Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
ACS Infect Dis ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096289

RESUMO

SARS-CoV-2 and HCoV-OC43 belong to the same ß genus of the Coronaviridae family. SARS-CoV-2 was responsible for the recent COVID-19 pandemic, and HCoV-OC43 is the etiological agent of mild upper respiratory tract infections. SARS-COV-2 and HCoV-OC43 co-infections were found in children with respiratory symptoms during the COVID-19 pandemic. The two ß-coronaviruses share a high degree of homology between the 3CLpro active sites, so much so that the safer HCoV-OC43 has been suggested as a tool for the identification of new anti-SARS-COV-2 agents. Compounds 5 and 24 inhibited effectively both Wuhan and British SARS-CoV-2 patient isolates in Vero E6 cells and the HCoV-OC43 in MRC-5 cells at low micromolar concentrations. The inhibition was apparently exerted via targeting the 3CLpro active sites of both viruses. Compounds 5 and 24 at 100 µM inhibited the SARS-CoV-2 3CLpro activity of 61.78 and 67.30%, respectively. These findings highlight 5 and 24 as lead compounds of a novel class of antiviral agents with the potential to treat SARS-COV-2 and HCoV-OC43 infections.

2.
Proc Natl Acad Sci U S A ; 121(29): e2310421121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976733

RESUMO

We generated a replication-competent OC43 human seasonal coronavirus (CoV) expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike in place of the native spike (rOC43-CoV2 S). This virus is highly attenuated relative to OC43 and SARS-CoV-2 in cultured cells and animals and is classified as a biosafety level 2 (BSL-2) agent by the NIH biosafety committee. Neutralization of rOC43-CoV2 S and SARS-CoV-2 by S-specific monoclonal antibodies and human sera is highly correlated, unlike recombinant vesicular stomatitis virus-CoV2 S. Single-dose immunization with rOC43-CoV2 S generates high levels of neutralizing antibodies against SARS-CoV-2 and fully protects human ACE2 transgenic mice from SARS-CoV-2 lethal challenge, despite nondetectable replication in respiratory and nonrespiratory organs. rOC43-CoV2 S induces S-specific serum and airway mucosal immunoglobulin A and IgG responses in rhesus macaques. rOC43-CoV2 S has enormous value as a BSL-2 agent to measure S-specific antibodies in the context of a bona fide CoV and is a candidate live attenuated SARS-CoV-2 mucosal vaccine that preferentially replicates in the upper airway.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Testes de Neutralização , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Anticorpos Neutralizantes/imunologia , Camundongos , COVID-19/imunologia , COVID-19/virologia , COVID-19/prevenção & controle , Anticorpos Antivirais/imunologia , Testes de Neutralização/métodos , Camundongos Transgênicos , Coronavirus Humano OC43/imunologia , Coronavirus Humano OC43/genética , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , Chlorocebus aethiops , Células Vero , Macaca mulatta
3.
J Virol ; 98(7): e0085024, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953378

RESUMO

Viruses are obligate parasites that depend on the cellular machinery for their propagation. Several viruses also incorporate cellular proteins that facilitate viral spread. Defining these cellular proteins is critical to decipher viral life cycles and delineate novel therapeutic strategies. While numerous studies have explored the importance of host proteins in coronavirus spread, information about their presence in mature virions is limited. In this study, we developed a protocol to highly enrich mature HCoV-OC43 virions and characterize them by proteomics. Recognizing that cells release extracellular vesicles whose content is modulated by viruses, and given our ability to separate virions from these vesicles, we also analyzed their protein content in both uninfected and infected cells. We uncovered 69 unique cellular proteins associated with virions including 31 high-confidence hits. These proteins primarily regulate RNA metabolism, enzymatic activities, vesicular transport, cell adhesion, metabolite interconversion, and translation. We further discovered that the virus had a profound impact on exosome composition, incorporating 47 novel cellular proteins (11 high confidence) and excluding 92 others (61 high confidence) in virus-associated extracellular vesicles compared to uninfected cells. Moreover, a dsiRNA screen revealed that 11 of 18 select targets significantly impacted viral yields, including proteins found in virions or extracellular vesicles. Overall, this study provides new and important insights into the incorporation of numerous host proteins into HCoV-OC43 virions, their biological significance, and the ability of the virus to modulate extracellular vesicles. IMPORTANCE: In recent years, coronaviruses have dominated global attention, making it crucial to develop methods to control them and prevent future pandemics. Besides viral proteins, host proteins play a significant role in viral propagation and offer potential therapeutic targets. Targeting host proteins is advantageous because they are less likely to mutate and develop resistance compared to viral proteins, a common issue with many antiviral treatments. In this study, we examined the protein content of the less virulent biosafety level 2 HCoV-OC43 virus as a stand-in for the more virulent SARS-CoV-2. Our findings reveal that several cellular proteins incorporated into the virion regulate viral spread. In addition, we report that the virus extensively modulates the content of extracellular vesicles, enhancing viral dissemination. This underscores the critical interplay between the virus, host proteins, and extracellular vesicles.


Assuntos
Coronavirus Humano OC43 , Vesículas Extracelulares , Proteômica , Vírion , Vírion/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/metabolismo , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Exossomos/metabolismo , Exossomos/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno
4.
Fitoterapia ; 177: 106077, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906387

RESUMO

The screening of based target compounds supported by LC/MS, MS/MS and Global Natural Products Social (GNPS) used to identify the compounds 1-10 of Butea monsperma. They were evaluated in human malignant embryonic rhabdomyoma cells (RD cells) infected with Human coronavirus OC43 (HCoV-OC43) and showed significant inhibitory activity. Target inhibition tests showed that compounds 6 and 8 inhibited the proteolytic enzyme 3CLpro, which is widely present in coronavirus and plays an important role in the replication process, with an effective IC50 value. The study confirmed that dioxymethylene of compound 8 may be a key active fragment in inhibiting coronavirus (EC50 7.2 µM, SI > 139.1). The results have led to identifying natural bioactive compounds for possible inhibiting HCoV-OC43 and developing drug for Traditional Chinese Medicine (TCM).


Assuntos
Antivirais , Coronavirus Humano OC43 , Flavonoides , Humanos , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/química , Cromatografia Líquida , Estrutura Molecular , Coronavirus Humano OC43/isolamento & purificação , Coronavirus Humano OC43/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/isolamento & purificação , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Proteases 3C de Coronavírus/antagonistas & inibidores , Produtos Biológicos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/química
5.
Front Bioinform ; 4: 1397968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855143

RESUMO

Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive in silico analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.

6.
Microbiol Spectr ; 12(7): e0422023, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864599

RESUMO

The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Internalização do Vírus , Replicação Viral , Humanos , Coronavirus Humano NL63/fisiologia , Coronavirus Humano NL63/genética , Coronavirus Humano 229E/fisiologia , Coronavirus Humano 229E/genética , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/genética , Linhagem Celular , Estações do Ano , Cinética , Receptores Virais/metabolismo , Receptores Virais/genética , Resfriado Comum/virologia , Resfriado Comum/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Animais , COVID-19/virologia , COVID-19/metabolismo , Coronavirus/fisiologia , Coronavirus/genética
7.
J Food Prot ; 87(8): 100316, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878900

RESUMO

The efficacy of three antimicrobials was evaluated against two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surrogates - bovine coronavirus (BCoV) and human coronavirus (HCoV) OC43 - on hard and soft nonporous materials. Three antimicrobials with three different active ingredients (chlorine, hydrogen peroxide, and quaternary ammonium compound + alcohol) were studied. Initially, a neutralization method was optimized for each antimicrobial. Then, we determined their efficacy against BCoV and HCoV OC43 in both suspension and on surfaces made with polyethylene terephthalate (PET) plastic and vinyl upholstery fabric. All tests were conducted under ambient environmental conditions with a soil load of 5% fetal bovine serum. After a 2-min exposure, all three antimicrobials achieved a >3.0 log10 reduction in viral titers in suspension. All three also reduced virus infectivity on both surface materials below the detection limit (0.6 log10 TCID50/carrier). Treatments in which the reduction in virus titer was <3.0 log10 were attributed to a decreased dynamic range on the carrier during drying prior to disinfection. The carrier data revealed that both surrogates were inactivated more rapidly (p <0.05) on vinyl or under conditions of high relative humidity. Three classes of antimicrobials were efficacious against both SARS-CoV-2 surrogate viruses, with BCoV demonstrating slightly less sensitivity compared to HCoV OC43. These findings also illustrate the importance of (1) optimizing the neutralization method and (2) considering relative humidity as a key factor for efficacy testing.


Assuntos
Anti-Infecciosos , COVID-19 , Coronavirus Humano OC43 , Coronavirus Bovino , SARS-CoV-2 , Animais , Humanos , Coronavirus Bovino/efeitos dos fármacos , Bovinos , SARS-CoV-2/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Peróxido de Hidrogênio/farmacologia
8.
J Ethnopharmacol ; 333: 118490, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38925321

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Dryopteris crassirhizoma Nakai (Dryopteridaceae, RDC), a traditional East Asian herbal medicine, possesses a broad spectrum of medicinal properties, including anti-inflammatory, anticancer, antibacterial, and antiviral activities. AIM OF THE STUDY: This study investigates the 30% ethanolic extract of RDC's antiviral potential against human coronavirus OC43 (HCoV-OC43), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its variants infections. MATERIALS AND METHODS: A 30% ethanolic extract of RDC or its components, filixic acid ABA (PubChem CID: 15081408) and dryocrassin ABBA (PubChem CID: 3082025) were treated with Human Coronavirus infection (HCoV-OC43, SARS-CoV-2 and its variants). The base peak chromatogram of RDC was evaluated using UPLC-Q/TOF Mass to identify the RDC, and the quantitative analysis of RDC compounds was performed using LC-MS/MS. A cytopathic effect (CPE) reduction assay, Western blot, immunofluorescence staining of viral protein expression, and qRT-PCR were performed to quantify the viral RNA copy numbers and determine the antiviral activity. The time-of-addition assay, the virus attachment, penetration, and virucidal assays, and SARS-CoV-2 Mpro and PLpro activity assay were used to elucidate the mode of action. RESULTS: RDC exhibited dose-dependent inhibition of HCoV-OC43-induced cytopathic effects, reducing viral RNA copy numbers and viral protein levels. Time-of-addition assays indicated that RDC targets the early stages of the HCoV-OC43 life cycle, inhibiting virion attachment and penetration with virucidal activity. Notably, filixic acid ABA and dryocrassin ABBA, constituents of RDC, reduced HCoV-OC43 viral RNA loads. Furthermore, RDC effectively blocked viral entry in pseudotyped lentivirus assays, involving spike proteins of SARS-CoV-2 Delta plus and South Africa variants, as well as control lentiviral particles expressing vesicular stomatitis virus glycoprotein G. Additionally, RDC demonstrated inhibition of SARS-CoV-2 infection and its variants by targeting viral proteases, namely main protease (Mpro) and papain-like protease (PLpro). CONCLUSIONS: These findings underscore RDC's multistage approach to targeting viral infections by impeding virus entry and inhibiting viral protease activity. Therefore, RDC holds promise as a potent, broad-spectrum anticoronaviral therapeutic agent.


Assuntos
Antivirais , Dryopteris , Extratos Vegetais , Rizoma , SARS-CoV-2 , Internalização do Vírus , Antivirais/farmacologia , Antivirais/isolamento & purificação , Internalização do Vírus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Dryopteris/química , Humanos , SARS-CoV-2/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Animais , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Chlorocebus aethiops , Células Vero
9.
Vet Microbiol ; 293: 110101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718529

RESUMO

Cross-species transmission of coronaviruses has been continuously posing a major challenge to public health. Pigs, as the major animal reservoirs for many zoonotic viruses, frequently mediate viral transmission to humans. This study comprehensively mapped the relationship between human and porcine coronaviruses through in-depth bioinformatics analysis. We found that human coronavirus OC43 and porcine coronavirus PHEV share a close phylogenetic relationship, evidenced by high genomic homology, similar codon usage patterns and comparable tertiary structure in spike proteins. Inoculation of infectious OC43 viruses in organoids derived from porcine small and large intestine demonstrated that porcine intestinal organoids (pIOs) are highly susceptible to human coronavirus OC43 infection and support infectious virus production. Using transmission electron microscopy, we visualized OC43 viral particles in both intracellular and extracellular compartments, and observed abnormalities of multiple organelles in infected organoid cells. Robust OC43 infections in pIOs result in a significant reduction of organoids viability and widespread cell death. This study bears essential implications for better understanding the evolutionary origin of human coronavirus OC43, and provides a proof-of-concept for using pIOs as a model to investigate cross-species transmission of human coronavirus.


Assuntos
Biologia Computacional , Infecções por Coronavirus , Coronavirus Humano OC43 , Intestinos , Organoides , Filogenia , Animais , Organoides/virologia , Suínos , Humanos , Infecções por Coronavirus/virologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/genética , Intestinos/virologia , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , Genoma Viral
10.
Curr Pediatr Rev ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38778597

RESUMO

BACKGROUND: The COVID-19 global pandemic was caused by a novel coronavirus (SARS-CoV-2), which then became an endemic infection. COVID refers to the World Health Organization's coined acronym for coronavirus disease. CASE PRESENTATION: We have, herein, reported three cases of coronavirus diseases that could have been misdiagnosed as COVID-19. All of these families reported previous COVID-19 infection based on self-administered Rapid Antigen Testing (RAT) and completed a period of home isolation. In the current presentation, one child had an RSV-associated asthma attack, one had norovirus gastritis, and another had an infection with Campylobacter and E. coli. NL63, OC43, and 229E, respectively, were found by PCR in these patients. DISCUSSION: Seven human coronaviruses cause infectious diseases, including in children. Confusion and issues associated with coronavirus disease diagnosis by Polymerase Chain Reaction (PCR) testing and Rapid Antigen Test (RAT) may arise. Some RATs are Antigen Fluorescent Immunoassays (FIA) that target monoclonal antibodies for the detection of viral nucleocapsid protein. Others target the non-nucleocapsid proteins. False positivity is possible. False negativity is also possible if the specimen's antigen level is below the test's detection limit. RAT results usually remain positive for 6 to 7 days, but they may stay positive as long as 2 weeks. Stigmatization with the COVID-19 diagnosis may occur. The PCR test is a highly sensitive 'gold standard' for the detection of COVID-19, but it can also detect non-infectious individuals' fragmented non-infectious viral nucleic acids, and could be positive for a long period. An individual may be tested positive for a few weeks to months after the individual becomes non-infectious. CONCLUSION: The cases presented here had coronavirus diseases other than COVID-19. Coronavirus diseases can be caused by coronavirus variants other than SARS-CoV-2. Co-infections with other pathogens are present in these diseases. PCR testing of non-COVID-19 diseases may help in the accurate diagnosis of these ailments and respiratory co-infections.

11.
Epidemiol Infect ; 152: e90, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770587

RESUMO

We analyzed data from a community-based acute respiratory illness study involving K-12 students and their families in southcentral Wisconsin and assessed household transmission of two common seasonal respiratory viruses - human metapneumovirus (HMPV) and human coronaviruses OC43 and HKU1 (HCOV). We found secondary infection rates of 12.2% (95% CI: 8.1%-17.4%) and 19.2% (95% CI: 13.8%-25.7%) for HMPV and HCOV, respectively. We performed individual- and family-level regression models and found that HMPV transmission was positively associated age of the index case (individual model: p = .016; family model: p = .004) and HCOV transmission was positively associated with household density (family model: p = .048). We also found that the age of the non-index case was negatively associated with transmission of both HMPV (individual model: p = .049) and HCOV (individual model: p = .041), but we attributed this to selection bias from the original study design. Understanding household transmission of common respiratory viruses like HMPV and HCOV may help to broaden our understanding of the overall disease burden and establish methods to prevent the spread of disease from low- to high-risk populations.


Assuntos
Infecções por Coronavirus , Características da Família , Metapneumovirus , Infecções por Paramyxoviridae , Humanos , Infecções por Paramyxoviridae/transmissão , Infecções por Paramyxoviridae/epidemiologia , Wisconsin/epidemiologia , Feminino , Adulto Jovem , Masculino , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/epidemiologia , Adulto , Adolescente , Criança , Coronavirus , Estações do Ano , Pessoa de Meia-Idade , Pré-Escolar , Infecções Respiratórias/transmissão , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia
12.
J Virol ; 98(7): e0047824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38819132

RESUMO

ß-coronaviruses cause acute infection in the upper respiratory tract, resulting in various symptoms and clinical manifestations. OC43 is a human ß-coronavirus that induces mild clinical symptoms and can be safely studied in the BSL2 laboratory. Due to its low risk, OC43 can be a valuable and accessible model for understanding ß-coronavirus pathogenesis. One potential target for limiting virus infectivity could be gap junction-mediated communication. This study aims to unveil the status of cell-to-cell communications through gap junctions in human ß-coronavirus infection. Infection with OC43 leads to reduced expression of Cx43 in A549, a lung epithelial carcinoma cell line. Infection with this virus also shows a significant ER and oxidative stress increase. Internal localization of Cx43 is observed post-OC43 infection in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) region, which impairs the gap junction communication between two adjacent cells, confirmed by Lucifer yellow dye transfer assay. It also affects hemichannel formation, as depicted by the EtBr uptake assay. Impairment of Cx43 trafficking and the ability to form hemichannels and functional GJIC are hampered by virus-induced Golgi apparatus disruption. Altogether, these results suggest that several physiological changes accompany OC43 infection in A549 cells and can be considered an appropriate model system for understanding the differences in gap junction communication post-viral infections. This model system can provide valuable insights for developing therapies against human ß-coronavirus infections.IMPORTANCEThe enduring impact of the recent SARS-CoV-2 pandemic underscores the importance of studying human ß-coronaviruses, advancing our preparedness for future coronavirus infections. As SARS-CoV-2 is highly infectious, another human ß-coronavirus OC43 can be considered an experimental model. One of the crucial pathways that can be considered is gap junction communication, as it is vital for cellular homeostasis. Our study seeks to understand the changes in Cx43-mediated cell-to-cell communication during human ß-coronavirus OC43 infection. In vitro studies showed downregulation of the gap junction protein Cx43 and upregulation of the endoplasmic reticulum and oxidative stress markers post-OC43 infection. Furthermore, HCoV-OC43 infection causes reduced Cx43 trafficking, causing impairment of functional hemichannel and GJIC formation by virus-mediated Golgi apparatus disruption. Overall, this study infers that OC43 infection reshapes intercellular communication, suggesting that this pathway may be a promising target for designing highly effective therapeutics against human coronaviruses by regulating Cx43 expression.


Assuntos
Comunicação Celular , Conexina 43 , Coronavirus Humano OC43 , Retículo Endoplasmático , Junções Comunicantes , Humanos , Junções Comunicantes/metabolismo , Conexina 43/metabolismo , Células A549 , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Complexo de Golgi/metabolismo , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/patologia , Estresse Oxidativo
13.
Microbiol Res ; 285: 127750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761489

RESUMO

The progress of viral infection involves numerous transcriptional regulatory events. The identification of the newly synthesized transcripts helps us to understand the replication mechanisms and pathogenesis of the virus. Here, we utilized a time-resolved technique called metabolic RNA labeling approach called thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) to differentially elucidate the levels of steady-state and newly synthesized RNAs of BHK21 cell line in response to human coronavirus OC43 (HCoV-OC43) infection. Our results showed that the Wnt/ß-catenin signaling pathway was significantly enriched with the newly synthesized transcripts of BHK21 cell line in response to HCoV-OC43 infection. Moreover, inhibition of the Wnt pathway promoted viral replication in the early stage of infection, but inhibited it in the later stage of infection. Furthermore, remdesivir inhibits the upregulation of the Wnt/ß-catenin signaling pathway induced by early infection with HCoV-OC43. Collectively, our study showed the diverse roles of Wnt/ß-catenin pathway at different stages of HCoV-OC43 infection, suggesting a potential target for the antiviral treatment. In addition, although infection with HCoV-OC43 induces cytopathic effects in BHK21 cells, inhibiting apoptosis does not affect the intracellular replication of the virus. Monitoring newly synthesized RNA based on such time-resolved approach is a highly promising method for studying the mechanism of viral infections.


Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Coronavirus Humano OC43 , Transcriptoma , Replicação Viral , Via de Sinalização Wnt , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Humanos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Antivirais/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/metabolismo , Animais , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico
14.
Bioorg Chem ; 147: 107317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583252

RESUMO

By inducing steric activation of the 10CH bond with a 12-acyl group to form a key imine oxime intermediate, 20 novel (10S)-10,12-disubstituted aloperine derivatives were successfully synthesized and assessed for their antiviral efficacy against HCoV-OC43. Of them, compound 3i exhibited the moderate activities against HCoV-OC43, as well as against the SARS-CoV-2 variant EG.5.1 with the comparable EC50 values of 4.7 and 4.1 µM. A mechanism study revealed that it inhibited the protease activity of host TMPRSS2 by binding to an allosteric site, rather than the known catalytic center, different from that of camostat. Also, the combination of compound 3i and molnupiravir, as an RdRp inhibitor, showed an additive antiviral effect against HCoV-OC43. The results provide a new binding mode and lead compound for targeting TMPRSS2, with an advantage in combating broad-spectrum coronavirus.


Assuntos
Sítio Alostérico , Antivirais , Coronavirus Humano OC43 , Quinolizidinas , Serina Endopeptidases , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Serina Endopeptidases/metabolismo , Humanos , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/química , Quinolizidinas/química , Quinolizidinas/farmacologia , Quinolizidinas/síntese química , Sítio Alostérico/efeitos dos fármacos , Relação Estrutura-Atividade , Descoberta de Drogas , SARS-CoV-2/efeitos dos fármacos , Estrutura Molecular , Testes de Sensibilidade Microbiana , Relação Dose-Resposta a Droga
15.
J Pediatric Infect Dis Soc ; 13(5): 265-273, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442245

RESUMO

BACKGROUND: The endemic coronaviruses OC43, HKU1, NL63, and 229E cause cold-like symptoms and are related to SARS-CoV-2, but their natural histories are poorly understood. In a cohort of children followed from birth to 4 years, we documented all coronavirus infections, including SARS-CoV-2, to understand protection against subsequent infections with the same virus (homotypic immunity) or a different coronavirus (heterotypic immunity). METHODS: Mother-child pairs were enrolled in metropolitan Cincinnati during the third trimester of pregnancy in 2017-2018. Mothers reported their child's sociodemographics, risk factors, and weekly symptoms. Mid-turbinate nasal swabs were collected weekly. Blood was collected at 6 weeks, 6, 12, 18, 24 months, and annually thereafter. Infections were detected by testing nasal swabs by an RT-PCR multi-pathogen panel and by serum IgG responses. Health care visits were documented from pediatric records. Analysis was limited to 116 children with high sample adherence. Reconsent for monitoring SARS-CoV-2 infections from June 2020 through November 2021 was obtained for 74 (64%) children. RESULTS: We detected 345 endemic coronavirus infections (1.1 infections/child-year) and 21 SARS-CoV-2 infections (0.3 infections/child-year). Endemic coronavirus and SARS-CoV-2 infections were asymptomatic or mild. Significant protective homotypic immunity occurred after a single infection with OC43 (77%) and HKU1 (84%) and after two infections with NL63 (73%). No heterotypic protection against endemic coronaviruses or SARS-CoV-2 was identified. CONCLUSIONS: Natural coronavirus infections were common and resulted in strong homotypic immunity but not heterotypic immunity against other coronaviruses, including SARS-CoV-2. Endemic coronavirus and SARS-CoV-2 infections in this US cohort were typically asymptomatic or mild.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Feminino , Pré-Escolar , Lactente , COVID-19/imunologia , COVID-19/epidemiologia , Recém-Nascido , SARS-CoV-2/imunologia , Gravidez , Masculino , Estados Unidos/epidemiologia , Estudos de Coortes , Anticorpos Antivirais/sangue , Doenças Endêmicas , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/epidemiologia
16.
Eur J Med Chem ; 268: 116263, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432056

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and related variants, are responsible for the devastating coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 main protease (Mpro) plays a central role in the replication of the virus and represents an attractive drug target. Herein, we report the discovery of novel SARS-CoV-2 Mpro covalent inhibitors, including highly effective compound NIP-22c which displays high potency against several key variants and clinically relevant nirmatrelvir Mpro E166V mutants.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Cisteína Endopeptidases , Antivirais/farmacologia
17.
Microbiol Spectr ; 12(3): e0391223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329364

RESUMO

After 3 years of its introduction to humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared as endemic. Little is known about the severity of the disease manifestation that future infections may cause, especially when reinfections occur after humoral immunity from a previous infection or vaccination has waned. Such knowledge could inform policymakers regarding the frequency of vaccination. Reinfections by endemic human coronaviruses (HCoVs) can serve as a model system for SARS-CoV-2 endemicity. We monitored 44 immunocompetent male adults with blood sampling every 6 months (for 17 years), for the frequency of HCoV (re-)infections, using rises in N-antibodies of HCoV-NL63, HCoV-29E, HCoV-OC43, and HCoV-HKU1 as markers of infection. Disease associations during (re-)infections were examined by comparison of self-reporting records of influenza-like illness (ILI) symptoms, every 6 months, by all participants. During 8,549 follow-up months, we found 364 infections by any HCoV with a median of eight infections per person. Symptoms more frequently reported during HCoV infection were cough, sore throat, and myalgia. Two hundred fifty-one of the 364 infections were species-specific HCoV-reinfections, with a median interval of 3.58 (interquartile range 1.92-5.67) years. The length of the interval between reinfections-being either short or long-had no influence on the frequency of reporting ILI symptoms. All HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1 (re-)infections are associated with the reporting of ILIs. Importantly, in immunocompetent males, these symptoms are not influenced by the length of the interval between reinfections. IMPORTANCE: Little is known about the disease following human coronavirus (HCoV) reinfection occurring years after the previous infection, once humoral immunity has waned. We monitored endemic HCoV reinfection in immunocompetent male adults for up to 17 years. We found no influence of reinfection interval length in the disease manifestation, suggesting that immunocompetent male adults are adequately protected against future HCoV infections.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Influenza Humana , Infecções Respiratórias , Adulto , Humanos , Masculino , Reinfecção , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Infecções Respiratórias/diagnóstico , SARS-CoV-2
18.
Viruses ; 16(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399988

RESUMO

Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.


Assuntos
Betacoronavirus , Resfriado Comum , Humanos , Betacoronavirus/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo , Fosforilação , Biossíntese de Proteínas , Fator de Iniciação 2 em Eucariotos/metabolismo , eIF-2 Quinase/genética
19.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247540

RESUMO

The common human coronavirus (HCoV) exhibits mild disease with upper respiratory infection and common cold symptoms. HCoV-OC43, one of the HCoVs, can be used to screen drug candidates against SARS-CoV-2. We determined the antiviral effects of FDA/EMA-approved drug anastrozole (AZ) on two human coronaviruses, HCoV-OC43 and HCoV-229E, using MRC-5 cells in vitro. The AZ exhibited antiviral effects against HCoV-OC43 and HCoV-229E infection. Subsequent studies focused on HCoV-OC43, which is related to the SARS-CoV-2 family. AZ exhibited anti-viral effects and reduced the secretion of inflammatory cytokines, TNF-α, IL-6, and IL-1ß. It also inhibited NF-κB translocation to effectively suppress the inflammatory response. AZ reduced intracellular calcium and reactive oxygen species (ROS) levels, including mitochondrial ROS and Ca2+, induced by the virus. AZ inhibited the expression of NLRP3 inflammasome components and cleaved IL-1ß, suggesting that it blocks NLRP3 inflammasome activation in HCoV-OC43-infected cells. Moreover, AZ enhanced cell viability and reduced the expression of cleaved gasdermin D (GSDMD), a marker of pyroptosis. Overall, we demonstrated that AZ exhibits antiviral activity against HCoV-OC43 and HCoV-229E. We specifically focused on its efficacy against HCoV-OC43 and showed its potential to reduce inflammation, inhibit NLRP3 inflammasome activation, mitigate mitochondrial dysfunction, and suppress pyroptosis in infected cells.

20.
Vaccines (Basel) ; 12(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38250903

RESUMO

Endemic human coronaviruses (HCoV) NL63, 229E, OC43, and HKU1 cause respiratory infection. Following infection, a virus-specific serum antibody rise is usually observed, coinciding with recovery. In some cases, an infection is not accompanied by an immunoglobulin G (IgG) antibody rise in serum in the first month after HCoV infection, even though the infection has cleared in that month and the patient has recovered. We investigated the possible role of nasal immunoglobulin A (IgA). We measured spike (S) and nucleocapsid (N)-specific nasal IgA during and after an HCoV lower respiratory tract infection (LRTI) and compared the IgA responses between subjects with and without a significant IgG rise in serum (IgG responders (n = 31) and IgG non-responders (n = 14)). We found that most IgG responders also exhibited significant nasal IgA rise in the first month after the infection, whereas such an IgA rise was lacking in most IgG non-responders. Interestingly, the serum IgG non-responders presented with a significantly higher nasal IgA when they entered this study than during the acute phase of the LRTI. Our data suggest that nasal IgA could be part of a fast acute response to endemic HCoV infection and may play a role in clearing the infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA