Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.328
Filtrar
1.
Water Sci Technol ; 89(10): 2685-2702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822608

RESUMO

This paper evaluates the performance and potential of a full-scale hybrid multi-soil-layering (MSL) system for the treatment of domestic wastewater for landscape irrigation reuse. The system integrates a solar septic tank and sequential vertical flow MSL and horizontal flow MSL components with alternating layers of gravel and soil-based material. It operates at a hydraulic loading rate of 250 L/m2/day. Results show significant removal of pollutants and pathogens, including total suspended solids (TSS) (97%), chemical oxygen demand (COD) (88.57%), total phosphorus (TP) (79.93%), and total nitrogen (TN) (88.49%), along with significant reductions in fecal bacteria indicators (4.21 log for fecal coliforms and 3.90 log for fecal streptococci) and the pathogen Staphylococcus sp. (2.43 log). The principal component analysis confirms the effectiveness of the system in reducing the concentrations of NH4, COD, TP, PO4, fecal coliforms, fecal streptococci, and fecal staphylococci, thus supporting the reliability of the study. This work highlights the promising potential of the hybrid MSL technology for the treatment of domestic wastewater, especially in arid regions such as North Africa and the Middle East, to support efforts to protect the environment and facilitate the reuse of wastewater for landscape irrigation and agriculture.


Assuntos
Águas Residuárias , Marrocos , Águas Residuárias/microbiologia , Eliminação de Resíduos Líquidos/métodos , Solo/química , Fósforo/análise , Purificação da Água/métodos , Nitrogênio/análise , Cidades , Poluentes Químicos da Água
2.
Glob Chang Biol ; 30(6): e17349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822665

RESUMO

Priming of soil organic matter (SOM) decomposition by microorganisms is a key phenomenon of global carbon (C) cycling. Soil pH is a main factor defining priming effects (PEs) because it (i) controls microbial community composition and activities, including enzyme activities, (ii) defines SOM stabilization and destabilization mechanisms, and (iii) regulates intensities of many biogeochemical processes. In this critical review, we focus on prerequisites and mechanisms of PE depending on pH and assess the global change consequences for PE. The highest PEs were common in soils with pH between 5.5 and 7.5, whereas low molecular weight organic compounds triggered PE mainly in slightly acidic soils. Positive PEs up to 20 times of SOM decomposition before C input were common at pH around 6.5. Negative PEs were common at soil pH below 4.5 or above 7 reflecting a suboptimal environment for microorganisms and specific SOM stabilization mechanisms at low and high pH. Short-term soil acidification (in rhizosphere, after fertilizer application) affects PE by: mineral-SOM complexation, SOM oxidation by iron reduction, enzymatic depolymerization, and pH-dependent changes in nutrient availability. Biological processes of microbial metabolism shift over the short-term, whereas long-term microbial community adaptations to slow acidification are common. The nitrogen fertilization induced soil acidification and land use intensification strongly decrease pH and thus boost the PE. Concluding, soil pH is one of the strongest but up to now disregarded factors of PE, defining SOM decomposition through short-term metabolic adaptation of microbial groups and long-term shift of microbial communities.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Concentração de Íons de Hidrogênio , Ciclo do Carbono , Carbono/análise , Carbono/metabolismo
3.
Mar Pollut Bull ; 204: 116529, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824705

RESUMO

In the Arctic Ocean, variations in the colored dissolved organic matter (CDOM) have important value and significance. This study proposed and evaluated a novel method by combining the Google Earth Engine with a multilayer back-propagation neural network to retrieve CDOM concentration. This model performed well on the testing data and independent validation data (R2 = 0.76, RMSE = 0.37 m-1, MAPD = 35.43 %), and it was applied to Moderate Resolution Imaging Spectroradiometer (MODIS) images. The CDOM distribution in the Arctic Ocean and its main sea areas was first depicted during the ice-free period from 2002 to 2021, with average CDOM concentration in the range of 0.25 and 0.31 m-1. High CDOM concentration appeared in coastal areas affected by rivers on the Siberian side. The CDOM concentration was highly correlated with salinity (r = -0.92) and discharge (r > 0.68), while melting sea ice diluted seawater and CDOM concentration.

4.
Environ Monit Assess ; 196(7): 596, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839676

RESUMO

The issue of soil acidification in tea plantations has become a critical concern due to its potential impact on tea quality and plant health. Understanding the factors contributing to soil acidification is essential for implementing effective soil management strategies in tea-growing regions. In this study, a field study was conducted to investigate the effects of tea plantations on soil acidification and the associated acid-base buffering capacity (pHBC). We assessed acidification, pHBC, nutrient concentrations, and cation contents in the top 0-20 cm layer of soil across forty tea gardens of varying stand ages (0-5, 5-10, 10-20, and 20-40 years old) in Anji County, Zhejiang Province, China. The results revealed evident soil acidification due to tea plantation activities, with the lowest soil pH observed in tea gardens aged 10-20 and 20-40 years. Higher levels of soil organic matter (SOM), total nitrogen (TN), Olsen phosphorus (Olsen-P), available iron (Fe), and exchangeable hydrogen (H+) were notably recorded in 10-20 and 20-40 years old tea garden soils, suggesting an increased risk of soil acidification with prolonged tea cultivation. Furthermore, prolonged tea cultivation correlated with increased pHBC, which amplified with tea stand ages. The investigation of the relationship between soil pHBC and various parameters highlighted significant influences from soil pH, SOM, cation exchange capacity, TN, available potassium, Olsen-P, exchangeable acids (including H+ and aluminum), available Fe, and available zinc. Consequently, these findings underscore a substantial risk of soil acidification in tea gardens within the monitored region, with SOM and TN content being key driving factors influencing pHBC.


Assuntos
Camellia sinensis , Monitoramento Ambiental , Nitrogênio , Solo , Solo/química , Camellia sinensis/química , Nitrogênio/análise , China , Concentração de Íons de Hidrogênio , Ecossistema , Fósforo/análise , Chá/química , Agricultura
5.
Water Res ; 259: 121845, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38838483

RESUMO

Dissolved organic matter (DOM) plays an important role in regulating the fate of mercury (Hg), e.g., mobility, bioavailability, and toxicity. Clarifying the role of DOM in binding Hg in the treatment processes of sewage sludge is important for relieving Hg contamination risks in land applications. However, the impacts of DOM on Hg binding in sewage sludge are still unclear. In this study, we investigated the evolution of Hg and its speciation in full-scale sludge anaerobic digestion (AD) with thermal hydrolysis. The role of DOM in binding Hg(II) was further analyzed. The results showed that AD with thermal hydrolysis led to an increase in the Hg content in the sludge (from 3.72 ± 0.47 mg/kg to 10.75 ± 0.16 mg/kg) but a decrease in Hg mobility (the mercury sulfide fraction increased from 60.56 % to 79.78 %). Further adsorption experiments revealed that at equivalent DOM concentrations, DOM with a low molecular weight (MW<1 kDa) in activated sludge, DOM with a medium molecular weight (1 kDa 5 kDa) in both anaerobically digested sludge and conditioned sludge showed high binding amounts of Hg(II), with 1372.54, 535.28, 942.09 and 801.51 mg Hg/g DOM, respectively. Parallel factor analysis (PARAFAC) and fluorescence quotient (FQ) results showed that tryptophan-like and tyrosine-like substances had high binding affinities for Hg(II). Furthermore, X-ray photoelectron spectroscopy (XPS) indicated that the reduced organic sulfur contained in the DOM was potentially bound to Hg through the interactions of Hg-S and Hg-O. These results indicated that DOM may play special roles in regulating Hg speciation. The association between DOM and Hg(II), such as the significant positive correlation (p < 0.05) between the dissolution rate of Hg(II) and release of tryptophan-like substances during thermal hydrolysis, suggested the potential way for removing Hg from sludge.

6.
J Environ Manage ; 362: 121351, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838535

RESUMO

In this study, the growth of yeast and yeast-like fungi in the liquid digestate from vegetable wastes was investigated in order to remove nutrients and organic pollutants, and for their application as co-culture members with green microalgae. The studied yeast strains were characterized for their assimilative and enzymatic profiles as well as temperature requirements. In the first experimental stage, the growth dynamics of each strain were determined, allowing to select the best yeasts for further studies. In the subsequent stage, the ability of selectants to remove organic pollutants was assessed. Different cultivation media containing respectively 1:3, 1:1, 3:1 vol ratio of liquid digestate and the basal minimal medium were used. Among all tested yeast strains, Rhodotorula mucilaginosa DSM 70825 showed the most promising results, demonstrating the highest potential for removing organic substrates and nutrients. Depending on the medium, this strain achieved 50-80% sCOD, 45-60% tVFAs, 21-45% TN, 33-52% PO43- reduction rates. Similar results were obtained for the strain Candida sp. OR687571. The high nutrient and organics removal efficiency by these yeasts could likely be linked to their ability to assimilate xylose (being the main source of carbon in the liquid digestate). In culture media containing liquid digestate, both yeast strains achieved good viability and proliferation potential. In the liquid digestate medium, R. mucilaginosa and Candida sp. showed vitality at the level of 51.5% and 45.0%, respectively. These strains seem to be a good starting material for developing effective digestate treatment strategies involving monocultures and/or consortia with other yeasts or green microalgae.

7.
Waste Manag ; 185: 55-63, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843757

RESUMO

Composted materials serve as an effective soil nutrient amendment. Organic matter in compost plays an important role in quantifying composted materials overall quality and nutrient content. Measuring organic matter content traditionally takes considerable time, resources, and various laboratory equipment (e.g., oven, muffle furnace, crucibles, precision balance). Much like the quantitative color indices (e.g., sRGB R, sRGB G, sRGB B, CIEL*a* b*) derived from the low-cost NixPro2 color sensor have proven adept at predicting soil organic matter in-situ, the NixPro2 color sensor has the potential to be effective for predicting organic matter in composted materials without the need for traditional laboratory methods. In this study, a total of 200 compost samples (13 different compost types) were measured for organic matter content via traditional loss-on-ignition (LOI) and via the NixPro2 color sensor. The NixPro2 color sensor showed promising results with an LOI-prediction model utilizing the CIEL*a* b* color model through the application of the Generalized Additive Model (GAM) algorithm yielding an excellent prediction accuracy (validation R2 = 0.87, validation RMSE = 4.66 %). Moreover, the PCA scoreplot differentiated the three lowest organic matter compost types from the remaining 10 compost types. These results have valuable practical significance for the compost industry by predicting compost organic matter in real time without the need for laborious, time-consuming methods.

8.
Front Microbiol ; 15: 1374800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827148

RESUMO

Acidophiles comprise a group of microorganisms adapted to live in acidic environments. Despite acidophiles are usually associated with an autotrophic metabolism, more than 80 microorganisms capable of utilizing organic matter have been isolated from natural and man-made environments. The ability to reduce soluble and insoluble iron compounds has been described for many of these species and may be harnessed to develop new or improved mining processes when oxidative bioleaching is ineffective. Similarly, as these microorganisms grow in highly acidic media and the chances of contamination are reduced by the low pH, they may be employed to implement robust fermentation processes. By conducting an extensive literature review, this work presents an updated view of basic aspects and technological applications in biomining, bioremediation, fermentation processes aimed at biopolymers production, microbial electrochemical systems, and the potential use of extremozymes.

9.
Water Res ; 258: 121791, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830291

RESUMO

Changes in rainfall patterns driven by climate change affect the transport of dissolved organic matter (DOM) and nutrients through runoff to freshwater systems. This presents challenges for drinking water providers. DOM, which is a heterogeneous mix of organic molecules, serves as a critical precursor for disinfection by-products (DBPs) which are associated with adverse health effects. Predicting DBP formation is complex due to changes in DOM concentration and composition in source waters, intensified by altered rainfall frequency and intensity. We employed a novel mesocosm approach to investigate the response of DBP precursors to variability in DOM composition and inorganic nutrients, such as nitrogen and phosphorus, export to lakes. Three distinct pulse event scenarios, mimicking extreme, intermittent, and continuous runoff were studied. Simultaneous experiments were conducted at two boreal lakes with distinct DOM composition, as reflected in their color (brown and clear lakes), and bromide content, using standardized methods. Results showed primarily site-specific changes in DBP precursors, some heavily influenced by runoff variability. Intermittent and daily pulse events in the clear-water mesocosms exhibited higher haloacetonitriles (HANs) formation potential linked to freshly produced protein-like DOM enhanced by light availability. In contrast, trihalomethanes (THMs), associated with humic-like DOM, showed no significant differences between pulse events in the brown-water mesocosms. Elevated bromide concentration in the clear mesocosms critically influenced THMs speciation and concentrations. These findings contribute to understanding how changing precipitation patterns impact the dynamics of DBP formation, thereby offering insights for monitoring the mobilization and alterations of DBP precursors within catchment areas and lake ecosystems.

10.
ISME Commun ; 4(1): ycae051, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38699060

RESUMO

Soil carbon loss is likely to increase due to climate warming, but microbiomes and microenvironments may dampen this effect. In a 30-year warming experiment, physical protection within soil aggregates affected the thermal responses of soil microbiomes and carbon dynamics. In this study, we combined metagenomic analysis with physical characterization of soil aggregates to explore mechanisms by which microbial communities respond to climate warming across different soil microenvironments. Long-term warming decreased the relative abundances of genes involved in degrading labile compounds (e.g. cellulose), but increased those genes involved in degrading recalcitrant compounds (e.g. lignin) across aggregate sizes. These changes were observed in most phyla of bacteria, especially for Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community composition was considerably altered by warming, leading to declined diversity for bacteria and fungi but not for archaea. Microbial functional genes, diversity, and community composition differed between macroaggregates and microaggregates, indicating the essential role of physical protection in controlling microbial community dynamics. Our findings suggest that microbes have the capacity to employ various strategies to acclimate or adapt to climate change (e.g. warming, heat stress) by shifting functional gene abundances and community structures in varying microenvironments, as regulated by soil physical protection.

11.
Ecol Lett ; 27(5): e14415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712683

RESUMO

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Assuntos
Folhas de Planta , Ciclo do Carbono , Carbono/metabolismo
12.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732408

RESUMO

Climate and land use changes are causing trees line to shift up into mountain meadows. The effect of this vegetation change on the partitioning of soil carbon (C) between the labile particulate organic matter (POM-C) and stable mineral-associated organic matter (MAOM-C) pools is poorly understood. Therefore, we assessed these C pools in a 10 cm topsoil layer along forest-meadow ecotones with different land uses (reserve and pasture) in the Northwest Caucasus of Russia using the size fractionation technique (POM 0.053-2.00 mm, MAOM < 0.053 mm). Potential drivers included the amount of C input from aboveground grass biomass (AGB) and forest litter (litter quantity) and their C/N ratios, aromatic compound content (litter quality), and soil texture. For both land uses, the POM-C pool showed no clear patterns of change along forest-meadow ecotones, while the MAOM-C pool increased steadily from meadow to forest. Regardless of land use, the POM-C/MAOM-C ratio decreased threefold from meadow to forest in line with decreasing grass AGB (R2 = 0.75 and 0.29 for reserve and pasture) and increasing clay content (R2 = 0.63 and 0.36 for reserve and pasture). In pastures, an additional negative relationship was found with respect to plant litter aromaticity (R2 = 0.48). Therefore, shifting the mountain tree line in temperate climates could have a positive effect on conserving soil C stocks by increasing the proportion of stable C pools.

13.
Plants (Basel) ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732423

RESUMO

In regions facing water scarcity and soil salinity, mitigating these abiotic stresses is paramount for sustaining crop production. This study aimed to unravel the synergistic effects of organic matter and phosphorus management in reducing the adverse effect of saline water for irrigation on red pepper (Capsicum annuum L.) production, fruit quality, plant physiology, and stress tolerance indicators. The study was carried out in the arid Tadla region of Morocco and involved two key experiments: (i) a field experiment during the 2019 growing season, where red pepper plants were subjected to varying phosphorus fertilizer rates (120, 140, and 170 kg of P2O5.ha-1) and saline water irrigation levels (0.7; 1.5; 3; and 5 dS.m-1); and (ii) a controlled pot experiment in 2021 for examining the interaction of saline water irrigation levels (EC values of 0.7, 2, 5, and 9 dS.m-1), phosphorus rates (30, 36, and 42 kg of P2O5.ha-1), and the amount of organic matter (4, 8, 12, and 16 t.ha-1). The field study highlighted that saline irrigation significantly affected red pepper yields and fruit size, although phosphorus fertilization helped enhance productivity. Additionally, biochemical markers of stress tolerance, such as proline and glycine betaine, along with stomatal conductance, were impacted by increasing salinity levels. The pot experiment showed that combining organic amendments and phosphorus improved soil properties and stimulated red pepper growth and root weight across all salinity levels. The integration of phosphorus fertilization and organic amendments proved instrumental for counteracting salinity-induced constraints on red pepper growth and yield. Nonetheless, caution is necessary as high salinity can still negatively impact red pepper productivity, necessitating the establishment of an irrigation water salinity threshold, set at 5 dS.m-1.

14.
Heliyon ; 10(9): e30484, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737265

RESUMO

Erythrina brucei has been applied as a green manure to improve soil fertility in southern Ethiopia. It has been nodulated by indigenous rhizobia. The objectives of this study were to evaluate the effects of E. brucei inoculation with microbial consortia consisted of Bradyrhizobium shewense, Acinetobacter soli and arbuscular mycorrhizal fungi (AMF)on E.brucei growth, soil nitrogen and phosphorous status after application as a green manure.A field experiment was conducted by inoculating E. Brucei with different microbial consortia. E. brucei inoculated with the microbial consortia were grown for 150 days. Its shoot length was measured at 60, 90, 120 and 150 days after planting. Then, plants were uprooted and mulched as a green manure. The soil nitrogen, available phosphorous and soil organic matter analysis were done. The experimental design was completely randomized block design with eight treatments comprised of three replications. Inoculated treatments did not show a significant (p < 0.05) difference in shoot length in the first 60 days. However, shoot length was increased between 19.1 and 41.3 %, 10.5-43.4 % and 8.7-37.6 %, respectively at 90, 120 and 150 days. The soil organic matter was improved in both inoculated and un-inoculated treatments. The improvements in the soil organic matter of un-inoculated treatments may be due to the decomposition of un-inoculated plants biomass in the soil. The B. shewense inoculation improved the soil nitrogen by 17 %. The soil phosphorous was improved in 57 % of inoculated treatments. The inoculation of E. brucei with microbial consortia enhanced its growth and improved soil fertility when applied as a green manure. Inoculating the green manure legumes with symbiotically effective rhizobia and plant-beneficial microbes can enhance the growth of E. brucei and its nutrient uptake.

15.
Environ Pollut ; 353: 124153, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750808

RESUMO

Isoproturon (IPU), a widely utilized phenylurea herbicide, is recognized as an emerging contaminant. Previous studies have predominantly attributed the degradation of IPU in natural waters to indirect photolysis by natural organic matter (NOM). Here, we demonstrate that nitrite (NO2-) also serves as an important photosensitizer that induces the photo-degradation of IPU. Through radical quenching tests, we identify hydroxyl radicals (•OH) and nitrogen dioxide radicals (NO2•) originating from NO2- photolysis as key players in IPU degradation, resulting in the generation of a series of hydroxylated and nitrated byproducts. Moreover, we demonstrate a synergistic effect on the photo-transformation of IPU when both NOM and NO2- are present in the reaction mixture. The observed rate constant (kobs) for IPU removal increases to 0.0179 ± 0.0002 min-1 in the co-presence of NO2- (50 µM) and NOM (2.5 mgC/L), surpassing the sum of those in the presence of each alone (0.0135 ± 0.0004 min-1). NOM exhibits multifaceted roles in the indirect photolysis of IPU. It can be excited by UV and transformed to excited triplet states (3NOM*) which oxidize IPU to IPU•+ that undergoes further degradation. Simultaneously, NOM can mitigate the reaction by reducing the IPU•+ intermediate back to the parent IPU. However, the presence of NO2- alters this dynamic, as IPU•+ rapidly couples with NO2•, accelerating IPU degradation and augmenting the formation of mono-nitrated IPU. These findings provide in-depth understandings on the photochemical transformation of environmental contaminants, especially phenylurea herbicides, in natural waters where NOM and NO2- coexist.

16.
Water Res ; 258: 121797, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38781623

RESUMO

Dissolved organic matter (DOM) plays a crucial role in driving biogeochemical processes and determining water quality in shallow groundwater systems, where DOM could be susceptible to dynamic influences of surface water influx. This study employed fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component coefficients, parallel factor analysis (PARAFAC), co-occurrence network analysis and structural equation modeling (SEM) to examine changes of DOM fractions from surface water to shallow groundwater in a mesoscale lowland river basin. Combining stable isotope and hydrochemical parameters, except for surface water (SW), two groups of groundwater samples were defined, namely, deeply influenced by surface water (IGW) and groundwater nearly non-influenced by surface water (UGW), which were 50.34 % and 19.39 % recharged by surface water, respectively. According to principal component coefficients, reassembled EEM data of these categories highlighted variations of the tyrosine-like peak in DOM. EEMs coupled with PARAFAC extracted five components (C1-C5), i.e. C1, protein-like substances, C2 and C4, humic-like substances, and C3 and C5, microbial-related substances. The abundance of the protein-like was SW > IGW > UGW, while the order of the humic-like was opposite. The bacterial communities exhibited an obvious cluster across three regions, which hinted their sensitivity to variations in environmental conditions. Based on co-occurrence, SW represented the highest connectivity between bacterial OTUs and DOM fractions, followed by IGW and UGW. SEM revealed that microbial activities increased bioavailability of the humic-like in the SW and IGW, whereas microbial compositions promoted the evolution of humic-like substances in the UGW. Generally, these results could be conducive to discern dissimilarity in DOM fractions across surface water and shallow groundwater, and further trace their interactions in the river watershed.

17.
ACS Appl Bio Mater ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38788153

RESUMO

Microalgae show great promise for producing valuable molecules like biofuels, but their large-scale production faces challenges, with harvesting being particularly expensive due to their low concentration in water, necessitating extensive treatment. While methods such as centrifugation and filtration have been proposed, their efficiency and cost-effectiveness are limited. Flotation, involving air-bubbles lifting microalgae to the surface, offers a viable alternative, yet the repulsive interaction between bubbles and cells can hinder its effectiveness. Previous research from our group proposed using an amphiphilic chitosan derivative, polyoctyl chitosan (PO-chitosan), to functionalize bubbles used in dissolved air flotation (DAF). Molecular-scale studies performed using atomic force microscopy (AFM) revealed that PO-chitosan's efficiency correlates with cell surface properties, particularly hydrophobic ones, raising the question of whether this molecule can in fact be used more generally to harvest different microalgae. Evaluating this, we used a different strain of Chlorella vulgaris and first characterized its surface properties using AFM. Results showed that cells were hydrophilic but could still interact with PO-chitosan on bubble surfaces through a different mechanism based on specific interactions. Although force levels were low, flotation resulted in 84% separation, which could be explained by the presence of AOM (algal organic matter) that also interacts with functionalized bubbles, enhancing the overall separation. Finally, flocculation was also shown to be efficient and pH-independent, demonstrating the potential of PO-chitosan for harvesting microalgae with different cell surface properties and thus for further sustainable large-scale applications.

18.
J Hazard Mater ; 473: 134663, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38788575

RESUMO

In Southern China, the co-occurrence of arsenic (As) and antimony (Sb) contamination in soils around Sb mines presents an environmental challenge. During the flooding period of mining-impacted soils, anaerobic reduction of iron (Fe) oxides enhances the mobilization and bioavailability of Sb and As, further elevating the risk of Sb and As entering the food chain. To address this problem, activated carbon (AC) and biochar (BC) were applied to remediate flooded mining-impacted soils. Our results explored that AC can significantly decrease mobilization by 9-97 % for Sb and 9-67 % for As through inhibiting Fe(III) mineral reduction and dissolution in flooded soils. In contrast, there was no significant effect of BC. This was attributed to the strong adsorption of soil dissolved organic matter (DOM) by AC compared to BC, while DOM as electron shuttle is crucial for microbial Fe(III) reduction. Consequently, the DOM sequestration by AC effectively mitigates Sb and As leaching in contaminated mining soils.

19.
Mar Drugs ; 22(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786618

RESUMO

Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.


Assuntos
Alelopatia , Diatomáceas , Oxilipinas , Oxilipinas/metabolismo , Animais , Organismos Aquáticos , Zooplâncton
20.
Environ Sci Technol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38817075

RESUMO

Massive soil erosion occurs in the world's Mollisol regions due to land use change and climate warming. The migration of Mollisol organic matter to river systems and subsequent changes in carbon biogeochemical flow and greenhouse gas fluxes are of global importance but little understood. By employing comparative mesocosm experiments simulating varying erosion intensity in Mollisol regions of northeastern China, this research highlights that erosion-driven export and biomineralization of terrestrial organic matter facilitates CO2 and CH4 emission from receiving rivers. Stronger Mollisol erosion, as represented by a higher soil-to-water ratio in suspensions, increased CO2 efflux, particularly for the paddy Mollisols. This is mechanistically attributable to increased bioavailability of soluble organic carbon in river water that is sourced back to destabilized organic matter, especially from the cultivated Mollisols. Concurrent changes in microbial community structure have enhanced both aerobic and anaerobic processes as reflected by the coemission of CO2 and CH4. Higher greenhouse gas effluxes from paddy Mollisol suspensions suggest that agricultural land use by supplying more nitrogen-containing, higher-free-energy organic components may have enhanced microbial respiration. These new findings highlight that Mollisol erosion is a hidden significant contributor to greenhouse gas emissions from river water, given that the world's four major Mollisol belts are all experiencing intensive cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...