Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 10: 97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015940

RESUMO

Exosomes derived from mesenchymal stem cells (MSCs) have been confirmed to enhance cell proliferation and improve tissue repair. Exosomes release their contents into the cytoplasmic solution of the recipient cell to mediate cell expression, which is the main pathway through which exosomes exert therapeutic effects. The corresponding process of exosome internalization mainly occurs in the early stage of treatment. However, the therapeutic effect of exosomes in the early stage remains to be further studied. We report that the three-dimensional cell traction force can intuitively reflect the ability of exosomes to enhance the cytoskeleton and cell contractility of recipient cells, serving as an effective method to characterize the therapeutic effect of exosomes. Compared with traditional biochemical methods, we can visualize the early therapeutic effect of exosomes in real time without damage by quantifying the cell traction force. Through quantitative analysis of traction forces, we found that endometrial stromal cells exhibit short-term cell roundness accompanied by greater traction force during the early stage of exosome therapy. Further experiments revealed that exosomes enhance the traction force and cytoskeleton by regulating the Rac1/RhoA signaling pathway, thereby promoting cell proliferation. This work provides an effective method for rapidly quantifying the therapeutic effects of exosomes and studying the underlying mechanisms involved.

2.
Microsyst Nanoeng ; 10: 35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482463

RESUMO

Droplet microfluidics has emerged as a critical component of several high-throughput single-cell analysis techniques in biomedical research and diagnostics. Despite significant progress in the development of individual assays, multiparametric optical sensing of droplets and their encapsulated contents has been challenging. The current approaches, most commonly involving microscopy-based high-speed imaging of droplets, are technically complex and require expensive instrumentation, limiting their widespread adoption. To address these limitations, we developed the OptiDrop platform; this platform is a novel optofluidic setup that leverages the principles of flow cytometry. Our platform enables on-chip detection of the scatter and multiple fluorescence signals from the microfluidic droplets and their contents using optical fibers. The highly customizable on-chip optical fiber-based signal detection system enables simplified, miniaturized, low-cost, multiparametric sensing of optical signals with high sensitivity and single-cell resolution within each droplet. To demonstrate the ability of the OptiDrop platform, we conducted a differential expression analysis of the major histocompatibility complex (MHC) protein in response to IFNγ stimulation. Our results showed the platform's ability to sensitively detect cell surface biomarkers using fluorescently labeled antibodies. Thus, the OptiDrop platform combines the versatility of flow cytometry with the power of droplet microfluidics to provide wide-ranging, scalable optical sensing solutions for research and diagnostics.

3.
Soc Stud Sci ; 54(2): 257-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37606215

RESUMO

Scheduled meetings are associated with standardization and understood as a bureaucratic form of coordination, control, and rule observation. In attending assemblies of a research team in optical physics for over a year, we found regular lab meetings are compulsory for all their members and are an avenue to announce and give information about new and changed institutional regulations, to supervise members' activities and their output. But more importantly, they offer an environment for continuous thinking through talk that goes beyond announcements. Meetings are a protected space to comment on conducted research, to amend experimental set-ups, to test argumentation, and to outline potentially new directions of research. By participating in these practices, researchers, become members of the team as they get acquainted with the ongoing research; its scope, problems, and limits; the solutions at hand; and the know-how within the team. In functional terms, observed internal meetings seem to (a) ensure that the research team focuses on a specific research agenda by talking about and discussing ongoing research in the lab, (b) be used to discuss and assure the quality of the team's research output, and (c) generate and inspire new research within the team. Our findings suggest regular internal meetings, like shop talk, are constitutive of doing science by talking about ongoing research.


Assuntos
Comunicação Interdisciplinar , Equipe de Assistência ao Paciente
4.
iScience ; 26(12): 108420, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38034346

RESUMO

With pre-trained large models and their associated fine-tuning paradigms being constantly applied in deep learning, the performance of large models achieves a dramatic boost, mostly owing to the improvements on both data quantity and quality. Next-generation synchrotron light sources offer ultra-bright and highly coherent X-rays, which are becoming one of the largest data sources for scientific experiments. As one of the most data-intensive scanning-based imaging methodologies, ptychography produces an immense amount of data, making the adoption of large deep learning models possible. Here, we introduce and refine the architecture of a neural network model to improve the reconstruction performance, through fine-tuning large pre-trained model using a variety of datasets. The pre-trained model exhibits remarkable generalization capability, while the fine-tuning strategy enhances the reconstruction quality. We anticipate this work will contribute to the advancement of deep learning methods in ptychography, as well as in broader coherent diffraction imaging methodologies in future.

5.
Microsyst Nanoeng ; 9: 131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854722

RESUMO

Osmotic pressure is vital to many physiological activities, such as cell proliferation, wound healing and disease treatment. However, how cells interact with the extracellular matrix (ECM) when subjected to osmotic shock remains unclear. Here, we visualize the mechanical interactions between cells and the ECM during osmotic shock by quantifying the dynamic evolution of the cell traction force. We show that both hypertonic and hypotonic shocks induce continuous and large changes in cell traction force. Moreover, the traction force varies with cell volume: the traction force increases as cells shrink and decreases as cells swell. However, the direction of the traction force is independent of cell volume changes and is always toward the center of the cell-substrate interface. Furthermore, we reveal a mechanical mechanism in which the change in cortical tension caused by osmotic shock leads to the variation in traction force, which suggests a simple method for measuring changes in cell cortical tension. These findings provide new insights into the mechanical force response of cells to the external environment and may provide a deeper understanding of how the ECM regulates cell structure and function. Traction force exerted by cells under hypertonic and hypotonic shocks. Scale bar, 200 Pa. Color bar, Pa. The black arrows represent the tangential traction forces.

6.
iScience ; 26(10): 107987, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860775

RESUMO

The design and implementation of a multiplexed spiral phase mask in an experimental optical tweezers setup are presented. This diffractive optical element allows the generation of multiple concentric vortex beams with independent topological charges and without amplitude modulation. The generalization of the phase mask for multiple concentric vortices is also shown. The design for a phase mask of two multiplexed vortices with different topological charges is developed. We experimentally show the transfer of angular momentum to the optically trapped microparticles by enabling nearly independent orbiting dynamics around the optical axis within each vortex. The angular velocity of the confined particles versus the optical power in the focal region is also discussed for different combinations of topological charges.

7.
iScience ; 26(7): 107032, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534147

RESUMO

This study theoretically proved that although reciprocal optical devices can show asymmetric transmittivity (AT) under controlled incident modes (i.e., conditional AT), they cannot guarantee AT with arbitrary incident light modes, whereas only nonreciprocal optical devices can possibly guarantee AT. Besides, the thermodynamics of both reciprocal and nonreciprocal optical devices were discussed to show that the second law of thermodynamics is valid anyway. Furthermore, the diode-like behaviors of optical and electronic devices were compared. Electrons are identical to electronic devices, so electronic devices could have asymmetric conductance regardless of electrons. In contrast, electromagnetic waves are different from optical devices as transmittivity of different modes can be different, so reciprocal optical devices showing conditional AT cannot guarantee AT when incident modes are arbitrary. The mathematical proof and characteristic comparisons between electronic and optical diodes, which are firstly presented here, should help clarifying the necessary nonreciprocity required for being optical diodes.

8.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514752

RESUMO

Bioluminescence imaging (BLI) is a widely used technique in preclinical scientific research, particularly in the development of mRNA-based medications and non-invasive tumor diagnostics. It has become an essential tool in current science. However, the current state of bioluminescence imaging is primarily qualitative, making it challenging to obtain quantitative measurements and to draw accurate conclusions. This fact is caused by the unique properties of optical photons and tissue interactions. In this paper, we propose an experimental setup and Geant4-simulations to gain a better understanding of the optical properties and processes involved in bioluminescence imaging. Our goal is to advance the field towards more quantitative measurements. We will discuss the details of our experimental setup, the data we collected, the outcomes of the Geant4-simulations, and additional information on the underlying physical processes.


Assuntos
Diagnóstico por Imagem , Fótons , Imagens de Fantasmas , Diagnóstico por Imagem/métodos , Método de Monte Carlo , Medições Luminescentes/métodos
9.
npj Quantum Inf ; 9(1): 123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665254

RESUMO

One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel in a resource-efficient manner using code concatenation. Specifically, we consider a tree-cluster code as an inner loss-tolerant code concatenated with an outer 5-qubit code for protection against Pauli errors. Adopting flag-based stabilizer measurements, we show that intercontinental distances of up to 10,000 km can be bridged with a minimized resource overhead by interspersing repeater nodes that each specialize in suppressing either loss or operational errors. Our work demonstrates how tailored error-correcting codes can significantly lower the experimental requirements for long-distance quantum communication.

10.
iScience ; 25(4): 104035, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313687

RESUMO

Many light-based technologies have been developed to manipulate micro/nanoscale objects such as colloidal particles and biological cells for basic research and practical applications. While most approaches such as optical tweezers are best suited for manipulation of objects in fluidic environments, optical manipulation on solid substrates has recently gained research interest for its advantages in constructing, reconfiguring, or powering solid-state devices consisting of colloidal particles as building blocks. Here, we review recent progress in optical technologies that enable versatile manipulation and assembly of micro/nanoscale objects on solid substrates. Diverse technologies based on distinct physical mechanisms, including photophoresis, photochemical isomerization, optothermal phase transition, optothermally induced surface acoustic waves, and optothermal expansion, are discussed. We conclude this review with our perspectives on the opportunities, challenges, and future directions in optical manipulation and assembly on solid substrates.

11.
Microsyst Nanoeng ; 7: 104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987859

RESUMO

Current, application-driven trends towards larger-scale integration (LSI) of microfluidic systems for comprehensive assay automation and multiplexing pose significant technological and economical challenges to developers. By virtue of their intrinsic capability for powerful sample preparation, centrifugal systems have attracted significant interest in academia and business since the early 1990s. This review models common, rotationally controlled valving schemes at the heart of such "Lab-on-a-Disc" (LoaD) platforms to predict critical spin rates and reliability of flow control which mainly depend on geometries, location and liquid volumes to be processed, and their experimental tolerances. In absence of larger-scale manufacturing facilities during product development, the method presented here facilitates efficient simulation tools for virtual prototyping and characterization and algorithmic design optimization according to key performance metrics. This virtual in silico approach thus significantly accelerates, de-risks and lowers costs along the critical advancement from idea, layout, fluidic testing, bioanalytical validation, and scale-up to commercial mass manufacture.

12.
ACS Nano ; 15(1): 1370-1377, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356145

RESUMO

Squeezing bubbles and impurities out of interlayer spaces by applying force through a few-layer graphene capping layer leads to van der Waals heterostructures with the ultraflat structure free from random electrostatic potential arising from charged impurities. Without the graphene capping layer, a squeezing process with an AFM tip induces applied-force-dependent charges of Δn ∼ 2 × 1012 cm-2 µN-1, resulting in the significant intensity of trions in photoluminescence spectra of MoSe2 at low temperature. We found that a hBN/MoSe2/hBN prepared with the "graphene-capping-assisted AFM nano-squeezing method" shows a strong excitonic emission with negligible trion peak, and the residual line width of the exciton peak is only 2.2 meV, which is comparable to the homogeneous limit. Furthermore, in this high-quality sample, we found that the formation of biexciton occurs even at extremely low excitation power (Φph ∼ 2.3 × 1019 cm-2 s-1) due to the enhanced collisions between excitons.

13.
iScience ; 23(12): 101877, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33344920

RESUMO

As technology advances, electrical devices such as smartphones have become more and more compact, leading to a demand for the continuous miniaturization of optical components. Metalenses, ultrathin flat optical elements composed of metasurfaces consisting of arrays of subwavelength optical antennas, provide a method of meeting those requirements. Moreover, metalenses have many other distinctive advantages including aberration correction, active tunability, and semi-transparency, compared to their conventional refractive and diffractive counterparts. Therefore, over the last decade, great effort has been focused on developing metalenses to investigate and broaden the capabilities of metalenses for integration into future applications. Here, we discuss recent progress on metalenses including their basic design principles and notable characteristics such as aberration correction, tunability, and multifunctionality.

14.
Light Sci Appl ; 9: 176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088493

RESUMO

It was recently demonstrated that the connectivities of bands emerging from zero frequency in dielectric photonic crystals are distinct from their electronic counterparts with the same space groups. We discover that in an AB-layer-stacked photonic crystal composed of anisotropic dielectrics, the unique photonic band connectivity leads to a new kind of symmetry-enforced triply degenerate points at the nexuses of two nodal rings and a Kramers-like nodal line. The emergence and intersection of the line nodes are guaranteed by a generalized 1/4-period screw rotation symmetry of Maxwell's equations. The bands with a constant k z and iso-frequency surfaces near a nexus point both disperse as a spin-1 Dirac-like cone, giving rise to exotic transport features of light at the nexus point. We show that spin-1 conical diffraction occurs at the nexus point, which can be used to manipulate the charges of optical vortices. Our work reveals that Maxwell's equations can have hidden symmetries induced by the fractional periodicity of the material tensor components and hence paves the way to finding novel topological nodal structures unique to photonic systems.

15.
Light Sci Appl ; 9: 154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944230

RESUMO

Researchers have observed the free-propagation of a single microcavity polariton directly and its self-interference when scattering upon a defect. These experimental observations of quantum hydrodynamics in the single polariton limit test the wave-particle duality and aid in the development of polariton-based photonic circuits in quantum information processing.

16.
Light Sci Appl ; 9: 141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864116

RESUMO

Inspired by the "run-and-tumble" behaviours of Escherichia coli (E. coli) cells, we develop opto-thermoelectric microswimmers. The microswimmers are based on dielectric-Au Janus particles driven by a self-sustained electrical field that arises from the asymmetric optothermal response of the particles. Upon illumination by a defocused laser beam, the Janus particles exhibit an optically generated temperature gradient along the particle surfaces, leading to an opto-thermoelectrical field that propels the particles. We further discover that the swimming direction is determined by the particle orientation. To enable navigation of the swimmers, we propose a new optomechanical approach to drive the in-plane rotation of Janus particles under a temperature-gradient-induced electrical field using a focused laser beam. Timing the rotation laser beam allows us to position the particles at any desired orientation and thus to actively control the swimming direction with high efficiency. By incorporating dark-field optical imaging and a feedback control algorithm, we achieve automated propelling and navigation of the microswimmers. Our opto-thermoelectric microswimmers could find applications in the study of opto-thermoelectrical coupling in dynamic colloidal systems, active matter, biomedical sensing, and targeted drug delivery.

17.
Light Sci Appl ; 9: 117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685138

RESUMO

Surface-enhanced Raman scattering (SERS) and photoluminescence (PL) are important photoexcitation spectroscopy techniques; however, understanding how to analyze and modulate the relationship between SERS and PL is rather important for enhancing SERS, having a great effect on practical applications. In this work, a charge-transfer (CT) mechanism is proposed to investigate the change and relationships between SERS and PL. Analyzing the change in PL and SERS before and after the adsorption of the probe molecules on Nd-doped ZnO indicates that the unique optical characteristics of Nd3+ ions increase the SERS signal. On the other hand, the observed SERS can be used to explain the cause of PL background reduction. This study demonstrates that modulating the interaction between the probe molecules and the substrate can not only enhance Raman scattering but also reduce the SERS background. Our work also provides a guideline for the investigation of CT as well as a new method for exploring fluorescence quenching.

18.
Light Sci Appl ; 9: 113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637080

RESUMO

Perfect lenses, superlenses and time-reversal mirrors can support and spatially separate evanescent waves, which is the basis for detecting subwavelength information in the far field. However, the inherent limitations of these methods have prevented the development of systems to dynamically distinguish subdiffraction-limited signals. Utilizing the physical merits of spoof surface plasmon polaritons (SPPs), we demonstrate that subdiffraction-limited signals can be transmitted on planar integrated SPP channels with low loss, low channel interference, and high gain and can be radiated with a very low environmental sensitivity. Furthermore, we show how deep subdiffraction-limited signals that are spatially coupled can be distinguished after line-of-sight wireless transmission. For a visualized demonstration, we realize the high-quality wireless communication of two movies on subwavelength channels over the line of sight in real time using our plasmonic scheme, showing significant advantages over the conventional methods.

19.
Light Sci Appl ; 9: 128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704361

RESUMO

We present Floquet fractal topological insulators: photonic topological insulators in a fractal-dimensional lattice consisting of helical waveguides. The helical modulation induces an artificial gauge field and leads to a trivial-to-topological phase transition. The quasi-energy spectrum shows the existence of topological edge states corresponding to real-space Chern number 1. We study the propagation of light along the outer edges of the fractal lattice and find that wavepackets move along the edges without penetrating into the bulk or backscattering even in the presence of disorder. In a similar vein, we find that the inner edges of the fractal lattice also exhibit robust transport when the fractal is of sufficiently high generation. Finally, we find topological edge states that span the circumference of a hybrid half-fractal, half-honeycomb lattice, passing from the edge of the honeycomb lattice to the edge of the fractal structure virtually without scattering, despite the transition from two dimensions to a fractal dimension. Our system offers a realizable experimental platform to study topological fractals and provides new directions for exploring topological physics.

20.
Light Sci Appl ; 9: 89, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509296

RESUMO

Light-emitting diodes (LEDs) based on perovskites show great potential in lighting and display applications. However, although perovskite films with high photoluminescence quantum efficiencies are commonly achieved, the efficiencies of perovskite LEDs are largely limited by the low light out-coupling efficiency. Here, we show that high-efficiency perovskite LEDs with a high external quantum efficiency of 20.2% and an ultrahigh radiant exitance up to 114.9 mW cm-2 can be achieved by employing the microcavity effect to enhance light extraction. The enhanced microcavity effect and light out-coupling efficiency are confirmed by the study of angle-dependent emission profiles. Our results show that both the optical and electrical properties of the device need to be optimized to achieve high-performance perovskite LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA