strategy that includes practical approaches for reduction of the most common adverse effects of this class of drugs including myalgia/myopathy and transaminitis.

9.
Sci Rep ; 14(1): 12427, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816543

RESUMO

Intracerebral hemorrhage (ICH) is a common cerebral vascular disease with high incidence, disability, and mortality. Ferroptosis is a regulated type of iron-dependent, non-apoptotic programmed cell death. There is increasing evidence that ferroptosis may lead to neuronal damage mediated by hemorrhagic stroke mediated neuronal damage. Salvianolic acid A (SAA) is a natural bioactive polyphenol compound extracted from salvia miltiorrhiza, which has anti-inflammatory, antioxidant, and antifibrosis activities. SAA is reported to be an iron chelator that inhibits lipid peroxidation and provides neuroprotective effects. However, whether SAA improves neuronal ferroptosis mediated by hemorrhagic stroke remains unclear. The study aims to evaluate the therapeutic effect of SAA on Ferroptosis mediated by Intracerebral hemorrhage and explore its potential mechanisms. We constructed in vivo and in vitro models of intracerebral hemorrhage in rats. Multiple methods were used to analyze the inhibitory effect of SAA on ferroptosis in both in vivo and in vitro models of intracerebral hemorrhage in rats. Then, network pharmacology is used to identify potential targets and mechanisms for SAA treatment of ICH. The SAA target ICH network combines SAA and ICH targets with protein-protein interactions (PPIs). Find the specific mechanism of SAA acting on ferroptosis through molecular docking and functional enrichment analysis. In rats, SAA (10 mg/kg in vivo and 50 µM in vitro, p < 0.05) alleviated dyskinesia and brain injury in the ICH model by inhibiting ferroptosis (p < 0.05). The molecular docking results and functional enrichment analyses suggested that AKT (V-akt murine thymoma viral oncogene homolog) could mediate the effect of SAA. NRF2 (Nuclear factor erythroid 2-related factor 2) was a potential target of SAA. Our further experiments showed that salvianolic acid A enhanced the Akt /GSK-3ß/Nrf2 signaling pathway activation in vivo and in vitro. At the same time, SAA significantly expanded the expression of GPX4, XCT proteins, and the nuclear expression of Nrf2, while the AKT inhibitor SH-6 and the Nrf2 inhibitor ML385 could reduce them to some extent. Therefore, SAA effectively ameliorated ICH-mediated neuronal ferroptosis. Meanwhile, one of the critical mechanisms of SAA inhibiting ferroptosis was activating the Akt/GSK-3ß/Nrf2 signaling pathway.


Assuntos
Ácidos Cafeicos , Hemorragia Cerebral , Ferroptose , Lactatos , Fármacos Neuroprotetores , Animais , Ferroptose/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ratos , Lactatos/farmacologia , Lactatos/química , Lactatos/uso terapêutico , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
J Cancer ; 15(11): 3242-3253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817867

RESUMO

Bladder Cancer (BCa) is one of the most common cancers of the urinary system. Colony-stimulating factor 2 (CSF2) is involved in many cancers, but not BCa. We investigated the effect of CSF2 on BCa in this study and the underlying molecular mechanisms. CSF2 mRNA levels in BCa were analyzed using the Cancer Genome Atlas (TCGA) database. Western blot was conducted to verify CSF2 expression in BCa tissue samples and cell lines. The effect of CSF2 on the growth of BCa cells was assessed by CCK8 and colony formation. To determine the migration and invasion capabilities of BCa cells, transwell analysis and wound healing assays were conducted. Next, western blot was used to explore the underlying mechanism. In the end, a xenografted BCa mouse model was established to examine the effects of CSF2 on tumorigenesis in vivo. Results showed that CSF2 mRNA was upregulated in BCa samples. Knocking down CSF2 significantly inhibited the proliferation and tumorigenesis of BCa cells in vitro and in vivo. Mechanism analysis revealed that CSF2 knockdown inhibited the proliferation and invasion of BCa cells via AKT/mTOR signaling. Based on these results, CSF2 promotes the proliferation and tumorigenesis of BCa.

11.
Phytomedicine ; 130: 155676, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38820663

RESUMO

BACKGROUND: Prolonged exposure to sun radiation may result in harmful skin photoaging. Therefore, discovering novel anti-photoaging treatment modalities is critical. An active component isolated from Salvia miltiorrhiza (SM), Salvianolic acid B (Sal-B), is a robust antioxidant and anti-inflammatory agent. This investigation aimed to discover the therapeutic impact and pathways of salvianolic acid B for UVB-induced skin photoaging, an area that remains unexplored. METHODS: We conducted in vitro experiments on human dermal fibroblasts (HDFs) exposed to UVB radiation, assessing cellular senescence, superoxide dismutase (SOD) activity, cell viability, proliferation, migration, levels of reactive oxygen species (ROS), and mitochondrial health. The potential mechanism of Sal-B was analyzed using RNA sequencing, with further validation through Western blotting, PCR, and nuclear factor erythroid 2-related factor 2 (NRF2) silencing methods. In vivo, a model of skin photoaging induced by UVB in nude mice was employed. The collagen fiber levels were assessed utilizing hematoxylin and eosin (H&E), Masson, and Sirus red staining. Additionally, NRF2 and related gene and protein expression levels were identified utilizing PCR and Western blotting. RESULTS: Sal-B was found to significantly counteract photoaging in UVB-exposed skin fibroblasts, reducing aging-related decline in fibroblast proliferation and an increase in apoptosis. It was observed that Sal-B aids in protecting mitochondria from excessive ROS production by promoting NRF2 nuclear translocation. NRF2 knockdown experiments established its necessity for Sal-B's anti-photoaging effects. The in vivo studies also verified Sal-B's anti-photoaging efficacy, surpassing that of tretinoin (Retino-A). These outcomes offer novel insights into the contribution of Sal-B in developing clinical treatment modalities for UVB-induced photodamage in skin fibroblasts. CONCLUSION: In this investigation, we identified the Sal-B protective impact on the senescence of dermal fibroblasts and skin photoaging induced by radiation of UVB. The outcomes suggest Sal-B as a potential modulator of the NRF2 signaling pathway.

12.
Biomed Pharmacother ; 176: 116829, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38820972

RESUMO

Bladder cancer (BC) is the most common malignancy of the urinary system and often recurs after tumor removal and/or is resistant to chemotherapy. In cancer cells, the activity of the signaling pathway changes significantly, affecting a wide range of cell activities from growth and proliferation to apoptosis, invasion and metastasis. Nrf2 is a transcription factor that plays an important role in cellular defense responses to a variety of cellular stresses. There is increasing evidence that Nrf2 acts as a tumor driver and that it is involved in the maintenance of malignant cell phenotypes. Abnormal expression of Nrf2 has been found to be common in a variety of tumors, including bladder cancer. Over-activation of Nrf2 can lead to DNA damage and the development of bladder cancer, and is also associated with various pathological phenomena of bladder cancer, such as metastasis, angiogenesis, and reduced toxicity and efficacy of therapeutic anticancer drugs to provide cell protection for cancer cells. However, the above process can be effectively inhibited or reversed by inhibiting Nrf2. Therefore, Nrf2 signaling may be a potential targeting pathway for bladder cancer. In this review, we will characterize this signaling pathway and summarize the effects of Nrf2 and crosstalk with other signaling pathways on bladder cancer progression. The focus will be on the impact of Nrf2 activation on bladder cancer progression and current therapeutic strategies aimed at blocking the effects of Nrf2. To better determine how to promote new chemotherapy agents, develop new therapeutic agents, and potential therapeutic targets.

13.
Cancer Lett ; : 217000, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821254

RESUMO

Radiotherapy is one of the predominant treatment modalities for almost all kinds of malignant cancers, including non-small cell lung cancer (NSCLC). Increasing evidence shows that ionizing radiation (IR) induces reactive oxygen species (ROS) leading to lipid peroxidation and subsequently ferroptosis of cancer cells. However, cancer cells evolve multiple mechanisms against ROS biology resulting in resistance to ferroptosis and radiotherapy, of which NRF2 signaling is one of the most studied. In the current research, we identified that microRNA-139 (miR-139) could be a novel radiosensitizer for NSCLC by inhibiting NRF2 signaling. We found that miR-139 possessed great potential as a diagnostic biomarker for NSCLC and multiple other types of cancer. Overexpression of miR-139 increased radiosensitivity of NSCLC cells in vitro and in vivo. MiR-139 directly targeted cJUN and KPNA2 to impair NRF2 signaling resulting in enhanced IR-induced lipid peroxidation and cellular ferroptosis. We proved KPNA2 to be a binding partner of NRF2 that involved in nuclear translocation of NRF2. Moreover, we found that IR induced miR-139 expression through transcriptional factor EGR1. EGR1 bound to the promoter region and transactivated miR-139. Overall, our findings elucidated the effect of EGR1/miR-139/NRF2 in IR-induced ferroptosis of NSCLC cells and provided theoretical support for the potential diagnostic biomarkers and therapeutic targets for the disease.

14.
Anticancer Res ; 44(6): 2577-2585, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821598

RESUMO

BACKGROUND/AIM: Nuclear factor erythroid-derived 2-related factor-2 (NRF2) is a transcription factor that regulates stress response genes. It negatively regulates the immune system by acting as a transcriptional repressor of inflammatory genes or suppressing type I interferon (IFN) production pathways. NRF2 is often over-expressed in some tumors, including non-small cell lung cancer, and modulates these tumors via an immune-cold microenvironment. Thus, strategies to convert cold tumors into hot tumors are effective for cancer treatment. MATERIALS AND METHODS: NRF2 was knocked-down or over-expressed in human cancer cells (A549, HeLa, H1299, H1650) and mouse mammary adenocarcinoma TS/A cells. Cells were irradiated or transfected with poly(I:C), and changes in type I IFN levels were examined using quantitative real-time polymerase chain reaction and western blotting. Cytosolic DNA was assayed via PicoGreen staining and immune and cancer cells were co-cultured. RESULTS: Regulation of NRF2 expression altered type I IFN levels in the human lung cancer cell line A549 and several solid tumors. Down-regulation of NRF2 resulted in increased levels of cytosolic DNA and activated the cGAS-STING pathway. We confirmed that type I IFN was induced in NRF2-down-regulated tumor cells using ionizing radiation (IR). Furthermore, when dendritic cells and macrophages were co-cultured with IR-exposed NRF2 knockdown tumor cells, the immune cells produced more IFNB1 and CXCL10. CONCLUSION: The immunosuppressive tumor cell environment is improved by NRF2 down-regulation, and IR treatment may promote immune cell signaling activation.


Assuntos
Interferon Tipo I , Fator 2 Relacionado a NF-E2 , Radiação Ionizante , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Interferon Tipo I/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Células A549 , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microambiente Tumoral/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
15.
Neurochem Res ; 49(7): 1879-1901, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38755517

RESUMO

Oxidative stress-induced death of neurons and astrocytes contributes to the pathogenesis of numerous neurodegenerative diseases. While significant progress has been made in identifying neuroprotective molecules against neuronal oxidative damage, little is known about their counterparts for astrocytes. Prolactin (PRL), a hormone known to stimulate astroglial proliferation, viability, and cytokine expression, exhibits antioxidant effects in neurons. However, its role in protecting astrocytes from oxidative stress remains unexplored. Here, we investigated the effect of PRL against hydrogen peroxide (H2O2)-induced oxidative insult in primary cortical astrocyte cultures. Incubation of astrocytes with PRL led to increased enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX), resulting in higher total antioxidant capacity. Concomitantly, PRL prevented H2O2-induced cell death, reactive oxygen species accumulation, and protein and lipid oxidation. The protective effect of PRL upon H2O2-induced cell death can be explained by the activation of both signal transducer and activator of transcription 3 (STAT3) and NFE2 like bZIP transcription factor 2 (NRF2) transduction cascades. We demonstrated that PRL induced nuclear translocation and transcriptional upregulation of Nrf2, concurrently with the transcriptional upregulation of the NRF2-dependent genes heme oxygenase 1, Sod1, Sod2, and Gpx1. Pharmacological blockade of STAT3 suppressed PRL-induced transcriptional upregulation of Nrf2, Sod1 and Gpx1 mRNA, and SOD and GPX activities. Furthermore, genetic ablation of the PRL receptor increased astroglial susceptibility to H2O2-induced cell death and superoxide accumulation, while diminishing their intrinsic antioxidant capacity. Overall, these findings unveil PRL as a potent antioxidant hormone that protects astrocytes from oxidative insult, which may contribute to brain neuroprotection.


Assuntos
Antioxidantes , Astrócitos , Morte Celular , Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Prolactina , Fator de Transcrição STAT3 , Transdução de Sinais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Prolactina/farmacologia , Prolactina/metabolismo , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Células Cultivadas , Camundongos , Ratos
16.
J Inflamm Res ; 17: 3115-3127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774445

RESUMO

Objective: Cellular pyroptosis is a pro-inflammatory mode of programmed cell death that has been identified in recent years, and studies have shown that the LncRNA SOX2OT regulates myocardial injury during sepsis, but the exact regulatory mechanism is unclear. The aim of this study was to assess the role of SOX2OT in regulating cardiomyocyte injury during sepsis cardiomyopathy. Methods: Rat cardiomyocytes, C57BL/6 mice, and transgenic mice were divided into four groups: control, LPS, LPS+ knockout LncRNA SOX2OT, and LPS+ overexpression LncRNA SOX2OT. Inflammatory factor levels were detected by qPCR. Associated proteins and gene expression were detected by Western blotting and qPCR. Dual luciferase was used to detect the target genes of SOX2OT. Nrf2 and EZH2 knockdown and overexpression cell lines were established, and the expression of related genes was detected by qPCR. Results: Results In this study, we found that SOX2OT knockdown exacerbated LPS-induced levels of inflammatory factors and procalcitoninogen (PCT), and increased the expression of pyroptosis-related proteins and LDH. The results of dual luciferase reporter gene assay showed that EZH2 is the target gene of SOX2OT, and overexpression of SOX2OT decreased the expression of EZH2; we also found that knockdown of EZH2 in H9c2 cells decreased the expression of Nrf2, which was positively correlated with the expression level of NLRP3. Further in vivo results showed that overexpression of SOX2OT attenuated SIMD (sepsis-induced myocardial dysfunction), as evidenced by improved myocardial structural integrity and reduced inflammatory cell infiltration. The expression of pyroptosis-related proteins and LDH was significantly increased in the mice in the LPS group; this effect was reversed by overexpression of SOX2OT, and potentiated by knockdown of SOX2OT. Conclusion: Our data reveal a novel mechanism by which SOX2OT inhibits cardiomyocyte sepsis through the EZH2/Nrf-2/NLRP3 pathway, thereby attenuating septic myocardial injury, which may contribute to the development of new therapeutic strategies.

17.
J Agric Food Chem ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776233

RESUMO

Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP. Proper dietary intake of FPPs can attenuate cellular oxidative stress, especially damage to cell membrane phospholipids, by activating the Nrf2/GPx4 pathway. Nuclear factor E2-related factor 2 (Nrf2) is an oxidative stress antagonist. The signaling pathway regulated by Nrf2 is a defense transduction pathway of the organism against external stimuli such as reactive oxygen species and exogenous chemicals. Glutathione peroxidase 4 (GPx4), under the regulation of Nrf2, is the only enzyme that reduces cell membrane lipid peroxides with specificity, thus playing a pivotal role in regulating cellular ferroptosis and counteracting oxidative stress. This study explored the Nrf2/GPx4 pathway mechanism, antioxidant activity of FPPs, and mechanism of LP. It also highlighted the bioprotective properties of FPPs against LP and its associated mechanisms, including (i) activation of the Nrf2/GPx4 pathway, with GPx4 potentially serving as a central target protein, (ii) regulation of antioxidant enzyme activities, leading to a reduction in the production of ROS and other peroxides, and (iii) antioxidant effects on LP and downstream phospholipid structure. In conclusion, FPPs play a crucial role as natural antioxidants in preventing LP. However, further in-depth analysis of FPPs coregulation of multiple signaling pathways is required, and the combined effects of these mechanisms need further evaluation in experimental models. Human trials could provide valuable insights into new directions for research and application.

18.
Aging Cell ; : e14202, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780001

RESUMO

Age-related intervertebral disk degeneration (IVDD) involves increased oxidative damage, cellular senescence, and matrix degradation. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound with strong anti-oxidant capacity. The goal of this study was to determine whether PQQ can prevent aging-related IVDD, and the underlying mechanism. Here, we found that dietary PQQ supplementation for 12 months alleviated IVDD phenotypes in aged mice, including increased disk height index and reduced histological scores and cell loss, without toxicity. Mechanistically, PQQ inhibited oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the nucleus pulposus and annulus fibrosus of aged mice. Similarly, PQQ protected against interleukin-1ß-induced matrix degradation, reactive oxygen species accumulation, and senescence in human nucleus pulposus cells (NPCs) in vitro. Molecular docking predicted and biochemical assays validated that PQQ interacts with specific residues to dissociate the Keap1-Nrf2 complex, thereby increasing nuclear Nrf2 translocation and activation of Nrf2-ARE signaling. RNA sequencing and luciferase assays revealed Nrf2 can transcriptionally upregulate Wnt5a by binding to its promoter, while Wnt5a knockdown prevented PQQ inhibition of matrix metalloproteinase-13 in NPCs. Notably, PQQ supplementation failed to alleviate aging-associated IVDD phenotypes and oxidative stress in aged Nrf2 knockout mice, indicating Nrf2 is indispensable for PQQ bioactivities. Collectively, this study demonstrates Nrf2 activation by PQQ inhibits aging-induced IVDD by attenuating cellular senescence and matrix degradation. This study clarifies Keap1-Nrf2-Wnt5a axis as the novel signaling underlying the protective effects of PQQ against aging-related IVDD, and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced IVDD.

19.
Heliyon ; 10(9): e29752, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720768

RESUMO

Oxidative stress refers to a condition where there is an imbalance between the production of reactive oxygen species and their removal by antioxidants. While the function of reactive oxygen species as specific second messengers under physiological conditions is necessary, their overproduction can lead to numerous instances of cell and tissue damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of many cytoprotective genes that respond to redox stresses. Nrf2 is regularly degraded by kelch-like ECH-associated protein 1 through the ubiquitin-proteasome pathway. The kelch-like ECH-associated protein 1 and Nrf2 complex have attracted attention in both basic and clinical infertility research fields. Oxidative stress is implicated in the pathogenesis of female infertility, including primary ovarian insufficiency, polycystic ovarian syndrome, and endometriosis, as well as male infertility, namely varicocele, cryptorchidism, spermatic cord torsion, and orchitis. Most scientists believe that Nrf2 is a potential therapeutic method in female and male infertility disorders due to its antioxidant effect. Here, the potential roles of oxidative stress and Nrf2 in female and male infertility disorders are reviewed. Moreover, the key role of Nrf2 in the inhibition or induction of these diseases is discussed.

20.
Front Immunol ; 15: 1342350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720901

RESUMO

Dyslipidemia is the most prevalent independent risk factor for patients with chronic kidney disease (CKD). Lipid-induced NLRP3 inflammasome activation in kidney-resident cells exacerbates renal injury by causing sterile inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox balance; however, the exact role of Nrf2 signaling and its regulation of the NLRP3 inflammasome in hyperlipidemia-induced kidney injury are poorly understood. In this study, we demonstrated that activation of the mtROS-NLRP3 inflammasome pathway is a critical contributor to renal tubular epithelial cell (RTEC) apoptosis under hyperlipidemia. In addition, the Nrf2/ARE signaling pathway is activated in renal tubular epithelial cells under hyperlipidemia conditions both in vivo and in vitro, and Nrf2 silencing accelerated palmitic acid (PA)-induced mtROS production, mitochondrial injury, and NLRP3 inflammasome activation. However, the activation of Nrf2 with tBHQ ameliorated mtROS production, mitochondrial injury, NLRP3 inflammasome activation, and cell apoptosis in PA-induced HK-2 cells and in the kidneys of HFD-induced obese rats. Furthermore, mechanistic studies showed that the potential mechanism of Nrf2-induced NLRP3 inflammasome inhibition involved reducing mtROS generation. Taken together, our results demonstrate that the Nrf2/ARE signaling pathway attenuates hyperlipidemia-induced renal injury through its antioxidative and anti-inflammatory effects through the downregulation of mtROS-mediated NLRP3 inflammasome activation.


Assuntos
Células Epiteliais , Hiperlipidemias , Inflamassomos , Túbulos Renais , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/complicações , Hiperlipidemias/imunologia , Células Epiteliais/metabolismo , Ratos , Humanos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Masculino , Linhagem Celular , Apoptose , Elementos de Resposta Antioxidante , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...