RESUMO
Tanycytes are hypothalamic radial glial-like cells with an important role in the regulation of neuroendocrine axes and energy homeostasis. These cells have been implicated in glucose, amino acids, and fatty acid sensing in the hypothalamus of rodents, where they are strategically positioned. While their cell bodies contact the cerebrospinal fluid, their extensive processes contact neurons of the arcuate and ventromedial nuclei, protagonists in the regulation of food intake. A growing body of evidence has shown that purinergic signaling plays a relevant role in this homeostatic role of tanycytes, likely regulating the release of gliotransmitters that will modify the activity of satiety-controlling hypothalamic neurons. Connexin hemichannels have proven to be particularly relevant in these mechanisms since they are responsible for the release of ATP from tanycytes in response to nutritional signals. On the other hand, either ionotropic or metabotropic ATP receptors are involved in the generation of intracellular Ca2+ waves in response to hypothalamic nutrients, which can spread between glial cells and towards neighboring neurons. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes, highlighting the participation of purinergic signaling in this process.
Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Receptores Purinérgicos/metabolismo , Animais , Glucose/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Cancer cells characteristically have a high proliferation rate. Because tumor growth depends on energy-consuming anabolic processes, including biosynthesis of protein, lipid, and nucleotides, many tumor-associated conditions, including intermittent oxygen deficiency due to insufficient vascularization, oxidative stress, and nutrient deprivation, results from fast growth. To cope with these environmental stressors, cancer cells, including cancer stem cells, must adapt their metabolism to maintain cellular homeostasis. It is well- known that cancer stem cells (CSC) reprogram their metabolism to adapt to live in hypoxic niches. They usually change from oxidative phosphorylation to increased aerobic glycolysis even in the presence of oxygen. However, as opposed to most differentiated cancer cells relying on glycolysis, CSCs can be highly glycolytic or oxidative phosphorylation-dependent, displaying high metabolic plasticity. Although the influence of the metabolic and nutrient-sensing pathways on the maintenance of stemness has been recognized, the molecular mechanisms that link these pathways to stemness are not well known. Here in this review, we describe the most relevant signaling pathways involved in nutrient sensing and cancer cell survival. Among them, Adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway, mTOR pathway, and Hexosamine Biosynthetic Pathway (HBP) are critical sensors of cellular energy and nutrient status in cancer cells and interact in complex and dynamic ways.
Assuntos
Metabolismo Energético/fisiologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Hexosaminas/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C3), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.
RESUMO
Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance.