Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38772993

RESUMO

The sphere-shaped zinc oxide (ZnO) photocatalyst was synthesized by the homogeneous precipitation method, using Zn(CH3COO)2·2H2O as a zinc precursor and NH4OH as a precipitating agent. The morphology and crystal structure of the prepared ZnO sample were studied by XRD, SEM, FT-IR, XPS, zeta potential measurements, and a low-temperature nitrogen adsorption-desorption technique. The optical characteristics of ZnO were determined by UV - Vis diffuse reflectance spectroscopy. ZnO photocatalyst performance of up to 100% within 210 min was observed in the photodegradation of the ofloxacin antibiotic under ultraviolet (UV) irradiation. The effect of antibiotic concentration, heavy metal ions, and water sources on the photocatalytic activity of ZnO demonstrated both the potential of its application under different conditions, and a good adaptability of this photocatalyst. The photodegradation reaction correlated well with the first-order kinetics model, with a rate constant of 0.0173 min-1. The reusability of the photocatalyst was verified after three cycles of use. Admittedly, photogenerated electrons and holes played a key role in removal of the antibiotic. This work showed the suitability of prepared ZnO for antibiotic removal, and its potential use for environmental protection.

2.
Heliyon ; 10(9): e29896, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707273

RESUMO

In this study, ionic liquids (ILs) were used as organic modifiers by introducing montmorillonite nanolayers containing potential C and N active sites between the montmorillonite nanolayers. Organically modified montmorillonite (ILs-Mt-p) was further prepared by high-temperature pyrolysis under N2 and used for the removal of ofloxacin (OFL) by activated peroxymonosulfate (PMS). Combined with XPS and other characterization analyses, it was found that the catalyst materials prepared from different organic modifiers had similar surface functional groups and graphitized structures, but contained differences in the types and numbers of C and N active sites. The catalyst (3CPC-Mt-p) obtained after pyrolysis of montmorillonite modified with cetylpyridinium chloride (CPC) had optimal catalytic performance, in which graphitic C, graphitic N, and carbonyl group (C[bond, double bond]O) could synergistically promote the activation of PMS by electron transfer, and 77.3 % of OFL could be removed within 60 min. The effects of OFL concentration, initial pH, and anions on the effects of OFL removal by the 3CPC-Mt-p/PMS system were further investigated. Satisfactory degradation results were obtained over a wide pH range. Cl- promoted the system to degrade OFL, while the presence of SO42-, H2PO4- and HA showed some inhibition, but overall the 3CPC-Mt-p catalysts had a strong anti-interference ability, showing good application prospects. The quenching experiments and EPR tests showed that O2-- and 1O2 in the 3CPC-Mt-p/PMS system were the main reactive oxygen species for the degradation of OFL, and •OH was also involved in the reaction. This study provides ideas for the construction and modulation of active sites in mineral materials such as montmorillonite and broadens the application of montmorillonite composite catalysts in advanced oxidation processes for the treatment of antibiotic wastewater.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38695179

RESUMO

Just as we prioritize personalized medicine for various other medical conditions, we should also include a neglected disease like leprosy, ensuring that patients receive the best care possible and improving their quality of life. Our case highlights the importance of instituting an alternate therapeutic regimen in a scenario where there is a lack of clinical response to multidrug therapy, even in the absence of documented drug resistance of the currently available molecular diagnostics. The search for the perfect regimen tailored for each individual leprosy patient should continue. Alternate anti-leprosy therapy is highly useful in cases with confirmed drug resistance or clinically non-responsive cases; however, their misuse should also be strictly avoided to prevent the development of resistance to them.

4.
Chem Asian J ; : e202400166, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664856

RESUMO

In this study, we demonstrate the influence of crystallinity and morphology on the analytical performance of various Cu2MoS4 (CMS) nanocatalysts-based electrochemical sensors for the high-efficiency detection of Ofloxacin (OFX) antibiotic. The electrochemical kinetics parameters including peak current response (ΔIp), peak-to-peak separation (ΔEp), electrochemically active surface area (ECSA), electron-transfer resistance (Rct), were obtained through the electrochemical analyses, which indicate the single-crystalline nature of CMS nanomaterials (NMs) is beneficial for enhanced electron-transfer kinetics. The morphological features and the electrochemical results for OFX detection substantiate that by tuning the tube-like to plate-like structures of the CMS NMs, it might noticeably enhance multiple adsorption sites and more intrinsic active catalytic sites due to the diffusion of analytes into the interstitial spaces between CMS nanoplates. As results, highly single-crystalline and plate-shaped morphology structures of CMS NMs would significantly enhance the electrocatalytic OFX oxidation in terms of onset potential (Eonset), Tafel slope, catalytic rate constant (kcat), and adsorption capacity (Γ). The CMS NMs-based electrochemical sensing platform showed excellent analytical performance toward the OFX detection with two ultra-wide linear detection concentration ranges from 0.25-100 and 100-1000 µM, a low detection limit of 0.058 µM, and an excellent electrochemical sensitivity (0.743 µA µM-1 cm-2).

5.
J Poult Sci ; 61: 2024013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681191

RESUMO

This study investigated the distribution of ofloxacin-resistant Escherichia coli (OFXR-EC) in broiler parent flocks (PS) treated with ofloxacin for 5 days from the time the chicks arrived at the poultry house, and their broiler offspring. OFXR-EC was detected in 22.95% of neonatal parent stock chicks (PSN) arriving at the poultry house. The detection rate of OFXR-EC in PS rearing was 72.49%, which was significantly higher than that detected in PSN. In addition, the detection rate of OFXR-EC was significantly lower in neonatal chicks of their offspring broilers (CSN) at 7.06% than that of PS, but was 24.62% in offspring broiler flocks (CS) at approximately 6 weeks of age. The OFXR-EC detection rate was significantly higher in CS than that in CSN, even though no therapeutic antimicrobials, including ofloxacin, were used from CSN to CS. In addition, the proportions of OFXR-ECs in E. coli isolated from samples in which OFXR-ECs were detected were 63.85% for PSN, 10.52% for PS, 62.00% for CSN, and 8.25% for CS. There was little difference in the composition ratio of OFXR-EC between PSN and CSN, or between PS and CS.

6.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38544002

RESUMO

Ofloxacin (OFL) is widely used in animal husbandry and aquaculture due to its low price and broad spectrum of bacterial inhibition, etc. However, it is difficult to degrade and is retained in animal-derived food products, which are hazardous to human health. In this study, a simple and efficient method was developed for the detection of OFL residues in meat products. OFL coupled with amino magnetic beads by an amination reaction was used as a stationary phase. Aptamer AWO-06, which showed high affinity and specificity for OFL, was screened using the exponential enrichment (SELEX) technique. A fluorescent biosensor was developed by using AWO-06 as a probe and graphene oxide (GO) as a quencher. The OFL detection results could be obtained within 6 min. The linear range was observed in the range of 10-300 nM of the OFL concentration, and the limit of the detection of the sensor was 0.61 nM. Furthermore, the biosensor was stored at room temperature for more than 2 months, and its performance did not change. The developed biosensor in this study is easy to operate and rapid in response, and it is suitable for on-site detection. This study provided a novel method for the detection of OFL residues in meat products.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Produtos da Carne , Animais , Humanos , Ofloxacino/química , Alérgenos , Aptâmeros de Nucleotídeos/química , Separação Imunomagnética , Técnicas Biossensoriais/métodos , Técnica de Seleção de Aptâmeros/métodos
7.
Front Pharmacol ; 15: 1346169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515839

RESUMO

Background: Recommended standard treatment for leprosy is multidrugtherapy (MDT/WHO), consisting Rifampicin+Dapsone+Clofazimine. Other medications are recommended in cases of resistance, adverse reactions and intolerances, including ROM regimen, Rifampicin+Ofloxacin+Minocycline. Therefore, pharmacovigilance is an important tool in understanding these adverse drug reactions (ADRs), supporting pharmacotherapy management and medication safety. This study seeks to evaluate ADRs comparing two therapeutic regimens, MDT and ROM, used in treatment of patients with leprosy, analyzing prognostic factors regarding risk and safety. Methods:A retrospective cohort study was performed by assessing medical records of 433 patients diagnosed with leprosy from 2010 to 2021 at a National Reference Center in Brazil. They were subject to 24 months or more of treatment with MDT or ROM regimens. ADR assessments were analyzed by two experienced researchers, who included clinical and laboratory variables, correlating them with temporality, severity and the causality criteria of Naranjo and WHO. Results: The findings observed an average of 1.3 reactions/patient. Out of individuals experiencing reactions, 67.0% (69/103) were utilizing MDT/MB, while 33.0% (34/103) were using ROM. The median time for ADR of 79 days for MDT and 179 days for ROM. In first reaction, Dapsone was the most frequently involved medication; the most affected system was hematopoietic. As compared to Clofazimine, results indicated that use of Dapsone was associated with 7% increased risk of ADR occurrence (HR: 1.07; p = 0.866). Additionally, Rifampicin was linked to 31% increased risk of ADRs (HR: 1.31; p = 0.602); and Ofloxacin showed 35% elevated risk (HR: 1.35; p = 0.653). Conversely, results for Minocycline indicated 44% reduction in the risk of ADRs (HR: 0.56; p = 0.527), although statistical significance was not reached. The use of MDT conferred 2.51 times higher risk of developing ADRs in comparison to ROM. Conclusion: The comparison between MDT and ROM revealed that MDT caused more ADRs, and these reactions were more severe, indicating less safety for patients. Dapsone was the most common medication causing ADRs, followed by Rifampicin. The combination with Clofazimine was associated with an additional risk of ADRs, warranting further studies to confirm this hypothesis. Given the high magnitude of ADRs, healthcare teams need to monitor patients undergoing leprosy treatment with focus on pharmacovigilance.

8.
Environ Pollut ; 347: 123738, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458522

RESUMO

The pollution of quinolone antibiotics in the marine environment has attracted widespread attention, especially for ofloxacin (OFL) and oxolinic acid (OXO) due to their frequent detection. However, few studies have been conducted to assess the behaviors and microbial community response to these antibiotics in marine sediments, particularly for potential antibiotic-resistant bacteria. In this work, the adsorption characteristics, natural attenuation characteristics, and variation of microbial communities of OFL and OXO in marine sediments were investigated. The adsorption process of antibiotics in sediments occurred on the surface and internal pores of organic matter, where OFL was more likely to be transferred from seawater to sediment compared with OXO. Besides, the adsorption of two antibiotics on sediment surfaces was attributed to physisorption (pore filling, electrostatic interaction) and chemisorption (hydrogen bonding). The natural attenuation of OFL and OXO in marine sediment followed second-order reaction kinetics with half-lives of 6.02 and 26.71 days, respectively, wherein biodegradation contributed the most to attenuation, followed by photolysis. Microbial community structure in marine sediments exposure to antibiotics varied by reducing abundance and diversity of microbial communities, as a whole displaying as an increase in the relative abundance of Firmicutes whereas a decrease of Proteobacteria. In detail, Escherichia-Shigella sp., Blautia sp., Bifidobacterium sp., and Bacillus sp. were those antibiotic-resistant bacteria with potential ability to degrade OFL, while Bacillus sp. may be resistant to OXO. Furthermore, functional predictions indicated that the microbial communities in sediment may resist the stress caused by OFL and OXO through cyano-amino acid metabolism, and ascorbate and aldarate metabolism, respectively. The research is key to understanding fate and bacterial resistance of antibiotics in marine sediments.


Assuntos
Microbiota , Ofloxacino , Ofloxacino/química , Ácido Oxolínico , Adsorção , Antibacterianos/toxicidade , Antibacterianos/química , Sedimentos Geológicos/química , Microbiota/fisiologia , Bactérias
9.
Cureus ; 16(2): e53804, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38465137

RESUMO

Topical levofloxacin has been used safely, but it can induce life-threatening hypersensitivities. We report a case of anaphylactic shock caused by levofloxacin eye drops during the treatment of a corneal injury, confirmed by a prick test. Reported cases of hypersensitivity to levofloxacin and its racemate ofloxacin eye drops are also summarized.

10.
Chirality ; 36(3): e23661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454837

RESUMO

Given the markedly different pharmacological activities between enantiomeric isomers, it is crucial to encourage the stereoselective determination of chiral drugs in the biological and pharmaceutical fields, and the combination of drugs makes this analysis more complicated and challenging. Herein, a capillary electrophoresis (CE) method for the enantioseparation of ofloxacin and duloxetine was established, enabling the simultaneous identification of four isomers in nonracemic mixtures with enantiomeric excess (ee%) values exceeding 5%. This was achieved through the integration of theoretical simulation and electron circular dichroism (ECD), all without reliance on individual standards. Molecular modeling explained and verified the migration time differences of these isomers in electrophoretic separation. Moreover, the correlation coefficients (R2 ) between the enantiomeric peak area differentials and ee% were both above 0.99. Recovery rates were quantified using bovine serum as the matrix, with results ranging from 93.32% to 101.03% (RSD = 0.030) and 92.69% to 100.52% (RSD = 0.028) for these two chiral drugs at an ee value of 23.1%, respectively.


Assuntos
Eletroforese Capilar , Ofloxacino , Cloridrato de Duloxetina , Ofloxacino/análise , Estereoisomerismo , Eletroforese Capilar/métodos
11.
Mikrochim Acta ; 191(3): 145, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372818

RESUMO

A direct electrochemical sensor based on covalent organic frameworks (COFs)/platinum nanoparticles (PtNPs) composite was fabricated for the detection of ofloxacin (OFX) in water. Firstly, the COF material was synthesized via the condensation reaction of 1,3,5-tris(4-aminophenyl)benzene (TAPB) with terephthalaldehyde (TPA) and integrated with PtNPs by in situ reduction. Then, TAPB-TPA-COFs/PtNPs composite was loaded onto the surface of the glassy carbon electrode (GCE) by drip coating to construct the working electrode (TAPB-TPA-COFs/PtNPs/GCE). The electrochemical performance of TAPB-TPA-COFs/PtNPs/GCE showed a significant improvement compared with that of TAPB-TPA-COFs/GCE, leading to a 3.2-fold increase in the electrochemical signal for 0.01 mM OFX. Under optimal conditions, the TAPB-TPA-COFs/PtNPs/GCE exhibited a wide linear range of 9.901 × 10-3-1.406 µM and 2.024-15.19 µM with a detection limit of 2.184 × 10-3 µM. The TAPB-TPA-COFs/PtNPs/GCE-based electrochemical sensor with excellent performance provides great potential for the rapid and trace detection of residual OFX.

12.
Environ Res ; 246: 118036, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163543

RESUMO

Ofloxacin (OFL) is a typical fluoroquinolone antibiotic widely detected in rural domestic sewage, however, its effects on the performance of aerobic biofilm systems during sewage treatment process remain poorly understood. We carried out an aerobic biofilm experiment to explore how the OFL with different concentrations affects the pollutant removal efficiency of rural domestic sewage. Results demonstrated that the OFL negatively affected pollutant removal in aerobic biofilm systems. High OFL levels resulted in a decrease in removal efficiency: 9.33% for chemical oxygen demand (COD), 18.57% for ammonium (NH4+-N), and 8.49% for total phosphorus (TP) after 35 days. The findings related to the chemical and biological properties of the biofilm revealed that the OFL exposure triggered oxidative stress and SOS responses, decreased the live cell number and extracellular polymeric substance content of biofilm, and altered bacterial community composition. More specifically, the relative abundance of key genera linked to COD (e.g., Rhodobacter), NH4+-N (e.g., Nitrosomonas), and TP (e.g., Dechlorimonas) removal was decreased. Such the OFL-induced decrease of these genera might result in the down-regulation of carbon degradation (amyA), ammonia oxidation (hao), and phosphorus adsorption (ppx) functional genes. The conventional pollutants (COD, NH4+-N, and TP) removal was directly affected by biofilm resistance, functional genes, and bacterial community under OFL exposure, and the bacterial community played a more dominant role based on partial least-squares path model analysis. These findings will provide valuable insights into understanding how antibiotics impact the performance of aerobic biofilm systems during rural domestic sewage treatment.


Assuntos
Poluentes Ambientais , Ofloxacino , Ofloxacino/farmacologia , Esgotos/microbiologia , Matriz Extracelular de Substâncias Poliméricas , Bactérias/genética , Biofilmes , Fósforo , Nitrogênio , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos
13.
J Ocul Pharmacol Ther ; 40(1): 78-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252789

RESUMO

Introduction: The hydrogen-bonded networks play a significant role in influencing several physicochemical properties of ofloxacin in artificial tears (ATs), including density, pH, viscosity, and self-diffusion coefficients. The activities of the ofloxacin antibiotic with Ats mixtures are not solely determined by their concentration but are also influenced by the strength of the hydrogen bonding network which highlight the importance of considering factors such as excessive tear production and dry eye conditions when formulating appropriate dosages of ofloxacin antibiotics for eye drops. Objectives: Investigating the physicochemical properties of ofloxacin-ATs mixtures, which serve as a model for understanding the impact of hydrogen bonding on the antimicrobial activity of ofloxacin antibiotic eye drops. Determine the antimicrobial activities of the ofloxacin-Ats mixture with different concentration of ofloxacin. Methods: The ofloxacin-ATs mixtures were analyzed using 1H-NMR, Raman, and UV-Vis spectroscopies, with variation of ofloxacin concentration to study its dissociation kinetics in ATs, mimicking its behavior in human eye tears. The investigation includes comprehensive analysis of 1H-NMR spectral data, self-diffusion coefficients, Raman spectroscopy, UV-Vis spectroscopy, liquid viscosity, and acidity, providing a comprehensive assessment of the physicochemical properties. Results: Analysis of NMR chemical shifts, linewidths, and self-diffusion coefficient curves reveals distinct patterns, with peaks or minima observed around 0.6 ofloxacin mole fraction dissociated in ATs, indicating a strong correlation with the hydrogen bonding network. Additionally, the pH data exhibits a similar trend to viscosity, suggesting an influence of the hydrogen bonding network on protonic ion concentrations. Antibacterial activity of the ofloxacin-ATs mixtures is evaluated through growth rate analysis against Salmonella typhimurium, considering varying concentrations with mole fractions of 0.1, 0.4, 0.6, 0.8, and 0.9. Conclusions: The antibiotic-ATs mixture with a mole fraction of 0.6 ofloxacin exhibited lower activity compared to mixtures with mole fractions of 0.1 and 0.4, despite its lower concentration. The activities of the mixtures are not solely dependent on concentration but are also influenced by the strength of the hydrogen bonding network. These findings emphasize the importance of considering tear over-secretion and dry eye problems when designing appropriate doses of ofloxacin antibiotics for eye drop formulations.


Assuntos
Antibacterianos , Síndromes do Olho Seco , Humanos , Antibacterianos/farmacologia , Ofloxacino/farmacologia , Ofloxacino/análise , Lubrificantes Oftálmicos , Espectroscopia de Prótons por Ressonância Magnética , Lágrimas/química
14.
Food Chem ; 442: 138417, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237297

RESUMO

Trace detection of ofloxacin (OFL) with high sensitivity, reliability, and visual clarity is challenging. To address this, a novel dual-modal aptasensor with fluorescence-colorimetric capabilities was designed that exploit the target-induced release of 3,3',5,5'-tetramethylbenzidine (TMB) molecules from aptamer-gated mesoporous silica nanoparticles (MSNs), the oxidase-like activity of iron alkoxide (IA) nanozyme, and the fluorescence attributes of core-shell upconversion nanoparticles. Therefore, the study reports a dual mode detection, with a fluorescence detection range for OFL spanning from 0.1 µg/kg to 1000 µg/kg (and a detection limit of 0.048 µg/kg). Additionally, the colorimetric method offered a linear detection range of 0.3 µg/kg to 1000 µg/kg, with a detection limit of 0.165 µg/kg. The proposed biosensor had been successfully applied to the determination of OFL content in real samples with satisfactory recoveries (78.24-96.14 %).


Assuntos
Técnicas Biossensoriais , Colorimetria , Limite de Detecção , Colorimetria/métodos , Ofloxacino , Ferro , Reprodutibilidade dos Testes , Peróxido de Hidrogênio , Técnicas Biossensoriais/métodos
15.
Talanta ; 271: 125707, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280265

RESUMO

The synergistic effect of sodium dodecyl sulfate (SDS) and Mg2+ could significantly enhance the fluorescence intensity of enoxacin (ENO) at λex/λem = 269.2 nm/385.6 nm, ofloxacin (OFL) at λex/λem = 290.8 nm/466.2 nm and tetracycline hydrochloride (TCH) at λex/λem = 372.6 nm/514.8 nm. Moreover, when the wavelength difference (Δλ) was chosen 135 nm, the synchronous fluorescence spectra of the three antibiotic complexes could be well separated and the interference of the samples matrix were eliminated primely. Therefore, only one synchronous fluorescence scan was needed to simultaneously determine the three antibiotics. Based on these facts, a synchronous fluorescence spectrometry combining fluorescence sensitization for highly sensitive and selective determination of ENO, OFL and TCH residues in wastewater was developed for the first time. The experimental results showed that the concentrations of ENO, OFL and TCH in the range of 0.5-550 ng mL-1, 1-1500 ng mL-1 and 10-5500 ng mL-1 showed a good linear relationship with fluorescence intensity. The limits of detection were 0.0599 ng mL-1, 0.115 ng mL-1 and 0.151 ng mL-1, respectively. The recoveries of the actual sample were 87.50%-99.99 %, 93.00%-98.50 % and 85.70%-98.42 %, respectively. Overall, the novel synchronous fluorescence spectrometry established in the experiment has the advantages of high sensitivity, good selectivity, fast detection speed and high accuracy. It has been successfully applied to the detection of residual amounts of ENO, OFL and TCH in wastewater with satisfactory results.


Assuntos
Enoxacino , Ofloxacino , Tetraciclina , Águas Residuárias , Espectrometria de Fluorescência/métodos , Antibacterianos
16.
Environ Res ; 244: 117837, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065381

RESUMO

This study investigated the removal performance of ofloxacin (OFL) by a novel electro-Fenton enhanced microfiltration membrane. The membranes used in this study consisted of metal-organic framework derived porous carbon, carbon nanotubes and Fe2+, which were able to produce hydroxyl radicals (•OH) in-situ via reducing O2 to hydrogen peroxide. Herein, membrane filtration with bias not only concentrated the pollutants to the level that could be efficiently treated by electro-Fenton but also confined/retained the toxic intermediates within the membrane to ensure a prolonged contact time with the oxidants. After validated by experiments, the applied bias of -1.0 V, pH of 3 and electrolyte concentration of 0.1 M were the relatively optimum conditions for OFL degradation. Under these conditions, the average OFL removal rate could be reach 75% with merely 5% membrane flux loss after 4 cycles operation by filtrating 1 mg/L OFL. Via decarboxylation reaction, piperazinyl ring opening, dealkylation and ipso substitution reaction, etc., OFL could be gradually and efficiently degraded to intermediate products and even to CO2 by •OH. Moreover, the oxidation reaction was preferred to following first-order reaction kinetics. This research verified a possibility for antibiotic removal by electro-enhanced microfiltration membrane.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Ofloxacino , Porosidade , Antibacterianos , Oxidantes , Peróxido de Hidrogênio , Oxirredução
17.
J Hazard Mater ; 465: 133221, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38103295

RESUMO

Contamination in food and the environment with fluoroquinolones (FQs) has become a serious threat to the global ecological balance and public health safety. Ofloxacin (OFL) is one of the most widely utilized sterilization agents in FQs. In the process of monitoring OFL, broad-spectrum monoclonal antibodies (mAb) cannot meet the demand for monospecific detection. Here, a computational chemistry-assisted hapten screening strategy was proposed in this study. Differences in the properties of antigenic epitopes were precisely extracted through a comprehensive comparative study of 16 common FQs molecules and a monospecific and ultrasensitive mAb-3B4 for OFL was successfully prepared. The screened fleroxacin (FLE) hapten was applied in a heterologous competition strategy resulting in a 20-fold improvement in the half inhibitory concentration (IC50) of mAb-3B4 to 0.0375 µg L-1 and cross-reacted only with marbofloxacin (MAR) in regulated FQs. In addition, a single-chain variable fragment (scFv) for OFL was constructed for the first time with an IC50 of 0.378 µg L-1. Molecular recognition mechanism studies validated the reliability of this strategy and revealed the key amino acid sites responsible for OFL specificity and sensitivity. Finally, ic-ELISA and GICA were established for OFL in real samples. This work provides new ideas for the preparation of monospecific mAb and improves the monitoring system of FQs.


Assuntos
Química Computacional , Ofloxacino , Reprodutibilidade dos Testes , Fluoroquinolonas , Ensaio de Imunoadsorção Enzimática , Haptenos , Antibacterianos/química
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123790, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142496

RESUMO

Ofloxacin is one kind of quinolone antibiotic drugs, the abuse of ofloxacin in livestock and aquaculture may bring bacterial resistance and healthy problem of people. The illegally feeding cattle with ofloxacin will help it keep health, but the sedimentation of ofloxacin could bring problem in food safety. The accurate, simple and instant monitoring ofloxacin from beef by portable sensor was of vital issue in food quality. A simple and reliable method was proposed for instant and quantitative detecting ofloxacin in beef, in which the thin-layer chromatography (TLC) -surface-enhanced Raman scattering (SERS) spectroscopy was in tandem with machine learning analysis base one principal component analysis-back propagation neural network (PCA-BPNN). The TLC plate was composed with diatomite, that was function as the stationary phase to separate ofloxacin from beef. The real beef juice was directly casted onto the diatomite plate for separating and detecting. The directly monitor ofloxacin from beef was achieved and the sensitivity down to 0.01 ppm. The PCA-BPNN was used as reliable model for quantitative predict the concentration of ofloxacin, that shown superior accuracy compared with the traditional model. The results verify that the diatomite plate TLC-SERS combined with machine-learning analysis is an effective, simple and accurate technique for detecting and quantifying antibiotic drug in meat stuff to improve the food safety.


Assuntos
Antibacterianos , Ofloxacino , Bovinos , Humanos , Animais , Cromatografia em Camada Fina/métodos , Terra de Diatomáceas , Análise Espectral Raman/métodos
19.
Chemosphere ; 346: 140653, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949185

RESUMO

This study uses waste coconut husk to synthesize carbon quantum dots decorated graphene-like structure for sustainable detection and removal of ofloxacin. The XRD spectrum shows the carbon nanomaterial's layered structure with turbostratic carbon stacking on its surface. The FESEM and HRTEM studies claim the successful development of quantum dots decorated 2D layered structure of carbon nanomaterial. The functionalization of sulfur and nitrogen is well observed and studied through XPS, while Raman spectra have provided insight into the surface topology of the as-synthesized nanostructure. The BET surface area was found to be 1437.12 m2/g with a microporous structure (pore width 2.0 nm) which interestingly outcompete many reported carbon-based nanomaterials such as graphene oxide, reduced graphene oxide and quantum dots. The detection and removal processes are monitored through UV-visible spectroscopy and the obtained detection limit and adsorption capacity were 2.7 nM and 393.94 mg/L respectively. Additionally, 1 mg carbon nanomaterial has removed 49 % ofloxacin from water in just 1 h. In this way, this study has successfully managed the coconut husk waste after its utilization for environmental remediation purposes.


Assuntos
Carbono , Nanoestruturas , Carbono/química , Cocos , Nitrogênio/química , Enxofre
20.
Curr Ther Res Clin Exp ; 99: 100729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090721

RESUMO

Background: There are published suggestions that bacterial keratitis (BK) can be classified as mild, moderate, or severe and that the day-1 antibiotic drop regimen may differ for each category using the topical second-generation fluoroquinolones 0.3% ciprofloxacin and 0.3% ofloxacin (2FQ). The classification criteria are not consistently defined and the suggested regimens are often unreferenced and so here, the evidence base for applying such regimens in clinical practice is examined. Objective: To examine the evidence base regarding the categorization criteria used for BK and determine whether any evidence exists to support suggestions that different day-1 treatment regimen using the 2FQ may be applied based on any assigned categorization. Methods: The literature on BK treatment was reviewed, as were the clinical studies involving the commercially available 2FQ. All statements pertaining to classification and treatment paradigms involving BK were then collated and reviewed, as were the methodologies employed in the 2FQ clinical studies. Results: There have been no clinical trials using the 2FQ, or indeed any other topical antibiotics, which have used different day-1 drop regimen depending on the size, depth, and location of the ulcer or for ulcers classified as mild, moderate, or severe. Thus, there is no evidence to support the suggestion that a lower number of drops on day 1 is as effective as a higher number on categorized BK ulcers. Conclusions: No standardized method of categorizing BK was found, and there is no evidence to support the contention that mild, moderate, or smaller BK ulcers should be treated any differently to larger or severe ulcers on day 1. The manufacturers of 2FQ do not supply different treatment regimens for different ulcer sizes and severity categories. When using the 2FQ, all BK ulcers should be treated equally in line with the manufacturers' recommended day-1 treatment regimen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...