Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Bioeng ; 9(2): 227-233, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28638491

RESUMO

O-GlcNAc-ylation is the post-translational addition of an O-linked ß-N-acetylglucosamine to the serine and threonine residues of thousands of proteins in eukaryotic cells. Specifically, half of the thirty different types of protein components in the nuclear pore complex (NPC) are modified by O-GlcNAc, of which the majority are intrinsically disordered nucleoporins (Nups) containing multiple phenylalanine-glycine (FG) repeats. Moreover, these FG-Nups form a strict selectivity barrier with a high density of O-GlcNAc in the NPC to mediate bidirectional trafficking between the cytoplasm and nucleus. However, the roles that O-GlcNAc plays in the structure and function of the NPC remain obscure. In this review paper, we will discuss the current knowledge of O-GlcNAc-ylated Nups, highlight some new techniques used to probe O-GlcNAc's roles in the nuclear pore, and finally propose a new model for the effect of O-GlcNAc on the NPC's permeability.

2.
Nucleus ; 1(4): 299-308, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21113270

RESUMO

In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling. All members of the steroid receptor family are known to form large oligomeric structures with the heat-shock proteins of 90-kDa (hsp90) and 70-kDa (hsp70), the small acidic protein p23, and a tetratricopeptide repeat (TPR) -domain protein such as FK506-binding proteins (FKBPs), cyclophilins (CyPs) or the serine/threonine protein phosphatase 5 (PP5). It has always been stated that the dissociation of the chaperone heterocomplex (a process normally referred to as receptor "transformation") is the first step that permits the nuclear import of steroid receptors. However the experimental evidence is consistent with a model where the chaperone machinery is required for the retrotransport of the receptor through the cytoplasm and also facilitates the passage through the nuclear pore. Recent evidence indicates that the hsp90-based chaperone system also interacts with structures of the nuclear pore such as importin ß and the integral nuclear pore glycoprotein Nup62 facilitating the passage of the untransformed receptor through the nuclear pore.


Assuntos
Núcleo Celular/metabolismo , Imunofilinas/metabolismo , Chaperonas Moleculares/metabolismo , Poro Nuclear/metabolismo , Receptores de Esteroides/metabolismo , Transporte Ativo do Núcleo Celular , Ciclofilinas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Receptores de Esteroides/química , Proteínas de Ligação a Tacrolimo/metabolismo , beta Carioferinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA