Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 86(3): 952-959, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33580559

RESUMO

Dielectric properties (DPs) of fresh rabbit meat in the microwave range (0.5 to 20 GHz) were determined. Three different muscles (Biceps femoris, Tensor fasciae latae, and Longissimus thoracis) from California rabbits (male and female) were measured with the open-ended coaxial probe method at temperatures of 20, 40, and 60 °C. To assess the possible effect of age, females of 100 and 180 days old were analyzed. DPs were affected by frequency, muscle type, age, gender, and temperature (p < 0.05). Dielectric constant decreased with increasing frequency. Loss factor decreased from 0.5 to 2.5 GHz due to ionic conduction, followed by an increase up to 20 GHz, dominated by dipolar relaxation. PRACTICAL APPLICATION: These results are key parameters for further quality sensing applications and for heating processes of meat rabbit using microwaves. Longer penetration depths were achieved at 915 MHz; this frequency is recommended for further applications. Besides, dielectric properties have potential to be a tool for identification of gender and age for slaughtered rabbits.


Assuntos
Manipulação de Alimentos/métodos , Carne , Micro-Ondas , Músculo Esquelético/química , Animais , Eletroquímica , Feminino , Masculino , Coelhos , Temperatura
2.
J Food Sci Technol ; 55(8): 3119-3126, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30065422

RESUMO

For microwave heating pasteurization processes, knowledge of the dielectric characteristics of foods are very important. In this paper, we present the dielectric properties of raw soy milk and commercial packed soy milk of four different flavors (light, natural, chocolate and pecan) from 500 MHz to 20 GHz, covering most of the assigned frequencies by the Federal Communications Commission for heating purposes. Experiments were performed using an open-ended-coaxial probe and a vector network analyzer. This characterization was carried out for temperatures ranging from 20 to 70 °C in steps of 10 °C. The dielectric constant of soy milks decreased with increasing frequency, while increasing temperature resulted in decreasing of the values. The dielectric loss factor presents a U shape behavior, where the loss started decreasing from 500 MHz to about 3 GHz and then, it increased again up to 20 GHz. In addition, higher temperatures decreased the dielectric loss. Applying the higher order Debye´s equation, two relaxation times were calculated for the soymilks, with good agreement with the measured properties. Deeper penetration of microwaves were obtained for raw soy milk at 915 MHz, making it suitable for microwave pasteurization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA