Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Neuromuscul Dis ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39031377

RESUMO

Background: Myotonic dystrophy type 1 (DM1) is a slowly progressive disease caused by abnormal CTG repetitions on the dystrophia myotonica protein kinase (DMPK) gene. Long mRNA from CTG repetitions stabilizes in nuclear foci and sequester muscleblind-like splicing regulator 1 (MBNL1). Cardinal signs of DM1 include muscle wasting and weakness. The impacts of DM1 progression on skeletal muscle are under-researched. Objective: Identifying physiopathological markers related to maximal strength loss over time in DM1. Methods: Twenty-two individuals with DM1 participated in two maximal isometric muscle strength (MIMS) evaluations of their knee extensors and two vastus lateralis muscle biopsies, 3 years apart. Muscle fiber typing, size (including minimal Feret's diameter [MFD] and atrophy/hypertrophy factors [AF/HF]), and nuclear foci and MBNL1 colocalization (foci/MBNL1+) were evaluated. Immunoblotting was used to measure glycogen synthase kinase-3 beta (GSK3ß), p62, LC3BI, LC3BII, and oxidative phosphorylation proteins. Results: There are significant correlations between the fold changes of MIMS with type 1 fiber MFD (ρ= 0.483) and AF (ρ= -0.514). Regression analysis shows that baseline percentage of foci/MBNL1+ nuclei and strength training explain 44.1% of foci/MBNL1+ nuclei percentage variation over time. There are fair to excellent correlations between the fold changes of MIMS and GSK3ß (ρ= 0.327), p62 (ρ= 0.473), LC3BI (ρ= 0.518), LC3BII (ρ= -0.391) and LC3BII/LC3BI (ρ= -0.773). Conclusion: Type 1 MFD decrease and AF increase are correlated with MIMS loss. There seems to be a plateau effect in foci/MBNL1+ nuclei accumulation and strength training helps decrease this accumulation. Autophagy marker LC3BII/LC3BI ratio has a good biomarker potential of MIMS loss, but more investigations are needed.

2.
Mol Cell ; 84(13): 2490-2510.e9, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996459

RESUMO

The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.


Assuntos
Domínio BTB-POZ , Fatores de Transcrição , Proteínas de Xenopus , Animais , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Cristalografia por Raios X , Células HEK293 , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Xenopus laevis , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/química
3.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833912

RESUMO

In the nucleus, distinct, discrete spots or regions called "foci" have been identified, each harboring a specific molecular function. Accurate and efficient quantification of these foci is essential for understanding cellular dynamics and signaling pathways. In this study, we present an innovative automated image analysis method designed to precisely quantify subcellular foci within the cell nucleus. Manual foci counting methods can be tedious and time-consuming. To address these challenges, we developed an open-source software that automatically counts the number of foci from the indicated image files. We compared the foci counting efficiency, velocity, accuracy, and convenience of Foci-Xpress with those of other conventional methods in foci-induced models. We can adjust the brightness of foci to establish a threshold. The Foci-Xpress method was significantly faster than other conventional methods. Its accuracy was similar to that of conventional methods. The most significant strength of Foci-Xpress is automation, which eliminates the need for analyzing equipment while counting. This enhanced throughput facilitates comprehensive statistical analyses and supports robust conclusions from experiments. Furthermore, automation completely rules out biases caused by researchers, such as manual errors or daily variations. Thus, Foci-Xpress is a convincing, convenient, and easily accessible focus-counting tool for cell biologists.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Automação
4.
Front Oncol ; 13: 1125021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007122

RESUMO

Background: About 15% of Triple-Negative-Breast-Cancer (TNBC) present silencing of the BRCA1 promoter methylation and are assumed to be Homologous Recombination Deficient (HRD). BRCA1-methylated (BRCA1-Me) TNBC could, thus, be eligible to treatment based on PARP-inhibitors or Platinum salts. However, their actual HRD status is discussed, as these tumors are suspected to develop resistance after chemotherapy exposure. Methods: We interrogated the sensitivity to olaparib vs. carboplatin of 8 TNBC Patient-Derived Xenografts (PDX) models. Four PDX corresponded to BRCA1-Me, of which 3 were previously exposed to NeoAdjuvant-Chemotherapy (NACT). The remaining PDX models corresponded to two BRCA1-mutated (BRCA1-Mut) and two BRCA1-wild type PDX that were respectively included as positive and negative controls. The HRD status of our PDX models was assessed using both genomic signatures and the functional BRCA1 and RAD51 nuclear foci formation assay. To assess HR restoration associated with olaparib resistance, we studied pairs of BRCA1 deficient cell lines and their resistant subclones. Results: The 3 BRCA1-Me PDX that had been exposed to NACT responded poorly to olaparib, likewise BRCA1-WT PDX. Contrastingly, 3 treatment-naïve BRCA1-deficient PDX (1 BRCA1-Me and 2 BRCA1-mutated) responded to olaparib. Noticeably, the three olaparib-responsive PDX scored negative for BRCA1- and RAD51-foci, whereas all non-responsive PDX models, including the 3 NACT-exposed BRCA1-Me PDX, scored positive for RAD51-foci. This suggested HRD in olaparib responsive PDX, while non-responsive models were HR proficient. These results were consistent with observations in cell lines showing a significant increase of RAD51-foci in olaparib-resistant subclones compared with sensitive parental cells, suggesting HR restoration in these models. Conclusion: Our results thus support the notion that the actual HRD status of BRCA1-Me TNBC, especially if previously exposed to chemotherapy, may be questioned and should be verified using the BRCA1- and RAD51-foci assay.

5.
Cancers (Basel) ; 13(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771457

RESUMO

(1) Background: Neuroblastomas (NBs) are the most common extracranial solid tumors of children. The amplification of the Myc-N proto-oncogene (MYCN) is a major driver of NB aggressiveness, while high expression of the neurotrophin receptor NTRK1/TrkA is associated with mild disease courses. The molecular effects of NTRK1 signaling in MYCN-amplified NB, however, are still poorly understood and require elucidation. (2) Methods: Inducible NTRK1 expression was realized in four NB cell lines with (IMR5, NGP) or without MYCN amplification (SKNAS, SH-SY5Y). Proteome and phosphoproteome dynamics upon NTRK1 activation by its ligand, NGF, were analyzed in a time-dependent manner in IMR5 cells. Target validation by immunofluorescence staining and automated image processing was performed using the three other NB cell lines. (3) Results: In total, 230 proteins and 134 single phosphorylated class I phosphosites were found to be significantly regulated upon NTRK1 activation. Among known NTRK1 targets, Stathmin and the neurosecretory protein VGF were recovered. Additionally, we observed the upregulation and phosphorylation of Lamin A/C (LMNA) that accumulated inside nuclear foci. (4) Conclusions: We provide a comprehensive picture of NTRK1-induced proteome and phosphoproteome dynamics. The phosphorylation of LMNA within nucleic aggregates was identified as a prominent feature of NTRK1 signaling independent of the MYCN status of NB cells.

6.
Cells ; 10(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572142

RESUMO

Cellular stress induces the formation of membraneless protein condensates in both the nucleus and cytoplasm. The nucleocytoplasmic transport of proteins mainly occurs through nuclear pore complexes (NPCs), whose efficiency is affected by various stress conditions. Here, we report that hyperosmotic stress compartmentalizes nuclear 26S proteasomes into dense nuclear foci, independent of signaling cascades. Most of the proteasome foci were detected between the condensed chromatin mass and inner nuclear membrane. The proteasome-positive puncta were not colocalized with other types of nuclear bodies and were reversibly dispersed when cells were returned to the isotonic medium. The structural integrity of 26S proteasomes in the nucleus was slightly affected under the hyperosmotic condition. We also found that these insulator-body-like proteasome foci were possibly formed through disrupted nucleus-to-cytosol transport, which was mediated by the sequestration of NPC components into osmostress-responding stress granules. These data suggest that phase separation in both the nucleus and cytosol may be a major cell survival mechanism during hyperosmotic stress conditions.


Assuntos
Poro Nuclear/metabolismo , Pressão Osmótica/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina , Citoplasma/metabolismo , Humanos , Membrana Nuclear/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Agregados Proteicos/fisiologia , Proteínas/metabolismo , Estresse Fisiológico/fisiologia
7.
Elife ; 102021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34254584

RESUMO

Breast cancer type two susceptibility protein (BRCA2) is an essential protein in genome maintenance, homologous recombination (HR), and replication fork protection. Its function includes multiple interaction partners and requires timely localization to relevant sites in the nucleus. We investigated the importance of the highly conserved DNA-binding domain (DBD) and C-terminal domain (CTD) of BRCA2. We generated BRCA2 variants missing one or both domains in mouse embryonic stem (ES) cells and defined their contribution in HR function and dynamic localization in the nucleus, by single-particle tracking of BRCA2 mobility. Changes in molecular architecture of BRCA2 induced by binding partners of purified BRCA2 were determined by scanning force microscopy. BRCA2 mobility and DNA-damage-induced increase in the immobile fraction were largely unaffected by C-terminal deletions. The purified proteins missing CTD and/or DBD were defective in architectural changes correlating with reduced HR function in cells. These results emphasize BRCA2 activity at sites of damage beyond promoting RAD51 delivery.


Assuntos
Proteína BRCA2/química , Proteína BRCA2/genética , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Conformação de Ácido Nucleico , Animais , Proteína BRCA2/metabolismo , DNA/química , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Imagem Individual de Molécula
8.
DNA Repair (Amst) ; 105: 103156, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139663

RESUMO

Nuclear reorganization, including the localization of proteins into discrete subnuclear foci, is a hallmark of the cellular response to DNA damage and replication stress. These foci are thought to represent transient environments or repair factories, in which the lesion is sequestered with molecules and co-factors that catalyze repair. For example, nuclear foci contain signaling proteins that recruit transducer proteins. One important class of transducers is the structure-selective endonucleases, such as SLX1-SLX4, MUS81-EME1, and XPF-ERCC1, which remove branched DNA structures that form during repair. The relocalization of structure-selective endonucleases into subnuclear foci provides a visual read-out for the presence of direct DNA damage, replication barriers, or DNA entanglements and can be monitored using fluorescence microscopy. By simultaneously probing for two or more fluorescent signals, fluorescence microscopy can also provide insights into the proximal association of proteins within a local environment. Here, we report an open-source and semi-automated method to detect and quantify subnuclear foci, as well as foci colocalization and the accompanying pixel-based colocalization metrics. We use this pipeline to show that pre-mitotic nuclei contain a basal threshold of foci marked by SLX1-SLX4, MUS81, or XPF. Some of these foci colocalize with FANCD2 and have a high degree of correlation and co-occurrence. We also show that pre-mitotic cells experiencing replication stress contain elevated levels of foci containing SLX1-SLX4 or XPF, but not MUS81. These results point towards a role for SLX1-SLX4 and XPF-ERCC1 in the early cellular response to replication stress. Nevertheless, most of the foci that form in response to replication stress contain either FANCD2 or one of the three endonucleases. Altogether, our work highlights the compositional heterogeneity of subnuclear foci that form in response to replication stress. We also describe a user-friendly pipeline that can be used to characterize these dynamic structures.


Assuntos
Núcleo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , Testes de Mutagenicidade/métodos , Software , Linhagem Celular Tumoral , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Recombinases/metabolismo
9.
Methods Mol Biol ; 1984: 75-85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267422

RESUMO

DNA double strand breaks (DSBs) are a serious threat to genome stability and cell viability. Accurate detection of DSBs is critical for the basic understanding of cellular response to ionizing radiation. Recruitment and retention of DNA repair and response proteins at DSBs can be conveniently visualized by fluorescence imaging (often called ionizing radiation-induced foci) both in live and fixed cells. In this chapter, we describe a live cell imaging methodology that directly monitors induction and repair of single DSB, recruitment kinetics of DSB repair/sensor factors to DSB sites, and dynamic interaction of DSB repair/sensor proteins with DSBs at single-cell level. Additionally, the methodology described in this chapter can be readily adapted to other DSBs repair/sensor factors and cell types.


Assuntos
Bioensaio/métodos , Núcleo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Recuperação de Fluorescência Após Fotodegradação , Humanos , Cinética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
10.
New Phytol ; 220(2): 476-487, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29974976

RESUMO

DNA replication is a fundamental process for the faithful transmission of genetic information in all living organisms. Many endogenous and environmental signals impede fork progression during DNA synthesis, which induces replication errors and DNA replication stress. Chromatin remodeling factors regulate nucleosome occupancy and the histone composition of the nucleosome in chromatin; however, whether chromatin remodeling factors are involved in the DNA replication stress response in plants is unknown. We reveal that chromatin remodeling factor CHR18 plays important roles in DNA replication stress in Arabidopsis thaliana by interacting with the DNA replication protein RPA1A. According to the genetic analysis, the loss of function of either CHR18 or RPA1A confers a high sensitivity to DNA replication stress in Arabidopsis. CHR18 interacts with RPA1A in both yeast cells and tobacco epidermal cells. The coexpression of RPA1A and CHR18 enhances the accumulation of CHR18 in nuclear foci in plants. CHR18 is a typical nuclear-localized chromatin remodeling factor with ATPase activity. Our results demonstrate that during DNA synthesis in plants, RPA1A interacts with CHR18 and recruits CHR18 to nuclear foci to resolve DNA replication stress, which is important for cell propagation and root growth in Arabidopsis plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Estresse Fisiológico , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , DNA Helicases/química , Proteínas de Ligação a DNA/química , Mutação/genética , Folhas de Planta/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas
11.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29643239

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV), like other herpesviruses, replicates within the nuclei of its human cell host and hijacks host machinery for expression of its genes. The activities that culminate in viral DNA synthesis and assembly of viral proteins into capsids physically concentrate in nuclear areas termed viral replication compartments. We sought to better understand the spatiotemporal regulation of viral RNAs during the KSHV lytic phase by examining and quantifying the subcellular localization of select viral transcripts. We found that viral mRNAs, as expected, localized to the cytoplasm throughout the lytic phase. However, dependent on active viral DNA replication, viral transcripts also accumulated in the nucleus, often in foci in and around replication compartments, independent of the host shutoff effect. Our data point to involvement of the viral long noncoding polyadenylated nuclear (PAN) RNA in the localization of an early, intronless viral mRNA encoding ORF59-58 to nuclear foci that are associated with replication compartments.IMPORTANCE Late in the lytic phase, mRNAs from Kaposi's sarcoma-associated herpesvirus accumulate in the host cell nucleus near viral replication compartments, centers of viral DNA synthesis and virion production. This work contributes spatiotemporal data on herpesviral mRNAs within the lytic host cell and suggests a mechanism for viral RNA accumulation. Our findings indicate that the mechanism is independent of the host shutoff effect and splicing but dependent on active viral DNA synthesis and in part on the viral noncoding RNA, PAN RNA. PAN RNA is essential for the viral life cycle, and its contribution to the nuclear accumulation of viral messages may facilitate propagation of the virus.


Assuntos
Núcleo Celular/metabolismo , Replicação do DNA , DNA Viral/metabolismo , Poli A/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear/metabolismo , RNA não Traduzido/metabolismo , Núcleo Celular/genética , Células Cultivadas , DNA Viral/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Humanos , Poli A/genética , RNA Mensageiro/genética , RNA Nuclear/genética , RNA não Traduzido/genética , RNA Viral/genética , RNA Viral/metabolismo , Sarcoma de Kaposi/virologia , Replicação Viral
12.
Am J Cancer Res ; 7(5): 1084-1095, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560059

RESUMO

Tumor hypoxia is an independent prognostic indicator of tumor malignant progression and poor patient survival. Therefore, eradication of hypoxic tumor cells is of paramount importance for successful disease control. In this study, we have made a new discovery that nifurtimox, a clinically approved drug to treat Chagas disease caused by the parasitic protozoan trypanosomes, can function as a hypoxia-activated cytotoxin. We have found that nifurtimox preferentially kill clonogenic tumor cells especially under the hypoxic conditions of ≤0.1% O2. Mechanistically, nifurtimox becomes activated after tumor cells enter into a fully hypoxic state, as shown by the stabilization of the Hypoxia-Inducible Factor 1α (HIF-1α). Nifurtimox specifically induces the formation of 53BP1 foci, a hallmark of DNA double-stranded breaks, in hypoxic tumor cells. Hypoxia-dependent activation of nifurtimox involves P450 (cytochrome) oxidoreductase. The anti-protozoan drug nifurtimox holds promise as a new hypoxia-activated cytotoxin with the potential to preferentially eliminates severely hypoxic tumor cells.

13.
Methods Mol Biol ; 1599: 71-84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28477112

RESUMO

Visual inspection of cellular activities based on conventional fluorescence microscope is a fundamental tool to study the role of DNA damage response (DDR). In the context of drug discovery where the capture of thousands of images is required across parallel experiments, this presents a challenge to data collection and analysis. Manual scoring is laborious and often reliant on trained personnel to intuit biological meaning through visual reasoning. On the other hand, high content screening combines the automation of microscopy image acquisition and analysis in a single platform to quantify cellular events of interests. The data generated is rapid and accurate, lessening the bias of human interpretation. Herein, this chapter will describe an image-based high content screen approach and the data analysis of Ataxia-Telangiectasia Mutated (ATM) DNA damage-induced foci.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Humanos , Células-Tronco Neoplásicas/metabolismo
14.
Cell Host Microbe ; 21(2): 156-168, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28132837

RESUMO

Independently evolved pathogen effectors from three branches of life (ascomycete, eubacteria, and oomycete) converge onto the Arabidopsis TCP14 transcription factor to manipulate host defense. However, the mechanistic basis for defense control via TCP14 regulation is unknown. We demonstrate that TCP14 regulates the plant immune system by transcriptionally repressing a subset of the jasmonic acid (JA) hormone signaling outputs. A previously unstudied Pseudomonas syringae (Psy) type III effector, HopBB1, interacts with TCP14 and targets it to the SCFCOI1 degradation complex by connecting it to the JA signaling repressor JAZ3. Consequently, HopBB1 de-represses the TCP14-regulated subset of JA response genes and promotes pathogen virulence. Thus, HopBB1 fine-tunes host phytohormone crosstalk by precisely manipulating part of the JA regulon to avoid pleiotropic host responses while promoting pathogen proliferation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Interações Hospedeiro-Patógeno/genética , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Regiões Promotoras Genéticas , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Nicotiana/genética , Fatores de Transcrição/genética
15.
Front Plant Sci ; 8: 2165, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312406

RESUMO

Viruses are intracellular parasites with a nucleic acid genome and a proteinaceous capsid. Viral capsids are formed of at least one virus-encoded capsid protein (CP), which is often multifunctional, playing additional non-structural roles during the infection cycle. In animal viruses, there are examples of differential localization of CPs associated to the progression of the infection and/or enabled by other viral proteins; these changes in the distribution of CPs may ultimately regulate the involvement of these proteins in different viral functions. In this work, we analyze the subcellular localization of a GFP- or RFP-fused CP from the plant virus Tomato yellow leaf curl virus (TYLCV; Fam. Geminiviridae) in the presence or absence of the virus upon transient expression in the host plants Nicotiana benthamiana and tomato. Our findings show that, in agreement with previous reports, when the CP is expressed alone it localizes mainly in the nucleolus and weakly in the nucleoplasm. Interestingly, the presence of the virus causes the sequential re-localization of the CP outside of the nucleolus and into discrete nuclear foci and, eventually, into an uneven distribution in the nucleoplasm. Expression of the viral replication-associated protein, Rep, is sufficient to exclude the CP from the nucleolus, but the localization of the CP in the characteristic patterns induced by the virus cannot be recapitulated by co-expression with any individual viral protein. Our results demonstrate that the subcellular distribution of the CP is a dynamic process, temporally regulated throughout the progression of the infection. The regulation of the localization of the CP is determined by the presence of other viral components or changes in the cellular environment induced by the virus, and is likely to contribute to the multifunctionality of this protein. Bearing in mind these observations, we suggest that viral proteins should be studied in the context of the infection and considering the temporal dimension in order to comprehensively understand their roles and effects in the interaction between virus and host.

16.
Eur J Cell Biol ; 95(12): 611-622, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28029379

RESUMO

The recently identified Luman/CREB3-binding partner LRF (Luman/CREB3 recruitment factor) was shown to localize to discrete sub-nuclear foci. Luman is implicated in herpes simplex virus-1 (HSV-1) latency/reactivation and the unfolded protein response (UPR) pathway; therefore, we sought to characterize the formation of the LRF nuclear foci in the context of cellular signaling and HSV-1 replication. Here, we mapped the nuclear foci-targeting sequence to the central region containing the first leucine zipper (a.a.415-519), and found that the integrity of the whole region appears essential for LRF foci formation. LRF foci integrity was unaffected by inhibition of cellular DNA replication and translation, however, disruption of transcription resulted in altered LRF localization. When compared to other cellular and viral foci LRF co-localized with the nuclear receptor co-activator GRIP1, while the HSV-1 gene products ICP4, ICP27 and VP13/14 disrupted foci formation to varying degrees. Interestingly, cells over-expressing LRF were resistant to productive HSV-1 infection and this resistance was dependent upon protein targeting and an N-terminal transactivation domain. When LRF knockdown cells were subjected to primary infection, HSV-1 gene expression and progeny virus yield were enhanced by ∼3 fold compared to wildtype cells. Taken together, these results indicate that LRF is a key regulator that may act direct or indirectly as a repressor of essential genes required for productive viral infection.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 1/fisiologia , Fatores de Transcrição/metabolismo , Replicação Viral/fisiologia , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Proteínas Supressoras de Tumor/metabolismo , Resposta a Proteínas não Dobradas , Células Vero
17.
Cancer Biol Ther ; 17(12): 1266-1273, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27786593

RESUMO

Solid tumors contain numerous regions with insufficient oxygen concentrations, a condition termed hypoxia. Tumor hypoxia is significantly associated with metastasis, refractory to conventional cancer therapies, and poor patient survival. Therefore, eradication of hypoxic tumor cells will likely have significant impact on the overall progression-free patient survival. This article reports a new discovery that Benznidazole, a bioreductive drug currently used to treat Chagas disease caused by the parasitic protozoan Trypanosoma cruzi, is activated by hypoxia and can kill clonogenic tumor cells especially those under severe hypoxic conditions (≤0.1 % O2). This type of hypoxia selectivity is important in that severely hypoxic tumor microenvironment is where tumor cells exhibit the strongest resistance to therapy. Mechanistically, activation of Benznidazole coincides with the stabilization of the Hypoxia-Inducible Factor 1α (HIF-1α), suggesting that Benznidazole is activated after tumor cells have entered into a fully hypoxic state. Under such hypoxic conditions, Benznidazole induces the formation of 53BP1 foci, a hallmark of DNA double-stranded breaks that can cause clonogenic inhibition or cell death. These results demonstrate that Benznidazole is a hypoxia-activated cytotoxin with the potential to specifically eliminate hypoxic tumor cells.


Assuntos
Hipóxia Celular , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Nitroimidazóis/farmacologia , Microambiente Tumoral/fisiologia , Apoptose/efeitos dos fármacos , Células HCT116 , Humanos , Ensaio Tumoral de Célula-Tronco
18.
Genetics ; 203(1): 147-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26920759

RESUMO

Double-strand DNA breaks occur upon exposure of cells to ionizing radiation and certain chemical agents or indirectly through replication fork collapse at DNA damage sites. If left unrepaired, double-strand breaks can cause genome instability and cell death, and their repair can result in loss of heterozygosity. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination relocalize into discrete nuclear foci. We identified 29 proteins that colocalize with recombination repair protein Rad52 in response to DNA damage. Of particular interest, Ygr042w/Mte1, a protein of unknown function, showed robust colocalization with Rad52. Mte1 foci fail to form when the DNA helicase gene MPH1 is absent. Mte1 and Mph1 form a complex and are recruited to double-strand breaks in vivo in a mutually dependent manner. MTE1 is important for resolution of Rad52 foci during double-strand break repair and for suppressing break-induced replication. Together our data indicate that Mte1 functions with Mph1 in double-strand break repair.


Assuntos
RNA Helicases DEAD-box/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a Telômeros/metabolismo , RNA Helicases DEAD-box/genética , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Ligação Proteica , Transporte Proteico , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Ligação a Telômeros/genética
19.
Biochem Biophys Res Commun ; 466(2): 180-5, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26343459

RESUMO

Fanconi anemia (FA) is a recessively inherited multigene disease characterized by congenital defects, progressive bone marrow failure, and heightened cancer susceptibility. Monoubiquitination of the FA pathway member FANCD2 contributes to the repair of replication stalling DNA lesions. However, cellular regulation of FANCD2 monoubiquitination remains poorly understood. In the present study, we identified the miR-302 cluster as a potential regulator of FANCD2 by bioinformatics analysis. MicroRNAs (miRNAs) are the major posttranscriptional regulators of a wide variety of biological processes, and have been implicated in a number of diseases. Expression of the exogenous miR-302 cluster (without miR-367) reduced FANCD2 monoubiquitination and nuclear foci formation. Furthermore, miR-302 cells showed extensive chromosomal breakage upon MMC treatment when compared to mock control cells. Taken together, our results suggest that overexpression of miR-302 plays a critical role in the regulation of FANCD2 monoubiquitination, resulting in characteristic defects in DNA repair within cells.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Humanos , Ubiquitinação
20.
G3 (Bethesda) ; 5(9): 1937-44, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26163422

RESUMO

DNA damage response pathways are crucial for protecting genome stability in all eukaryotes. Saccharomyces cerevisiae Dna2 has both helicase and nuclease activities that are essential for Okazaki fragment maturation, and Dna2 is involved in long-range DNA end resection at double-strand breaks. Dna2 forms nuclear foci in response to DNA replication stress and to double-strand breaks. We find that Dna2-GFP focus formation occurs mainly during S phase in unperturbed cells. Dna2 colocalizes in nuclear foci with 25 DNA repair proteins that define recombination repair centers in response to phleomycin-induced DNA damage. To systematically identify genes that affect Dna2 focus formation, we crossed Dna2-GFP into 4293 nonessential gene deletion mutants and assessed Dna2-GFP nuclear focus formation after phleomycin treatment. We identified 37 gene deletions that affect Dna2-GFP focus formation, 12 with fewer foci and 25 with increased foci. Together these data comprise a useful resource for understanding Dna2 regulation in response to DNA damage.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fase G2 , Instabilidade Genômica , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fase S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA