Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
1.
Biomed Pharmacother ; 178: 117232, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098181

RESUMO

Alkaloids have remarkable biological and pharmacological properties and have recently garnered extensive attention. Various alkaloids, including commercially available drugs such as berberine, substantially affect ferroptosis. In addition to the three main pathways of ferroptosis, iron metabolism, phospholipid metabolism, and the glutathione peroxidase 4-regulated pathway, novel mechanisms of ferroptosis are continuously being identified. Alkaloids can modulate the progression of various diseases through ferroptosis and exhibit the ability to exert varied effects depending on dosage and tissue type underscores their versatility. Therefore, this review comprehensively summarizes primary targets and the latest advancements of alkaloids in ferroptosis, as well as the dual roles of alkaloids in inhibiting and promoting ferroptosis.

2.
Curr Eye Res ; : 1-13, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103986

RESUMO

PURPOSE: Melatonin has promising protective effects for retinopathy. However, its roles in retinopathy of prematurity (ROP) and the underlying mechanisms remain unknown. We aimed to explore its roles and mechanisms in a ROP model. METHODS: Hematoxylin and eosin staining were used to observe the morphology of the retina. Immunofluorescence was used to detect positive (Nrf2+ and VEGF+) cells. Immunohistochemistry was used to detect the level of nuclear expression of PCNA in retinal tissue. Transmission electron microscope (TEM) was used to observe the morphology and structure of pigment cells. qRT-PCR was used to assay the expression of miR-23a-3p, Nrf2, and HO-1. Western blotting was used to detect the expression of Nrf2, HO-1, ß-actin, and Lamin B1. RESULTS: Melatonin or miR-23a-3p antagomir treatment could ameliorate the Oxygen-induced pathological changes, increased the expression of Nrf2 and HO-1, SOD, and GSH-Px, and decreased the expression of VEGF, miR-23a-3p, MDA and the apoptosis in the ROP model. Further target prediction and luciferase reporter assays confirmed the targeted binding relationship between miR-23a-3p and Nrf2. CONCLUSION: Our study showed that melatonin could ameliorate H2O2-induced apoptosis and oxidative stress injury in RGC cells by mediating miR-23a-3p/Nrf2 signaling pathway, thereby improving retinal degeneration.

3.
Geriatr Gerontol Int ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118439

RESUMO

INTRODUCTION: One of the markers of aging is oxidative stress, a condition characterized by an increase in free radicals concomitant with a reduction in antioxidant defenses. Within this, resveratrol is a compound that has been shown to act as a potent antioxidant. However, few studies highlight the cellular signaling pathways that are activated or inhibited during aging and that are responsible for this biological effect. AIM: To verify the antioxidant profile of resveratrol (5 µM) in leukocytes from donors in different age groups. METHODS: The project was approved by the Ethics Committee. Individuals were divided into three groups: 20-39, 40-59, and 60-80 years old. After separating the leukocytes, assays were performed to evaluate the AMPK (AMP-activated protein kinase) and Nrf2 (erythroid nuclear factor 2-related factor 2) pathways. In addition, luciferase assay and enzyme-linked immunosorbent assay were performed to evaluate transcription factor activation and Nrf2 expression, respectively. The analysis between age and treatment was performed using Pearson correlation (*P < 0.05). RESULTS: There was a reduction in the antioxidant effect of resveratrol during the aging process. In leukocytes from donors over 60 years of age, the AMPK pathway was silenced. Nrf2 was active at all ages. There was an increase in the activation of the transcription factor and phosphorylated protein in all age groups. CONCLUSIONS: Nrf2 is an important biochemical mechanism responsible for the antioxidant effect of resveratrol. This effect diminishes with aging but is still observed. Geriatr Gerontol Int 2024; ••: ••-••.

4.
J Ethnopharmacol ; : 118684, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127117

RESUMO

ETHNOPHARMACOLOGICAL PREVALENCE: Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L. (DC.) homeopathic preparations viz. (200C, 30C, and mother tincture [MT]) are used to treat diabetes. AIM OF THE STUDY: This study aimed to elucidate the regulatory effects of SC preparations (200C, 30C, and MT) on the nuclear factor erythroid 2-related factor 2 (Nrf2) - nuclear factor-κB (NF-κB) pathways and mitochondrial dysfunction in mitigating Diabetic nephropathy. MATERIALS AND METHODS: Streptozotocin-induced diabetic rats were treated with SC preparations (200C, 30C, MT; 1:20 dilution in distilled water; 600 µL/kg body weight) and metformin (45 mg/kg body weight) twice daily for 40 days. DN was evaluated through biochemical parameters and histological examination. Renal tissue lysates were analyzed for glycation markers. Protein and gene levels of Nrf2, NF-κB, and mitochondrial dysfunctional signaling were determined via western blotting and RT-qPCR. An immunohistochemical analysis of the kidneys was performed. In vitro, human serum albumin (HSA - 10 mg/ml) was glycated with methylglyoxal (MGO - 55 mM) in the presence of SC preparations (200C, 30C, MT) for eight days. Glycated samples (400 µg/mL) were incubated with renal cells (HEK-293) for 24 hours. Further reactive oxygen species production, Nrf2 nuclear translocation, and protein or gene expression of Nrf2 and apoptosis markers were analyzed by western blotting, RT-qPCR, and flow cytometry. Molecular docking of gallic and ellagic acid with the HSA-MGO complex was performed. RESULT: In vivo experiments using streptozotocin-induced diabetic rats treated with SC preparations exhibited improved biochemical parameters, preserved kidney function, and reduced glycation adduct formation in a dose-dependent manner. Furthermore, SC preparations downregulated inflammatory mediators such as RAGE, NF-κB, vascular endothelial growth factor (VEGF), and Tumor necrosis factor α (TNF-α) while upregulating the Nrf2-dependent antioxidant and detoxification pathways. They downregulated B-cell lymphoma 2 (Bcl-2) associated X-protein (BAX), C/EBP homologous protein (CHOP), Dynamin-related protein 1 (DRP1), and upregulated BCL 2 gene expression. Notably, SC preparations facilitated nuclear translocation of Nrf2, leading to the upregulation of antioxidant enzymes and the downregulation of oxidative stress markers. Molecular docking studies revealed favorable interactions between gallic (-5.26 kcal/mol) and ellagic acid (-4.71 kcal/mol) with the HSA-MGO complex. CONCLUSION: SC preparations mitigate renal cell apoptosis and mitochondrial dysfunction through Nrf2-dependent mechanisms.

5.
Ecotoxicol Environ Saf ; 283: 116863, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128454

RESUMO

Cadmium (Cd) is a toxic heavy metal pollutant in the environment. Excessive Cd in water has toxic effects on fish, endangering their healthy growth and ultimately affecting the quality and safety of aquatic products. To evaluate the toxicity of excessive Cd to fish through potential oxidative damage, Siniperca chuatsi was exposed to Cd in water for 15 days. It was found that Cd exposure significantly decreased the survival rate of S. chuatsi and Cd was detected in their muscle. Meanwhile, Cd disrupts the redox balance by reducing antioxidant enzyme activities, increasing reactive oxygen species (ROS) and malondialdehyde (MDA) levels in muscle, and promoting oxidative damage. Histomorphology showed that enlargement of muscle fiber gaps, cell swelling and vacuolar degeneration after Cd exposure. In addition, Cd toxicity induced up-regulating the expression of miR-216a, while down-regulation of Nrf2 protein and its downstream antioxidant enzyme genes expression. Further analysis revealed that miR-216a was significantly negatively correlated with the expression of Nrf2, and injection of miR-216a antagomir significantly enhanced the expression of Nrf2 and antioxidant enzyme genes, as well as the activity of antioxidant enzymes, thereby reducing the damage of Cd to fish. These results suggested that miR-216a-mediated Nrf2 signaling pathway plays an important role in Cd-induced oxidative stress of S. chuatsi muscle.

6.
Phytother Res ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054118

RESUMO

Spinal cord injury (SCI) is a severe disabling disease that is characterized by inflammation and oxidative reactions. Tangeretin has been shown to possess significant antioxidant and anti-inflammatory activities. The Keap1/Nrf2 pathway, downstream of the Sesn2 gene, is involved in regulating the inflammation and oxidative response. The main objective of this study was to investigate the effect of tangeretin on SCI and its possible mechanism through cell and animal models. A T9 clamp injury was used for the mouse model and the LPS-induced stimulation of BV-2 cells was used for the cell model. The improvement of motor function after SCI was assessed by open field, swimming, and footprint experiments. The morphological characteristics of mouse spinal cord tissue and the levels of INOS, Sesn2, TNF-α, Keap1, Nrf2, IL-10, and reactive oxygen species (ROS) in vivo and in vitro were measured by several methods including western blotting, qPCR, immunofluorescence, HE, and Nissl staining. In vivo data showed that tangeretin can improve motor function recovery and reduce neuron loss and injury size in mice with SCI. Simultaneously, the in vitro findings suggested that treatment of BV-2 cells with tangeretin after LPS stimulation reduced the production of inflammatory factors and ROS, and could convert BV-2 cells from the M1 to the M2 type. Furthermore, Sesn2 knockout suppressed Keap1/Nrf2, inflammatory factors, ROS levels, and the M1 to M2 transition. Tangeretin can alleviate the inflammation and oxidative response induced by SCI by activating the Sesn2/Keap1/Nrf2 pathway.

7.
Int Immunopharmacol ; 138: 112527, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38950457

RESUMO

BACKGROUND: Sepsis-associated acute kidney injury (SA-AKI) represents a frequent complication of in critically ill patients. The objective of this study is to illuminate the potential protective activity of Micheliolide (MCL) and its behind mechanism against SA-AKI. METHODS: The protective potential of MCL on SA-AKI was investigated in lipopolysaccharide (LPS) treated HK2 cells and SA-AKI mice model. The mitochondrial damage was determined by detection of reactive oxygen species and membrane potential. The Nrf2 silencing was achieved by transfection of Nrf2-shRNA in HK2 cells, and Nrf2 inhibitor, ML385 was employed in SA-AKI mice. The mechanism of MCL against SA-AKI was evaluated through detecting hallmarks related to inflammation, mitophagy and Nrf2 pathway via western blotting, immunohistochemistry, and enzyme linked immunosorbent assay. RESULTS: MCL enhanced viability, suppressed apoptosis, decreased inflammatory cytokine levels and improved mitochondrial damage in LPS-treated HK2 cells, and ameliorated renal injury in SA-AKI mice. Moreover, MCL could reduce the activation of NLRP3 inflammasome via enhancing mitophagy. Additionally, Nrf2 deficiency reduced the suppression effect of MCL on NLRP3 inflammasome activation and blocked the facilitation effect of MCL on mitophagy in LPS-treated HK2 cells, the consistent is true for ML385 treatment in SA-AKI mice. CONCLUSIONS: MCL might target Nrf2 and further reduce the NLRP3 inflammasome activation via enhancing mitophagy, which alleviated SA-AKI.


Assuntos
Injúria Renal Aguda , Mitofagia , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases , Sesquiterpenos de Guaiano , Ubiquitina-Proteína Ligases , Animais , Humanos , Masculino , Camundongos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/induzido quimicamente , Linhagem Celular , Modelos Animais de Doenças , Inflamassomos/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases/metabolismo , Sepse/tratamento farmacológico , Sepse/complicações , Sesquiterpenos de Guaiano/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
Inflammopharmacology ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951436

RESUMO

Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-ß (Aß) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.

9.
Sci Rep ; 14(1): 15706, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977770

RESUMO

Maintaining the mucus layer is crucial for the innate immune system. Urolithin A (Uro A) is a gut microbiota-derived metabolite; however, its effect on mucin production as a physical barrier remains unclear. This study aimed to elucidate the protective effects of Uro A on mucin production in the colon. In vivo experiments employing wild-type mice, NF-E2-related factor 2 (Nrf2)-deficient mice, and wild-type mice treated with an aryl hydrocarbon receptor (AhR) antagonist were conducted to investigate the physiological role of Uro A. Additionally, in vitro assays using mucin-producing cells (LS174T) were conducted to assess mucus production following Uro A treatment. We found that Uro A thickened murine colonic mucus via enhanced mucin 2 expression facilitated by Nrf2 and AhR signaling without altering tight junctions. Uro A reduced mucosal permeability in fluorescein isothiocyanate-dextran experiments and alleviated dextran sulfate sodium-induced colitis. Uro A treatment increased short-chain fatty acid-producing bacteria and propionic acid concentration. LS174T cell studies confirmed that Uro A promotes mucus production through the AhR and Nrf2 pathways. In conclusion, the enhanced intestinal mucus secretion induced by Uro A is mediated through the actions of Nrf-2 and AhR, which help maintain intestinal barrier function.


Assuntos
Colite , Cumarínicos , Mucosa Intestinal , Fator 2 Relacionado a NF-E2 , Receptores de Hidrocarboneto Arílico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Cumarínicos/farmacologia , Colite/metabolismo , Colite/induzido quimicamente , Mucina-2/metabolismo , Mucina-2/genética , Humanos , Colo/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Masculino , Microbioma Gastrointestinal , Camundongos Knockout , Sulfato de Dextrana , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Função da Barreira Intestinal
10.
Allergol Immunopathol (Madr) ; 52(4): 38-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970263

RESUMO

PURPOSE: Sepsis often triggers a systemic inflammatory response leading to multi-organ dysfunction, with complex and not fully understood pathogenesis. This study investigates the therapeutic effects of cimifugin on BV-2 cells under sepsis-induced stress conditions. METHODS: We utilized a BV-2 microglial cell model treated with lipopolysaccharide (LPS) to mimic sepsis. Assessments included cellular vitality, inflammatory cytokine quantification (6 interleukin [6IL]-1ß, interleukin 6 [IL-6], and tumor necrosis factor-α [TNF-α]) via enzyme-linked-immunosorbent serologic assay, and analysis of mRNA expression using real-time polymerase chain reaction. Oxidative stress and mitochondrial function were also evaluated to understand the cellular effects of cimifugin. RESULTS: Cimifugin significantly attenuated LPS-induced inflammatory responses, oxidative stress, and mitochondrial dysfunction. It enhanced cell viability and modulated the secretion and gene expression of inflammatory cytokines IL-1ß, IL-6, and TNF-α. Notably, cimifugin activated the deacetylase sirtuin 1-nuclear factor erythroid 2-related factor 2 pathway, contributing to its protective effects against mitochondrial damage. CONCLUSION: Cimifugin demonstrates the potential of being an effective treatment for sepsis--induced neuroinflammation, warranting further investigation.


Assuntos
Citocinas , Lipopolissacarídeos , Microglia , Estresse Oxidativo , Animais , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Anti-Inflamatórios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cromonas , Sirtuína 1
11.
Mol Nutr Food Res ; 68(15): e2400010, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38958100

RESUMO

SCOPE: Celiac disease (CD) is an allergic intestinal disease caused mainly by gliadin in wheat, which is widespread in the population and currently lacks effective treatment. α-Gliadin peptides cause cellular damage by substantially increasing cellular reactive oxygen species (ROS) levels. METHODS AND RESULTS: This study investigates the protective effect of 11 pea-derived peptides (PPs) on ɑ-gliadin peptide (P31-43) treated Caco-2 cells. Results show that cells treated with PP2, PP5, and PP6 peptides significantly reduce the cell mortality caused by P31-43. Three PPs significantly reduce the P31-43-induced decrease in ROS levels to control levels, and there is no difference between them and the vitamin C (Vc) group. The results in terms of antioxidant-related enzymes show that PPs significantly decrease superoxide dismutase activity (SOD), glutathione reductases (GR), and glutathione (GSH)/oxidized glutathione (GSSG) levels, thus significantly enhancing the antioxidant level of cells. By studying the key proteins of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway, it is found that PPs activate the Keap1/Nrf2 signaling pathway. CONCLUSION: The study finds that peptides from peas can effectively alleviate ɑ-gliadin peptide-induced cell damage. The discovery of these food-derived peptides provides novel potential solutions for the prevention and treatment of CD.


Assuntos
Gliadina , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Gliadina/farmacologia , Humanos , Células CACO-2 , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Cacau/química , Peptídeos/farmacologia , Pisum sativum/química , Estresse Oxidativo/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/farmacologia , Proteínas de Ervilha/farmacologia , Superóxido Dismutase/metabolismo , Doença Celíaca/prevenção & controle , Doença Celíaca/tratamento farmacológico
12.
Neuroscience ; 554: 16-25, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39004410

RESUMO

The biological effects of dapagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, reveal its antioxidant and anti-inflammatory properties, suggesting therapeutic benefits beyond glycemic control. This study explores the neuroprotective effects of dapagliflozin in a rat model of autism spectrum disorder (ASD) induced by propionic acid (PPA), characterized by social interaction deficits, communication challenges, repetitive behaviors, cognitive impairments, and oxidative stress. Our research aims to find effective treatments for ASD, a condition with limited therapeutic options and significant impacts on individuals and families. PPA induces ASD-like symptoms in rodents, mimicking biochemical and behavioral features of human ASD. This study explores dapagliflozin's potential to mitigate these symptoms, providing insights into novel therapeutic avenues. The findings demonstrate that dapagliflozin enhances the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and increases levels of neurotrophic and growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and insulin-like growth factor-binding protein-3 (IGFBP-3). Additionally, dapagliflozin reduces pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-17 (IL-17), and decreases the oxidative stress marker malondialdehyde (MDA). Dapagliflozin's antioxidant properties support cognitive functions by modulating apoptotic mechanisms and enhancing antioxidant capacity. These combined effects contribute to reducing learning and memory impairments in PPA-induced ASD, highlighting dapagliflozin's potential as an adjunctive therapy for oxidative stress and inflammation-related cognitive decline in ASD. This study underscores the importance of exploring new therapeutic strategies targeting molecular pathways involved in the pathophysiology of ASD, potentially improving the quality of life for individuals affected by this disorder.


Assuntos
Antioxidantes , Transtorno do Espectro Autista , Compostos Benzidrílicos , Glucosídeos , Fator de Crescimento Insulin-Like I , Fator 2 Relacionado a NF-E2 , Propionatos , Animais , Glucosídeos/farmacologia , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Fator de Crescimento Insulin-Like I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Compostos Benzidrílicos/farmacologia , Propionatos/farmacologia , Antioxidantes/farmacologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
13.
Ecotoxicol Environ Saf ; 282: 116757, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047363

RESUMO

Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80 µg/kg) for 35 days, accompanied by a rescue strategy with Vig (200 mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3ß-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.


Assuntos
Espermatogênese , Zearalenona , Animais , Zearalenona/toxicidade , Masculino , Espermatogênese/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Carnitina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estrogênios não Esteroides/toxicidade , Feminino , Xantofilas
14.
Bioorg Chem ; 150: 107587, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941700

RESUMO

Molecular hybridization between structural fragments from the structures of curcumin (1) and resveratrol (2) was used as a designing tool to generate a new N-acyl-cinnamoyl-hydrazone hybrid molecular architecture. Twenty-eight new compounds were synthesized and evaluated for multifunctional activities related to Parkinson's disease (PD), including neuroprotection, antioxidant, metal chelating ability, and Keap1/Nrf2 pathway activation. Compounds 3b (PQM-161) and 3e (PQM-164) were highlighted for their significant antioxidant profile, acting directly as induced free radical stabilizers by DPPH and indirectly by modulating intracellular inhibition of t-BOOH-induced ROS formation in neuronal cells. The mechanism of action was determined as a result of Keap1/Nrf2 pathway activation by both compounds and confirmed by different experiments. Furthermore, compound 3e (PQM-164) exhibited a significant effect on the accumulation of α-synuclein and anti-inflammatory activity, leading to an expressive decrease in gene expression of iNOS, IL-1ß, and TNF-α. Overall, these results highlighted compound 3e as a promising and innovative multifunctional drug prototype candidate for PD treatment.


Assuntos
Hidrazonas , Fármacos Neuroprotetores , Doença de Parkinson , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Hidrazonas/farmacologia , Hidrazonas/química , Hidrazonas/síntese química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Desenho de Fármacos , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Animais , Cinamatos/farmacologia , Cinamatos/química , Cinamatos/síntese química
15.
Biosystems ; 242: 105257, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876357

RESUMO

This study investigates the metabolic parallels between stimulated pancreatic beta cells and cancer cells, focusing on glucose and glutamine metabolism. Addressing the significant public health challenges of Type 2 Diabetes (T2D) and cancer, we aim to deepen our understanding of the mechanisms driving insulin secretion and cellular proliferation. Our analysis of anaplerotic cycles and the role of NADPH in biosynthesis elucidates their vital functions in both processes. Additionally, we point out that both cell types share an antioxidative response mediated by the Nrf2 signaling pathway, glutathione synthesis, and UCP2 upregulation. Notably, UCP2 facilitates the transfer of C4 metabolites, enhancing reductive TCA cycle metabolism. Furthermore, we observe that hypoxic responses are transient in beta cells post-stimulation but persistent in cancer cells. By synthesizing these insights, the research may suggest novel therapeutic targets for T2D, highlighting the shared metabolic strategies of stimulated beta cells and cancer cells. This comparative analysis not only illuminates the metabolic complexity of these conditions but also emphasizes the crucial role of metabolic pathways in cell function and survival, offering fresh perspectives for tackling T2D and cancer challenges.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Células Secretoras de Insulina , Neoplasias , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Humanos , Glucose/metabolismo , Neoplasias/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glutamina/metabolismo , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Transdução de Sinais/fisiologia , Proliferação de Células/fisiologia , NADP/metabolismo , Insulina/metabolismo , Ciclo do Ácido Cítrico
16.
Ann N Y Acad Sci ; 1537(1): 155-167, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38922711

RESUMO

This study aimed to investigate the protective effect of NAcM-OPT, a small molecule inhibitor of defective in cullin neddylation 1 (DCN1), on H2O2-induced oxidative damage in keratinocytes. Immortalized human keratinocytes (HaCaT cells) were treated with NAcM-OPT and exposed to oxidative stress. CCK-8 assays were used to measure cell viability. The mGFP-RFP-LC3 dual fluorescent autophagy indicator system was utilized to evaluate changes in autophagic flux. Western blotting was used to measure the expression of the autophagy-related proteins LC3 and Beclin 1. Keratinocytes were treated with the autophagy activator rapamycin, and HaCaT cell supernatant was added to PIG1 cells (immortalized human melanocytes), followed by evaluation of tyrosinase (TYR) expression via qRT-PCR. NAcM-OPT increased cell viability and cell proliferation. Furthermore, this molecule promoted autophagic flux through increased expression of autophagy-related proteins under H2O2-induced oxidative stress. Additionally, rapamycin increased the mRNA levels of TYR in PIG1 cells. Moreover, NAcM-OPT alleviated mitochondrial damage, restored mitochondrial function, and upregulated the expression of NFE2L2, HO1, NQO1, and GCLM. Importantly, NAcM-OPT also increased epidermal thickness, follicle length, and melanin synthesis under oxidative stress in vivo. These findings suggest that NAcM-OPT may be a promising small molecule antioxidant drug for the treatment of vitiligo.


Assuntos
Autofagia , Sobrevivência Celular , Peróxido de Hidrogênio , Queratinócitos , Estresse Oxidativo , Humanos , Autofagia/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HaCaT
17.
Mol Biol Rep ; 51(1): 723, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833199

RESUMO

BACKGROUND: Glioblastoma multiforme, a deadly form of brain tumor, is characterized by aggressive growth and poor prognosis. Oxidative stress, a disruption in the balance between antioxidants and oxidants, is a crucial factor in its pathogenesis. Silymarin, a flavonoid extracted from milk thistle, has shown therapeutic potential in inhibiting cancer cell growth, promoting apoptosis, and reducing inflammation. It also regulates oxidative stress. This study aims to investigate the regulatory effects of silymarin on oxidative stress parameters, especially the transcription factor Nrf2 and its related enzymes in GBM cancer cells, to develop a new anti-cancer compound with low toxicity. METHODS AND RESULTS: First, the cytotoxicity of silymarin on U-87 MG cells was investigated by MTT and the results showed an IC50 of 264.6 µM. Then, some parameters of the redox system were measured with commercial kits, and the obtained results showed that silymarin increased the activity of catalase and superoxide dismutase enzymes, as well as the total antioxidant capacity levels; while the malondialdehyde level that is an indicator of lipid peroxidation was decreased by this compound. The expression level of Nrf2 and HO-1 and glutaredoxin and thioredoxin enzymes were checked by real-time PCR method, and the expression level increased significantly after treatment. CONCLUSIONS: Our findings suggest that silymarin may exert its cytotoxic and anticancer effects by enhancing the Nrf2/HO-1 pathway through antioxidant mechanisms in U-87 MG cells.


Assuntos
Antioxidantes , Glioblastoma , Fator 2 Relacionado a NF-E2 , Oxirredução , Estresse Oxidativo , Silimarina , Silimarina/farmacologia , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Linhagem Celular Tumoral , Oxirredução/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Catalase/metabolismo , Catalase/genética
18.
Front Neurosci ; 18: 1416522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872941

RESUMO

Background: Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods: Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results: Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKß and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion: Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.

19.
Connect Tissue Res ; : 1-11, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884152

RESUMO

BACKGROUND: Previous research has identified a significant role of Thioredoxin-interacting protein (TXNIP) in bone loss. The purpose of this investigation was to assess the role and the underlying molecular mechanisms of TXNIP in the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) and pre-osteoblast MC3T3-E1 cells. METHODS: Human bone marrow stem cells (hBMSCs) and MC3T3-E1 cells were used to induce osteogenic differentiation. The expression of genes and proteins was assessed using RT-qPCR and western blot, respectively. ChIP assay was used to validate the interaction between genes. The osteogenic differentiation ability of cells was reflected using ALP staining and detection of ALP activity. The mineralization ability of cells was assessed using ARS staining. DCFCA staining was employed to evaluate the intracellular ROS level. RESULTS: Initially, downregulation of TXNIP and upregulation of EZH2 were observed during osteogenesis in hBMSCs and MC3T3-E1 cells. Additionally, it was discovered that EZH2 negatively regulates TXNIP expression in these cells. Furthermore, experiments indicated that the knockdown of TXNIP stimulated the activation of the PI3K/AKT/Nrf2 signaling pathway in hBMSCs and MC3T3- E1 cells, thus inhibiting the production of reactive oxygen species (ROS). Further functional experiments revealed that overexpression of TXNIP inhibited the osteogenic differentiation in hBMSCs and MC3T3-E1 cells by enhancing ROS produc-tion. On the other hand, knockdown of TXNIP promoted the osteogenic differentiation capacity of hBMSCs and MC3T3-E1 cells through the activation of the PI3K/AKT/Nrf2 pathway. CONCLUSION: In conclusion, this study demonstrated that TXNIP expression, under the regulation of EZH2, plays a crucial role in the osteogenic differentiation of hBMSCs and MC3T3-E1 cells by regulating ROS production and the PI3K/AKT/Nrf2 pathway.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38846010

RESUMO

Polyphenols are a class of natural compounds that act as antioxidants, neutralising harmful free radicals that would damage cells and increase the risk of diseases such as cancer, diabetes and heart disease. They also reduce inflammation, which is thought to be at the root of many chronic diseases. We are investigating the photoprotective effects of punicalagin, a type of polyphenolic compound mainly found in pomegranates, against UVA-induced damage in human skin fibroblasts. Punicalagin increases cell viability and reduces the high levels of ROS generated by photooxidative stress through its ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 pathway results in an increase in reduced glutathione, NADH, and subsequently protects mitochondrial respiratory capacity. Integrating molecular and imaging approaches, our results demonstrate a potential cytoprotective effect of punicalagin against UVA-induced skin damage through an anti-apoptotic mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA