Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Int J Implant Dent ; 10(1): 34, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963524

RESUMO

Dental implant therapy, established as standard-of-care nearly three decades ago with the advent of microrough titanium surfaces, revolutionized clinical outcomes through enhanced osseointegration. However, despite this pivotal advancement, challenges persist, including prolonged healing times, restricted clinical indications, plateauing success rates, and a notable incidence of peri-implantitis. This review explores the biological merits and constraints of microrough surfaces and evaluates the current landscape of nanofeatured dental implant surfaces, aiming to illuminate strategies for addressing existing impediments in implant therapy. Currently available nanofeatured dental implants incorporated nano-structures onto their predecessor microrough surfaces. While nanofeature integration into microrough surfaces demonstrates potential for enhancing early-stage osseointegration, it falls short of surpassing its predecessors in terms of osseointegration capacity. This discrepancy may be attributed, in part, to the inherent "dichotomy kinetics" of osteoblasts, wherein increased surface roughness by nanofeatures enhances osteoblast differentiation but concomitantly impedes cell attachment and proliferation. We also showcase a controllable, hybrid micro-nano titanium model surface and contrast it with commercially-available nanofeatured surfaces. Unlike the commercial nanofeatured surfaces, the controllable micro-nano hybrid surface exhibits superior potential for enhancing both cell differentiation and proliferation. Hence, present nanofeatured dental implants represent an evolutionary step from conventional microrough implants, yet they presently lack transformative capacity to surmount existing limitations. Further research and development endeavors are imperative to devise optimized surfaces rooted in fundamental science, thereby propelling technological progress in the field.


Assuntos
Implantes Dentários , Osseointegração , Propriedades de Superfície , Titânio , Humanos , Titânio/química , Nanoestruturas/química , Osteoblastos , Planejamento de Prótese Dentária
2.
J Prosthodont Res ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38853001

RESUMO

Titanium implants have revolutionized restorative and reconstructive therapy, yet achieving optimal osseointegration and ensuring long-term implant success remain persistent challenges. In this review, we explore a cutting-edge approach to enhancing implant properties: ultraviolet (UV) photofunctionalization. By harnessing UV energy, photofunctionalization rejuvenates aging implants, leveraging and often surpassing the intrinsic potential of titanium materials. The primary aim of this narrative review is to offer an updated perspective on the advancements made in the field, providing a comprehensive overview of recent findings and exploring the relationship between UV-induced physicochemical alterations and cellular responses. There is now compelling evidence of significant transformations in titanium surface chemistry induced by photofunctionalization, transitioning from hydrocarbon-rich to carbon pellicle-free surfaces, generating superhydrophilic surfaces, and modulating the electrostatic properties. These changes are closely associated with improved cellular attachment, spreading, proliferation, differentiation, and, ultimately, osseointegration. Additionally, we discuss clinical studies demonstrating the efficacy of UV photofunctionalization in accelerating and enhancing the osseointegration of dental implants. Furthermore, we delve into recent advancements, including the development of one-minute vacuum UV (VUV) photofunctionalization, which addresses the limitations of conventional UV methods as well as the newly discovered functions of photofunctionalization in modulating soft tissue and bacterial interfaces. By elucidating the intricate relationship between surface science and biology, this body of research lays the groundwork for innovative strategies aimed at enhancing the clinical performance of titanium implants, marking a new era in implantology.

3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731871

RESUMO

Implanted medical devices are widely used across various medical specialties for numerous applications, ranging from cardiovascular supports to orthopedic prostheses and cosmetic enhancements. However, recent observations have raised concerns about the potential of these implants to induce malignancies in the tissues surrounding them. There have been several case reports documenting the occurrence of cancers adjacent to these devices, prompting a closer examination of their safety. This review delves into the epidemiology, clinical presentations, pathological findings, and hypothesized mechanisms of carcinogenesis related to implanted devices. It also explores how the surgical domain and the intrinsic properties and biocompatibility of the implants might influence the development of these rare but serious malignancies. Understanding these associations is crucial for assessing the risks associated with the use of medical implants, and for developing strategies to mitigate potential adverse outcomes.


Assuntos
Materiais Biocompatíveis , Neoplasias , Próteses e Implantes , Humanos , Materiais Biocompatíveis/efeitos adversos , Próteses e Implantes/efeitos adversos , Neoplasias/etiologia , Animais
4.
Biomed Mater ; 19(4)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38815612

RESUMO

Magnesium (Mg) has gained widespread recognition as a potential revolutionary orthopedic biomaterial. However, whether the biodegradation of the Mg-based orthopedic implants would pose a risk to patients with chronic kidney disease (CKD) remains undetermined as the kidney is a key organ regulating mineral homeostasis. A rat CKD model was established by a 5/6 subtotal nephrectomy approach, followed by intramedullary implantation of three types of pins: stainless steel, high pure Mg with high corrosion resistance, and the Mg-Sr-Zn alloy with a fast degradation rate. The long-term biosafety of the biodegradable Mg or its alloys as orthopedic implants were systematically evaluated. During an experimental period of 12 weeks, the implantation did not result in a substantial rise of Mg ion concentration in serum or major organs such as hearts, livers, spleens, lungs, or kidneys. No pathological changes were observed in organs using various histological techniques. No significantly increased iNOS-positive cells or apoptotic cells in these organs were identified. The biodegradable Mg or its alloys as orthopedic implants did not pose an extra health risk to CKD rats at long-term follow-up, suggesting that these biodegradable orthopedic devices might be suitable for most target populations, including patients with CKD.


Assuntos
Implantes Absorvíveis , Ligas , Magnésio , Insuficiência Renal Crônica , Animais , Magnésio/química , Ligas/química , Ratos , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Masculino , Ratos Sprague-Dawley , Materiais Biocompatíveis/química , Teste de Materiais , Rim/metabolismo , Rim/patologia , Aço Inoxidável/química , Corrosão
5.
Polymers (Basel) ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732662

RESUMO

The goal of the study was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology, as these determine their successful biointegration. The morphological and chemical structure of Vortex plate anodized titanium from commercially pure (CP) Grade 2 Titanium (Ti2) is generally used in the following; non-cemented total hip replacement (THR) stem and cup Ti alloy (Ti6Al4V) with titanium plasma spray (TPS) coating; cemented THR stem Stainless steel (SS); total knee replacement (TKR) femoral component CoCrMo alloy (CoCr); cemented acetabular component from highly cross-linked ultrahigh molecular weight polyethylene (HXL); and cementless acetabular liner from ultrahigh molecular weight polyethylene (UHMWPE) (Sanatmetal, Ltd., Eger, Hungary) discs, all of which were examined. Visualization and elemental analysis were carried out by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. TPS Ti presented the highest Ra value (25 ± 2 µm), followed by CoCr (535 ± 19 nm), Ti2 (227 ± 15 nm) and SS (170 ± 11 nm). The roughness measured in the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements regarding the investigated prosthesis materials. XPS results supported the EDS results and revealed a high % of Ti4+ on Ti2 and TPS surfaces. The results indicate that the surfaces of prosthesis materials have significantly different features, and a detailed characterization is needed to successfully apply them in orthopedic surgery and traumatology.

6.
Front Bioeng Biotechnol ; 12: 1250095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659643

RESUMO

Statistical Shape Models (SSMs) are widely used in orthopedics to extract the main shape features from bone regions (e.g., femur). This study aims to develop an SSM of the femoral medullary canal, investigate its anatomical variability, and assess variations depending on canal length. The canals were isolated from 72 CT femur scans, through a threshold-based segmentation. A region of interest (ROI) was selected; sixteen segments were extracted from the ROI, ranging from 25% of the full length down to the most distal segment. An SSM was developed to identify the main modes of variation for each segment. The number of Principal Components (PCs) needed to explain at least 90% of the shape variance were three/four based on the length of the canal segment. The study examined the relationship between the identified PCs and geometric parameters like length, radius of curvature, ellipticity, mean diameter, and conicity, reporting range and percentage variation of these parameters for each segment. The SSMs provide insights into the anatomical variability of the femoral canal, emphasizing the importance of considering different segments to capture shape variations at various canal length. These findings can contribute for the design of personalized orthopedic implants involving the distal femur.

7.
Cureus ; 16(3): e56493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38638744

RESUMO

INTRODUCTION: Metal implants are broadly used in orthopedics and traumatology to stabilize bone fragments. This study aimed to explore patients' awareness, body image, and overall experience of living with a metal implant after a fracture. METHODS: A mixed methods convergent design (QUAN+QUAL) was adopted. A self-reported 30-item questionnaire was used to investigate patients' perception and apprehension of the implantation of orthopedic materials. To enlighten the quantitative findings, semi-structured interviews followed till data saturation. Quantitative and qualitative data were compared during the analysis phase. RESULTS: Results showed that women's and elders' acceptance of the implants was greater than that of men and younger patients even in acute cases. The sense of superiority provided by the implant was mainly reported by the elderly (adjusted odds ratio (ORadj) for increasing age: 1.06; 95% CI: 1.02-1.1; p<0.01), and the sense of inferiority was mainly reported by young men (ORadj: 6.19; 95% CI: 2.36-16.22; p<0.01). Similarly, women and elderly mostly tended to answer that the injured limb felt stronger after the implant placement, while young men tended to answer a sense of weakness with the implant (ORadj for increasing age: 1.06; 95% CI: 1.03-1.09; ORadj for male gender: 4.67; 95% CI: 1.87-11.7; p<0.01 for both regressions). Most participants (56.6%) and mainly young participants, regardless of gender, expressed the desire to get the metal implants removed (ORadj for increasing age: 0.91; 95% CI: 0.89-0.95; p<0.01). Misinformation and misconception were also found in a high percentage of the questioned patients (48.1%). Thematic analysis of the interviews revealed that none of the participants directly attributed any change in their life, self, or body image to the implants. An altered body image was not reported. The most reported experience was the restriction of movement due to the accident or the subsequent physical weakness. CONCLUSION: Despite the acceptance of the implant being great, the level of patient knowledge was fairly low. The present study highlights the importance of providing patients with information throughout their management to avoid misunderstandings. Age and gender did influence patients' perception of the implants. Personalized assessment is further needed to address body image issues after an implant placement procedure.

8.
Infect Dis Rep ; 16(2): 298-316, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667751

RESUMO

Background: Despite the expanding use of orthopedic devices and the application of strict pre- and postoperative protocols, the elimination of postoperative implant-related infections remains a challenge. Objectives: To identify and assess the in vitro and in vivo properties of antimicrobial-, silver- and iodine-based implants, as well as to present novel approaches to surface modifications of orthopedic implants. Methods: A systematic computer-based review on the development of these implants, on PubMed and Web of Science databases, was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Overall, 31 in vitro and 40 in vivo entries were evaluated. Regarding the in vitro studies, antimicrobial-based coatings were assessed in 12 entries, silver-based coatings in 10, iodine-based in 1, and novel-applied coating technologies in 8 entries. Regarding the in vivo studies, antimicrobial coatings were evaluated in 23 entries, silver-coated implants in 12, and iodine-coated in 1 entry, respectively. The application of novel coatings was studied in the rest of the cases (4). Antimicrobial efficacy was examined using different bacterial strains, and osseointegration ability and biocompatibility were examined in eukaryotic cells and different animal models, including rats, rabbits, and sheep. Conclusions: Assessment of both in vivo and in vitro studies revealed a wide antimicrobial spectrum of the coated implants, related to reduced bacterial growth, inhibition of biofilm formation, and unaffected or enhanced osseointegration, emphasizing the importance of the application of surface modification techniques as an alternative for the treatment of orthopedic implant infections in the clinical settings.

9.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474684

RESUMO

Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.


Assuntos
Antibacterianos , Incrustação Biológica , Humanos , Antibacterianos/farmacologia , Biofilmes , Próteses e Implantes , Complicações Pós-Operatórias , Materiais Revestidos Biocompatíveis/química , Titânio/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-38497341

RESUMO

Bacterial infection and insufficient osteogenic activity are the main causes of orthopedic implant failure. Conventional surface modification methods are difficult to meet the requirements for long-term implant placement. In order to better regulate the function of implant surfaces, especially to improve both the antibacterial and osteogenic activity, external stimuli-responsive (ESR) strategies have been employed for the surface modification of orthopedic implants. External stimuli act as "smart switches" to regulate the surface interactions with bacteria and cells. The balance between antibacterial and osteogenic capabilities of implant surfaces can be achieved through these specific ESR manifestations, including temperature changes, reactive oxygen species production, controlled release of bioactive molecules, controlled release of functional ions, etc. This Review summarizes the recent progress on different ESR strategies (based on light, ultrasound, electric, and magnetic fields) that can effectively balance antibacterial performance and osteogenic capability of orthopedic implants. Furthermore, the current limitations and challenges of ESR strategies for surface modification of orthopedic implants as well as future development direction are also discussed.

11.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534509

RESUMO

The majority of contemporary total hip arthroplasty (THA) implants are constructed from Ti alloys, which are generally believed to generate fewer adverse local tissue reactions (ALTRs) compared to CoCr alloys. This study presents a case of unusual primary THA failure where a substantial release of Ti alloy debris was observed. A 52-year-old active male underwent THA after post-traumatic aseptic necrosis of the femoral head in 2006. Seventeen years after the procedure, the patient presented with groin pain and a restricted range of motion. X-rays revealed the protrusion of the alumina ceramic head through the Ti6Al4V acetabular cup. Trace element analysis indicated significantly elevated levels of serum Ti, Al, and V. CT and MRI confirmed Ti alloy cup failure and a severe ALTR. During revision surgery, it was found that the worn-out ceramic head was in direct contact with the acetabular cup, having protruded through a central hole it had created over time. No acetabular liner was found. Histological analysis of his tissue samples showed wear-induced synovitis with areas of multinucleated foreign body giant cells and the accumulation of numerous metal particles but no acute inflammatory response. Six months after the revision THA, the patient has experienced favourable outcomes. This case provides an instructive illustration for studying the consequences of the substantial release of Ti alloy debris from orthopedic implants.

12.
ACS Biomater Sci Eng ; 10(2): 1173-1189, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38232356

RESUMO

In orthopedic implant development, incorporating a porous structure into implants can reduce the elastic modulus to prevent stress shielding but may compromise yield strength, risking prosthesis fracture. Bamboo's natural structure, with its exceptional strength-to-weight ratio, serves as inspiration. This study explores biomimicry using bamboo-inspired porous scaffolds (BISs) resembling cortical bone, assessing their mechanical properties and fluid characteristics. The BIS consists of two 2D units controlled by structural parameters α and ß. The mechanical properties, failure mechanisms, energy absorption, and predictive performance are investigated. BIS exhibits mechanical properties equivalent to those of natural bone. Specifically, α at 4/3 and ß at 2/3 yield superior mechanical properties, and the destruction mechanism occurs layer by layer. Besides, the Gibson-Ashby models with different parameters are established to predict mechanical properties. Fluid dynamics analysis reveals two high-flow channels in BISs, enhancing nutrient delivery through high-flow channels and promoting cell adhesion and proliferation in low-flow regions. For wall shear stress below 30 mPa (ideal for cell growth), α at 4/3 achieves the highest percentage (99.04%), and ß at 2/3 achieves 98.46%. Permeability in all structural parameters surpasses that of human bone. Enhanced performance of orthopedic implants through a bionic approach that enables the creation of pore structures suitable for implants.


Assuntos
Osso e Ossos , Próteses e Implantes , Humanos , Porosidade , Módulo de Elasticidade
13.
Biomaterials ; 305: 122457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171117

RESUMO

Periprosthetic infection is a devastating postimplantation complication in which a biofilm layer harboring invasive microorganisms forms around orthopedic implants, leading to severe implant failure and patient morbidity. Despite the development of several infection-triggered antibiotic release approaches, most current antibacterial coatings are susceptible to undesired antibiotic leakage or mechanical disintegration during prosthesis installation. Herein, we propose a self-controllable proteinic antibacterial coating capable of both long-lasting adherence onto titanium implant substrates over the implant fixation period and instantaneous bacterial eradication. Importantly, the pH-dependent reversible metal coordination of mussel adhesive protein (MAP) enabled bacterial concentration-dependent antibiotic delivery in response to infection-induced acidification. In addition, the MAP coating exhibited superior self-healable adhesive properties and scratch resistance, which enabled to avert issues associated with mechanical damages, including peeling and cracking, often occurring in conventional implant coating systems. The gentamicin-loaded MAP coating exhibited complete inhibition of bacterial growth in vivo against Staphylococcus aureus penetrations during implantation surgery (immediate infection) and even 4 weeks after implantation (delayed infection). Thus, our antibiotic-loaded MAP hydrogel coating can open new avenues for self-defensive antibiotic prophylaxis to achieve instant and sustainable bacteriocidal activity in orthopedic prostheses. © 2017 Elsevier Inc. All rights reserved.


Assuntos
Antibacterianos , Próteses e Implantes , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Metais , Titânio/química , Bactérias , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
14.
Int J Biol Macromol ; 254(Pt 2): 127937, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939753

RESUMO

The failure of orthopedic implants is usually caused by inflammation, poor tissue integration, and infection, which can lead to pain, limited mobility, dysfunction of patients. This may require additional surgical interventions, such as removal, replacement, or repair of implants, as well as related treatment measures such as antibiotic therapy, physical therapy. Here, an injectable hydrogel carrier was developed for the steady release of inflammatory regulators to reduce the surface tissue inflammatory response of orthopedic implants and induce soft tissue regeneration, ultimately achieving the promotion of implants stability. The hydrogels carrier was prepared by hydroxyphenyl propionic acid-modified ε-Poly-l-lysine (EPA), hydrogen peroxide and horseradish peroxidase, which showed antibacterial bioactive and stable factor release ability. Due to the introduction of IL-4, EPA@IL-4 hydrogels showed good inflammatory regulation. EPA@IL-4 hydrogels regulated the differentiation of macrophages into M2 in inflammatory environment in vitro, and promoted endothelial cells to show a more obvious trend of tube formation. The composite hydrogels reduced the inflammation on the surface of the implants in vivo, induced local endothelial cell angiogenesis, and had more collagen deposition and new granulation tissue. Therefore, EPA hydrogels based on IL-4 release are promising candidates for promoting of implants surface anti-inflammatory, soft tissue regeneration, and anti-infection.


Assuntos
Hidrogéis , Interleucina-4 , Humanos , Hidrogéis/farmacologia , Polilisina/farmacologia , Células Endoteliais , Inflamação/tratamento farmacológico , Antibacterianos/farmacologia
15.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068991

RESUMO

Despite advancements in our knowledge of neutrophil responses to planktonic bacteria during acute inflammation, much remains to be elucidated on how neutrophils deal with bacterial biofilms in implant infections. Further complexity transpires from the emerging findings on the role that biomaterials play in conditioning bacterial adhesion, the variety of biofilm matrices, and the insidious measures that biofilm bacteria devise against neutrophils. Thus, grasping the entirety of neutrophil-biofilm interactions occurring in periprosthetic tissues is a difficult goal. The bactericidal weapons of neutrophils consist of the following: ready-to-use antibacterial proteins and enzymes stored in granules; NADPH oxidase-derived reactive oxygen species (ROS); and net-like structures of DNA, histones, and granule proteins, which neutrophils extrude to extracellularly trap pathogens (the so-called NETs: an allusive acronym for "neutrophil extracellular traps"). Neutrophils are bactericidal (and therefore defensive) cells endowed with a rich offensive armamentarium through which, if frustrated in their attempts to engulf and phagocytose biofilms, they can trigger the destruction of periprosthetic bone. This study speculates on how neutrophils interact with biofilms in the dramatic scenario of implant infections, also considering the implications of this interaction in view of the design of new therapeutic strategies and functionalized biomaterials, to help neutrophils in their arduous task of managing biofilms.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Fagocitose , Biofilmes , Bactérias , Materiais Biocompatíveis/metabolismo
16.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069365

RESUMO

In the presence of orthopedic implants, opportunistic pathogens can easily colonize the biomaterial surfaces, forming protective biofilms. Life in biofilm is a central pathogenetic mechanism enabling bacteria to elude the host immune response and survive conventional medical treatments. The formation of mature biofilms is universally recognized as the main cause of septic prosthetic failures. Neutrophils are the first leukocytes to be recruited at the site of infection. They are highly efficient in detecting and killing planktonic bacteria. However, the interactions of these fundamental effector cells of the immune system with the biofilm matrix, which is the true interface of a biofilm with the host cells, have only recently started to be unveiled and are still to be fully understood. Biofilm matrix macromolecules consist of exopolysaccharides, proteins, lipids, teichoic acids, and the most recently described extracellular DNA. The latter can also be stolen from neutrophil extracellular traps (NETs) by bacteria, who use it to strengthen their biofilms. This paper aims to review the specific interactions that neutrophils develop when they physically encounter the matrix of a biofilm and come to interact with its polymeric molecular components.


Assuntos
Artrite Infecciosa , Armadilhas Extracelulares , Humanos , Matriz Extracelular de Substâncias Poliméricas , Neutrófilos , Biofilmes , Armadilhas Extracelulares/metabolismo , Próteses e Implantes , Artrite Infecciosa/metabolismo
17.
Materials (Basel) ; 16(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959623

RESUMO

Bioactive surface coatings have retained the attention of researchers and physicians due to their versatility and range of applications in orthopedics, particularly in infection prevention. Antibacterial metal nanoparticles (mNPs) are a promising therapeutic, with vast application opportunities on orthopedic implants. The current research aimed to construct a polyelectrolyte multilayer on a highly porous titanium implant using alternating thin film coatings of chitosan and alginate via the layer-by-layer (LbL) self-assembly technique, along with the incorporation of silver nanoparticles (AgNPs) or titanium dioxide nanoparticles (TiO2NPs), for antibacterial and osteoconductive activity. These mNPs were characterized for their physicochemical properties using quartz crystal microgravimetry with a dissipation system, nanoparticle tracking analysis, scanning electron microscopy, and atomic force microscopy. Their cytotoxicity and osteogenic differentiation capabilities were assessed using AlamarBlue and alkaline phosphatase (ALP) activity assays, respectively. The antibiofilm efficacy of the mNPs was tested against Staphylococcus aureus. The LbL polyelectrolyte coating was successfully applied to the porous titanium substrate. A dose-dependent relationship between nanoparticle concentration and ALP as well as antibacterial effects was observed. TiO2NP samples were also less cytotoxic than their AgNP counterparts, although similarly antimicrobial. Together, these data serve as a proof-of-concept for a novel coating approach for orthopedic implants with antimicrobial and osteoconductive properties.

18.
Cells ; 12(21)2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37947620

RESUMO

Soft tissue adhesion and sealing around dental and maxillofacial implants, related prosthetic components, and crowns are a clinical imperative to prevent adverse outcomes of periodontitis and periimplantitis. Zirconia is often used to fabricate implant components and crowns. Here, we hypothesized that UV treatment of zirconia would induce unique behaviors in fibroblasts that favor the establishment of a soft tissue seal. Human oral fibroblasts were cultured on zirconia specimens to confluency before placing a second zirconia specimen (either untreated or treated with one minute of 172 nm vacuum UV (VUV) light) next to the first specimen separated by a gap of 150 µm. After seven days of culture, fibroblasts only transmigrated onto VUV-treated zirconia, forming a 2.36 mm volume zone and 5.30 mm leading edge. Cells migrating on VUV-treated zirconia were enlarged, with robust formation of multidirectional cytoplastic projections, even on day seven. Fibroblasts were also cultured on horizontally placed and 45° and 60° tilted zirconia specimens, with the latter configurations compromising initial attachment and proliferation. However, VUV treatment of zirconia mitigated the negative impact of tilting, with higher tilt angles increasing the difference in cellular behavior between control and VUV-treated specimens. Fibroblast size, perimeter, and diameter on day seven were greater than on day one exclusively on VUV-treated zirconia. VUV treatment reduced surface elemental carbon and induced superhydrophilicity, confirming the removal of the hydrocarbon pellicle. Similar effects of VUV treatment were observed on glazed zirconia specimens with silica surfaces. One-minute VUV photofunctionalization of zirconia and silica therefore promotes human oral fibroblast attachment and proliferation, especially under challenging culture conditions, and induces specimen-to-specimen transmigration and sustainable photofunctionalization for at least seven days.


Assuntos
Fibroblastos , Dióxido de Silício , Humanos , Propriedades de Superfície , Vácuo
19.
Bone ; 177: 116917, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739297

RESUMO

Chronic inflammation and hyperglycemia in diabetic patients increase the risk of implant failure and impaired fracture healing. We previously developed and characterized a titanium (Ti) coating strategy using an imidazolium-based ionic liquid (IonL) with a fully reduced, non-oxidizable High Mobility Group Box 1 (HMGB1) isoform (Ti-IonL-HMGB1) to immunomodulate tissue healing. In this study, we used an open reduction fracture fixation (ORIF) model in non-diabetic (ND) and diabetic (D) rats to further investigate the effectiveness of this Ti-IonL-HMGB1 coating on orthopedic applications. Ninety male Lewis rats (12-15 weeks) were divided into D (n = 45) and ND (n = 45) groups that were distributed into three subgroups based on the type of local treatment received: Ti (uncoated Ti), Ti-IonL, and Ti-IonL-HMGB1 implants. Fracture healing and osseointegration were evaluated using microtomographic, histological, and immunohistochemical analysis of proliferating cell nuclear antigen (PCNA), Runt-related transcription factor 2 (RUNX2), and HMGB1 markers at 2, 10, and 21 days post-ORIF. Scanning Electron Microscopy verified the coating stability after placement. Microtomographic and histological analysis demonstrated increased fracture healing and osseointegration for ND rats in all treatment groups at 10 days, with impaired healing for D rats. Immunohistochemical analysis exhibited elevated PCNA+ and RUNX2+ cells for D animals treated with Ti-IonL-HMGB1 at 21 days compared to all other groups. The immunohistochemical marker HMGB1 was elevated at all time points for D animals in comparison to ND animals, yet was lowered for D tissues near the Ti-IonL-HMGB1 treated implant. Improved osseous healing was demonstrated in D animals with Ti-IonL-HMGB1 treatment by 21 days, compared to D animals with other treatments. To the best of our knowledge, this is the first study analyzing Ti-IonL-HMGB1 implantation in an injury site through ORIF procedures in ND and D rats. This surface approach has potential for improving implanted biomaterials in diabetic environments.

20.
Gels ; 9(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37623093

RESUMO

Pin site infections arise from the use of percutaneous pinning techniques (as seen in skeletal traction, percutaneous fracture pinning, and external fixation for fracture stabilization or complex deformity reconstruction). These sites are niduses for infection because the skin barrier is disrupted, allowing for bacteria to enter a previously privileged area. After external fixation, the rate of pin site infections can reach up to 100%. Following pin site infection, the pin may loosen, causing increased pain (increasing narcotic usage) and decreasing the fixation of the fracture or deformity correction construct. More serious complications include osteomyelitis and deep tissue infections. Due to the morbidity and costs associated with its sequelae, strategies to reduce pin site infections are vital. Current strategies for preventing implant-associated infections include coatings with antibiotics, antimicrobial polymers and peptides, silver, and other antiseptics like chlorhexidine and silver-sulfadiazine. Problems facing the development of antimicrobial coatings on orthopedic implants and, specifically, on pins known as Kirschner wires (or K-wires) include poor adhesion of the drug-eluting layer, which is easily removed by shear forces during the implantation. Development of highly adhesive drug-eluting coatings could therefore lead to improved antimicrobial efficacy of these devices and ultimately reduce the burden of pin site infections. In response to this need, we developed two types of gel coatings: synthetic poly-glycidyl methacrylate-based and natural-chitosan-based. Upon drying, these gel coatings showed strong adhesion to pins and remained undamaged after the application of strong shear forces. We also demonstrated that antibiotics can be incorporated into these gels, and a K-wire with such a coating retained antimicrobial efficacy after drilling into and removal from a bone. Such a coating could be invaluable for K-wires and other orthopedic implants that experience strong shear forces during their implantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...