Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Adv Mater ; : e2407040, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39104283

RESUMO

Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.

2.
Front Bioeng Biotechnol ; 12: 1417742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070169

RESUMO

Introduction: Osteochondral repair poses a significant challenge due to its unique pathological mechanisms and complex repair processes, particularly in bacterial tissue conditions resulting from open injuries, infections, and surgical contamination. This study introduces a biomimetic honeycomb-like scaffold (Zn-AlgMA@Mg) designed for osteochondral repair. The scaffold consists of a dicalcium phosphate dihydrate (DCPD)-coated porous magnesium scaffold (DCPD Mg) embedded within a dual crosslinked sodium alginate hydrogel (Zn-AlgMA). This combination aims to synergistically exert antibacterial and osteochondral integrated repair properties. Methods: The Zn-AlgMA@Mg scaffold was fabricated by coating porous magnesium scaffolds with DCPD and embedding them within a dual crosslinked sodium alginate hydrogel. The structural and mechanical properties of the DCPD Mg scaffold were characterized using scanning electron microscopy (SEM) and mechanical testing. The microstructural features and hydrophilicity of Zn-AlgMA were assessed. In vitro studies were conducted to evaluate the controlled release of magnesium and zinc ions, as well as the scaffold's osteogenic, chondrogenic, and antibacterial properties. Proteomic analysis was performed to elucidate the mechanism of osteochondral integrated repair. In vivo efficacy was evaluated using a rabbit full-thickness osteochondral defect model, with micro-CT evaluation, quantitative analysis, and histological staining (hematoxylin-eosin, Safranin-O, and Masson's trichrome). Results: The DCPD Mg scaffold exhibited a uniform porous structure and superior mechanical properties. The Zn-AlgMA hydrogel displayed consistent microstructural features and enhanced hydrophilicity. The Zn-AlgMA@Mg scaffold provided controlled release of magnesium and zinc ions, promoting cell proliferation and vitality. In vitro studies demonstrated significant osteogenic and chondrogenic properties, as well as antibacterial efficacy. Proteomic analysis revealed the underlying mechanism of osteochondral integrated repair facilitated by the scaffold. Micro-CT evaluation and histological analysis confirmed successful osteochondral integration in the rabbit model. Discussion: The biomimetic honeycomb-like scaffold (Zn-AlgMA@Mg) demonstrated promising results for osteochondral repair, effectively addressing the challenges posed by bacterial tissue conditions. The scaffold's ability to release magnesium and zinc ions in a controlled manner contributed to its significant osteogenic, chondrogenic, and antibacterial properties. Proteomic analysis provided insights into the scaffold's mechanism of action, supporting its potential for integrated osteochondral regeneration. The successful in vivo results highlight the scaffold's efficacy, making it a promising biomaterial for future applications in osteochondral repair.

3.
Clin Podiatr Med Surg ; 41(3): 437-450, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789163

RESUMO

Osteochondral lesions of the talus are a common sequelae of trauma and are often associated with ankle sprains and ankle fractures. Because the surface of the talus is composed primarily of hyaline cartilage, the regenerative capacity of these injuries is limited. Therefore, several open and arthroscopic techniques have been described to treat osteochondral injuries of the talus and underlying bone marrow lesions. Throughout this review, these treatment options are discussed along with their indications and currently reported outcomes. A commentary on the authors' preferences among these techniques is also provided.


Assuntos
Artroscopia , Cartilagem Articular , Tálus , Humanos , Tálus/lesões , Tálus/cirurgia , Artroscopia/métodos , Cartilagem Articular/lesões , Cartilagem Articular/cirurgia , Traumatismos do Tornozelo/cirurgia , Masculino , Feminino
4.
Macromol Biosci ; 24(8): e2400051, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663437

RESUMO

Bioactive scaffolds capable of simultaneously repairing osteochondral defects remain a big challenge due to the heterogeneity of bone and cartilage. Currently modular microgel-based bioassembly scaffolds are emerged as potential solution to this challenge. Here, microgels based on methacrylic anhydride (MA) and dopamine modified gelatin (GelMA-DA) are loaded with chondroitin sulfate (CS) (the obtained microgel named GC Ms) or bioactive glass (BG) (the obtained microgel named GB Ms), respectively. GC Ms and GB Ms show good biocompatibility with BMSCs, which suggested by the adhesion and proliferation of BMSCs on their surfaces. Specially, GC Ms promote chondrogenic differentiation of BMSCs, while GB Ms promote osteogenic differentiation. Furthermore, the injectable GC Ms and GB Ms are assembled integrally by bottom-up in situ cross-linking to obtain modular microgel-based bioassembly scaffold (GC-GB/HM), which show a distinct bilayer structure and good porous properties and swelling properties. Particularly, the results of in vivo and in vitro experiments show that GC-GB/HM can simultaneously regulate the expression levels of chondrogenic- and osteogenesis-related genes and proteins. Therefore, modular microgel-based assembly scaffold in this work with the ability to promote bidirectional differentiation of BMSCs and has great potential for application in the minimally invasive treatment of osteochondral tissue defects.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Microgéis , Osteogênese , Alicerces Teciduais , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Microgéis/química , Gelatina/química , Gelatina/farmacologia , Coelhos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos
5.
Foot Ankle Clin ; 29(2): 185-192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679432

RESUMO

The current concepts thoroughly highlight the ankle cartilage cascade focusing on the different stages and the different etiologic factors that can introduce a patient into the cascade. Moreover, the authors will provide the reader with a comprehensive overview of the types of lesions that may present as symptomatic, asymptomatic, and dangerous for progression into osteoarthritis, and the authors supply the reader with considerations and directions for future clinical implications and scientific endeavors.


Assuntos
Traumatismos do Tornozelo , Cartilagem Articular , Humanos , Traumatismos do Tornozelo/epidemiologia , Traumatismos do Tornozelo/patologia , Articulação do Tornozelo/patologia , Doenças das Cartilagens , Cartilagem Articular/patologia , Incidência , Osteoartrite/etiologia , Terminologia como Assunto
6.
Foot Ankle Spec ; : 19386400241247654, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661061

RESUMO

Talus Osteochondral defects (OCDs) are challenging and there is no consensus in literature regarding which is the best method of treatment. New techniques coming from regenerative medicine are being considered good alternatives of treatment and are being used exponentially in orthopaedic surgery. Platelet-rich fibrin (PRF) is the second generation of platelet concentrates. It has a convenient method of acquisition and can be used to create a biological scaffold which is able to seal up cavitary lesions. In this article, the authors describe a talus OCD treated with a biological scaffold, reporting the technique details and its results clinical and radiological results. The case report objective is to portray the use of this kind of biological material, its advantages, and limitations.Level of Evidence: Level 5.

7.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 929-940, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426599

RESUMO

PURPOSE: To investigate whether concomitant autologous bone grafting adversely affects clinical outcome and graft survival after matrix-associated autologous chondrocyte implantation (M-ACI). METHODS: The present study examines registry data of patients who underwent M-ACI with or without autologous bone grafting for large-sized chondral or osteochondral defects. Propensity score matching was performed to exclude potential confounders. A total of 215 patients with similar baseline characteristics were identified. Clinical outcome was assessed at the time of surgery and at 6, 12, 24, 36 and 60 months using the Knee Injury and Osteoarthritis Outcome Score (KOOS). KOOS change, clinical response rate, KOOS subcomponents and failure rate were determined. RESULTS: Patients treated with M-ACI and autologous bone grafting achieved comparable clinical outcomes compared with M-ACI alone. At 24 months postoperatively, the patient-reported outcome (PRO) of patients treated with M-ACI and autologous bone grafting was even significantly better as measured by KOOS (74.9 ± 18.8 vs. 79.2 ± 15.4; p = 0.043). However, the difference did not exceed the minimal clinically important difference (MCID). In patients with M-ACI and autologous bone grafting, a greater change in KOOS relative to baseline was observed at 6 (9.3 ± 14.7 vs. 15.0 ± 14.7; p = 0.004) and 12 months (12.6 ± 17.2 vs. 17.7 ± 14.6; p = 0.035). Overall, a high clinical response rate was observed in both groups at 24 months (75.8% vs. 82.0%; p = n.s.). The estimated survival at the endpoint of reoperation for any reason was 82.1% (SD 2.8) at 8.4 years for isolated M-ACI and 88.7% (SD 2.4) at 8.2 years for M-ACI with autologous bone grafting (p = 0.039). CONCLUSIONS: Even in the challenging cohort of large osteochondral defects, the additional treatment with autologous bone grafting leads to remarkably good clinical outcomes in patients treated with M-ACI. In fact, they tend to benefit more from surgery, have lower revision rates and achieve clinical response rates earlier. Subchondral bone management is critical to the success of M-ACI and should be addressed in the treatment of borderline defects. LEVEL OF EVIDENCE: Level III.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Condrócitos/transplante , Transplante Ósseo , Cartilagem Articular/cirurgia , Articulação do Joelho/cirurgia , Transplante Autólogo/métodos , Sistema de Registros
8.
Am J Sports Med ; 52(5): 1336-1349, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482805

RESUMO

BACKGROUND: Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise. HYPOTHESIS: Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defects were created in the femoral trochlea of adult sheep and treated with rAAV-IGF-1 or rAAV-lacZ (control) (24 defects in 6 knees per group). After 6 months in vivo, osteochondral repair and perifocal OA were assessed by well-established macroscopic, histological, and immunohistochemical scoring systems as well as biochemical and micro-computed tomography evaluations. RESULTS: Application of rAAV-IGF-1 led to prolonged (6 months) IGF-1 overexpression without adverse effects, maintaining a significantly superior overall cartilage repair, together with significantly improved defect filling, extracellular matrix staining, cellular morphology, and surface architecture compared with rAAV-lacZ. Expression of type II collagen significantly increased and that of type I collagen significantly decreased. Subchondral bone repair and tidemark formation were significantly improved, and subchondral bone plate thickness and subarticular spongiosa mineral density returned to normal. The OA parameters of perifocal structure, cell cloning, and matrix staining were significantly better preserved upon rAAV-IGF-1 compared with rAAV-lacZ. Novel mechanistic associations between parameters of osteochondral repair and OA were identified. CONCLUSION: Local rAAV-mediated IGF-1 overexpression enhanced osteochondral repair and ameliorated parameters of perifocal early OA. CLINICAL RELEVANCE: IGF-1 gene therapy may be beneficial in repair of focal osteochondral defects and prevention of perifocal OA.


Assuntos
Cartilagem Articular , Fator de Crescimento Insulin-Like I , Osteoartrite , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Dependovirus/genética , Terapia Genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/uso terapêutico , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , Vírus Satélites/genética , Vírus Satélites/metabolismo , Ovinos/genética , Microtomografia por Raio-X
9.
Polymers (Basel) ; 16(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337220

RESUMO

Bilayer scaffolds could provide a suitable topology for osteochondral defect repair mimicking cartilage and subchondral bone architecture. Hence, they could facilitate the chondro- and osteogenic lineage commitment of multipotent mesenchymal stromal cells (MSCs) with hydroxyapatite, the major inorganic component of bone, stimulating osteogenesis. Highly porous poly-L-lactic acid (PLLA) scaffolds with two layers of different pore sizes (100 and 250 µm) and hydroxyapatite (HA) supplementation were established by thermally induced phase separation (TIPS) to study growth and osteogenesis of human (h) MSCs. The topology of the scaffold prepared via TIPS was characterized using scanning electron microscopy (SEM), a microCT scan, pycnometry and gravimetric analysis. HMSCs and porcine articular chondrocytes (pACs) were seeded on the PLLA scaffolds without/with 5% HA for 1 and 7 days, and the cell attachment, survival, morphology, proliferation and gene expression of cartilage- and bone-related markers as well as sulfated glycosaminoglycan (sGAG) synthesis were monitored. All scaffold variants were cytocompatible, and hMSCs survived for the whole culture period. Cross-sections revealed living cells that also colonized inner scaffold areas, producing an extracellular matrix (ECM) containing sGAGs. The gene expression of cartilage and bone markers could be detected. HA represents a cytocompatible supplement in PLLA composite scaffolds intended for osteochondral defects.

10.
Mater Today Bio ; 24: 100933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38283982

RESUMO

Injured articular cartilage is a leading cause for osteoarthritis. We recently discovered that endogenous stem/progenitor cells not only reside in the superficial zone of mouse articular cartilage, but also regenerated heterotopic bone and cartilage in vivo. However, whether critical-size osteochondral defects can be repaired by pure induced chemotatic cell homing of these endogenous stem/progenitor cells remains elusive. Here, we first found that cells in the superficial zone of articular cartilage surrounding surgically created 3 × 1 mm defects in explant culture of adult goat and rabbit knee joints migrated into defect-filled fibrin/hylaro1nate gel, and this migration was significantly more robust upon delivery of exogenous granulocyte-colony stimulating factor (G-CSF). Remarkably, G-CSF-recruited chondrogenic progenitor cells (CPCs) showed significantly stronger migration ability than donor-matched chondrocytes and osteoblasts. G-CSF-recruited CPCs robustly differentiated into chondrocytes, modestly into osteoblasts, and barely into adipocytes. In vivo, critical-size osteochondral defects were repaired by G-CSF-recruited endogenous cells postoperatively at 6 and 12 weeks in comparison to poor healing by gel-only group or defect-only group. ICRS and O'Driscoll scores of articular cartilage were significantly higher for both 6- and 12-week G-CSF samples than corresponding gel-only and defect-only groups. Thus, endogenous stem/progenitor cells may be activated by G-CSF, a Food and Drug Administration (FDA)-cleared bone-marrow stimulating factor, to repair osteochondral defects.

11.
Eur J Orthop Surg Traumatol ; 34(1): 561-568, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37650974

RESUMO

BACKGROUND: Osteochondral lesions of the talus (OCLT) are common injuries that can be difficult to treat. To date, long-term patient reported outcome measures (PROMs) of patients with particulated juvenile allograft cartilage implantation with or without calcaneal autograft have not been compared. METHODS: Thirteen patients with difficult to treat OCLTs underwent arthroscopic-assisted implantation of particulated juvenile allograft cartilage (DeNovo NT®) with or without autogenous calcaneal bone grafting by a single surgeon. Calcaneal bone graft use was determined by lesion size > 150 mm2 and/or deeper than 5 mm. Patients were evaluated using physical examination, patient interviews, and PROMs. RESULTS: When comparing patients in regards to calcaneal bone graft implantation, no difference in age, BMI, pre-operative PROMs, or follow-up was noted, however, calcaneal bone graft patients did have a significantly larger lesion size (188.5 ± 50.9 vs. 118.7 ± 29.4 mm2 respectively; p value = 0.027). VAS and FAAM ADL scores during final follow-up improvement did not significantly differ between cohorts. The FAAM Sports score improved significantly more for the DeNovo alone group compared to the bone graft cohort (p value = 0.032). The AOFAS score improvement did not differ between cohorts (p value = 0.944), however, the SF-36 PCS improved significantly more for the DeNovo alone group compared to the bone graft cohort (p value = 0.038). No intraoperative/perioperative complications were observed with calcaneal bone grafting. CONCLUSION: While patients followed over the course of ~ 8 years after implantation of particulated juvenile allograft cartilage (DeNovo NT®) with/without autogenous calcaneal bone graft had positive post-operative PROMs, patients without calcaneal bone graft had significantly greater improvement in functional outcome scores. Whether these differences are due to graft incorporation or larger lesion size is unclear. LEVEL OF EVIDENCE: III, retrospective cohort study.


Assuntos
Cartilagem Articular , Tálus , Humanos , Estudos de Coortes , Cartilagem Articular/cirurgia , Cartilagem Articular/lesões , Tálus/cirurgia , Estudos Retrospectivos , Autoenxertos , Transplante Ósseo , Aloenxertos , Resultado do Tratamento
12.
Orthop Surg ; 16(2): 506-513, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087402

RESUMO

BACKGROUND: Treatment of osteochondral defects (OCDs) of the knee joint remains challenging. The purpose of this study was to evaluate the clinical and radiological results of osteochondral regeneration following intra-articular injections of autologous peripheral blood stem cells (PBSC) plus hyaluronic acid (HA) after arthroscopic subchondral drilling into OCDs of the knee joint. CASE PRESENTATION: Five patients with OCDs of the knee joint are presented. The etiology includes osteochondritis dissecans, traumatic knee injuries, previously failed cartilage repair procedures involving microfractures and OATS (osteochondral allograft transfer systems). PBSC were harvested 1 week after surgery. Patients received intra-articular injections at week 1, 2, 3, 4, and 5 after surgery. Then at 6 months after surgery, intra-articular injections were administered at a weekly interval for 3 consecutive weeks. These 3 weekly injections were repeated at 12, 18 and 24 months after surgery. Each patient received a total of 17 injections. Subjective International Knee Documentation Committee (IKDC) scores and MRI scans were obtained preoperatively and postoperatively at serial visits. At follow-ups of >5 years, the mean preoperative and postoperative IKDC scores were 47.2 and 80.7 respectively (p = 0.005). IKDC scores for all patients exceeded the minimal clinically important difference values of 8.3, indicating clinical significance. Serial MRI scans charted the repair and regeneration of the OCDs with evidence of bone growth filling-in the base of the defects, followed by reformation of the subchondral bone plate and regeneration of the overlying articular cartilage. CONCLUSION: These case studies showed that this treatment is able to repair and regenerate both the osseous and articular cartilage components of knee OCDs.


Assuntos
Artroplastia Subcondral , Cartilagem Articular , Células-Tronco de Sangue Periférico , Humanos , Ácido Hialurônico , Alicerces Teciduais , Articulação do Joelho/cirurgia , Cartilagem Articular/cirurgia , Cartilagem Articular/lesões
13.
Exp Ther Med ; 26(6): 569, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37954116

RESUMO

Osteochondral defects caused by degenerative diseases of joints, traumas and inflammation are important issues in clinical practice. Different types of autologous platelet concentrate (PCs) are used in bone and cartilage regeneration. The present study aimed to investigate the effect of lyophilized platelet-rich fibrin (L-PRF) on the repair of osteochondral defects in rabbits. L-PRF was first prepared from fresh PRF (F-PRF) through freeze-drying, and histological and microstructural observations were performed to compare the characteristics of L-PRF and F-PRF. Thereafter, these bioactive scaffolds were implanted into osteochondral defects surgically created in rabbits to assess their effects on tissue repair using micro-CT scanning, histological observations and the evaluation scoring method for cartilage repair established by the International Cartilage Repair Society (ICRS). L-PRF had a histological structure similar to F-PRF. At 16 weeks after implantation surgery, full-thickness osteochondral defects with a diameter of 5 mm and a depth of 4 mm were well-filled with newly regenerated tissues, exhibiting the simultaneous regeneration of avascular articular cartilage and well-vascularized subchondral bone, as proven through macroscopic and microscopic observations in PRF-treated groups compared with that in the untreated group. The application of L-PRF and F-PRF for osteochondral defects in rabbits contributed to massive host remodeling and reconstruction of osteochondral tissues, thus offering a prospective bioactive scaffold for the simultaneous reconstruction of articular cartilage and subchondral bone tissue.

14.
Knee Surg Sports Traumatol Arthrosc ; 31(12): 5698-5706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37904068

RESUMO

PURPOSE: Osteochondral knee defects usually affect young, active patients and may alter knee biomechanics and progressively lead to joint degeneration. Various treatment options exist with autologous, impaction bone grafting in combination with autologous matrix-induced chondrogenesis (BG-AMIC) being a less-expensive, one-step, promising option. The purpose of this study is to evaluate the clinical and radiological mid-term outcomes of large osteochondral lesions treated with BG-AMIC, identify a possible correlation between the two and report postoperative complications and reoperation rate. METHODS: A retrospective analysis of 25 patients treated with the BG-AMIC technique for knee osteochondral lesions was performed. Patients were assessed using the following PROMs: the IKDC, the KOOS and the Lysholm score, the Tegner activity scale and a patient acceptable symptom state (PASS). The EQ-5D-5L score was used to assess health-related quality of life. Radiological assessment was performed using the MOCART 2.0 score on a 3 T MRI. RESULTS: At a mean of 3.8 (± 0.8)-year follow-up, all functional scores increased significantly (p < 0.005) when compared to the preoperative baseline. IKDC increased from 44.5 (± 15.9) to 81.4 (± 14.7), KOOS from 41.5 (± 16.1) to 91.6 (± 11.6) and Lysholm from 54.4 (± 23) to 95.2 (± 5.5) (p < 0.005). The EQ-5D-5L score also revealed a significant improvement [59.9 (± 25) to 93.4 (± 10.2), p < 0.005]. Mean Tegner score reached pre-injury levels. The PASS was positive in 100% of patients. The minimum clinically important difference was reached in all PROMs except for the KOOS Sports subscale. There were no re-operations. Morphological evaluation of the repair tissue using the MOCART 2.0 score revealed a mean total score of 52.8 (± 30.5). A statistically significant, positive correlation was found between the MOCART 2.0 score and the IKDC score, the KOOS ADL subscale and the EQ-5D-5L (p < 0.05). CONCLUSION: BG-AMIC is a safe and reliable option for treating deep, knee osteochondral lesions, providing a statistically significant and clinically important improvement in patient-reported outcomes. No complications were noticed, and no re-operations were performed after the procedure. A moderate positive correlation between the MOCART 2.0 score and the IKDC, KOOS ADL and EQ-5D-5L was noticed. However, this correlation is not necessarily clinically relevant, and excellent clinical results can be expected even in patients with low MOCART scores. LEVEL OF EVIDENCE: III.


Assuntos
Cartilagem Articular , Humanos , Cartilagem Articular/cirurgia , Cartilagem Articular/lesões , Seguimentos , Transplante Ósseo/métodos , Condrogênese , Estudos Retrospectivos , Qualidade de Vida , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética/métodos , Transplante Autólogo/métodos , Resultado do Tratamento
15.
Mater Today Bio ; 23: 100800, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37766897

RESUMO

Repairing cartilage/subchondral bone defects that involve subchondral bone is a major challenge in clinical practice. Overall, the integrated repair of the structure and function of the osteochondral (OC) unit is very important. Some studies have demonstrated that the differentiation of cartilage is significantly enhanced by reducing the intake of nutrients such as lipids. This study demonstrates that using starvation can effectively optimize the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs). A hyaluronic acid (HA)-based hydrogel containing starved BMSCs-EVs displayed continuous release for more than 3 weeks and significantly promoted the proliferation and biosynthesis of chondrocytes around the defect regulated by the forkhead-box class O (FOXO) pathway. When combined with vascular inhibitors, the hydrogel inhibited cartilage hypertrophy and facilitated the regeneration of hyaline cartilage. A porous methacrylate gelatine (GelMA)-based hydrogel containing calcium salt loaded with thrombin rapidly promoted haematoma formation upon contact with the bone marrow cavity to quickly block the pores and prevent the blood vessels in the bone marrow cavity from invading the cartilage layer. Furthermore, the haematoma could be used as nutrients to accelerate bone survival. The in vivo experiments demonstrated that the multifunctional lineage-specific hydrogel promoted the integrated regeneration of cartilage/subchondral bone. Thus, this hydrogel may represent a new strategy for osteochondral regeneration and repair.

16.
Res Vet Sci ; 162: 104948, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37478792

RESUMO

Mesenchymal stem cells are safe and effective for treating joint injuries. However, the most suitable cell source remains controversial. This randomized controlled, double-blind study aimed to evaluate the potentials of rabbit allogeneic bone marrow- (BMSCs), adipose- (ASCs) and synovial membrane- (SDSCs) derived stem cells encapsulated in fibrin glue (FG) in vivo. The therapeutic properties of fibrin glue in critical-sized osteochondral defects (ODs) were also investigated. A 3 × 3 mm-sized OD was created in the femoral patellar groove on both knees of New Zealand rabbits, except from the left knees of the control group in which the OD was 2 × 3mm. The rabbits were randomly divided into four groups (right/left knee): 3 × 3 mm / 2 × 3 mm-sized OD control group, FG/FG with ASCs group, FG/FG with BMSCs group, FG/FG with SDSCs group. The International Cartilage Repair Society (ICRS) and the O'Driscoll scales were used to evaluate tissue characteristics after 12 weeks. FG promoted the production of reparative tissue with superior macroscopic features. Allogeneic MSCs combined with FG improved the macroscopic and histological scores more than the FG groups. The tissue in the SDSCs group was macroscopically and histologically better than the ASCs and BMSCs groups. The ICRS score differed among the SDSCs and the ASCs groups, while the empty critical-sized ODs were filled with inferior tissue compared to smaller ones. The preclinical feasibility of stem cells for OD regeneration in rabbits and the osteochondrogenic superiority of SDSCs was demonstrated. Additional tests and extended studies are required to reassure the long-term safety of these findings.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Coelhos , Animais , Cartilagem Articular/patologia , Adesivo Tecidual de Fibrina , Transplante de Células-Tronco Mesenquimais/veterinária , Transplante de Células-Tronco Hematopoéticas/veterinária
17.
Biomedicines ; 11(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509421

RESUMO

The osteogenic and chondrogenic differentiation ability of adipose-derived mesenchymal stromal cells (ASCs) and their potential therapeutic applications in bone and cartilage defects are reported in this review. This becomes particularly important when these disorders can only be poorly treated by conventional therapeutic approaches, and tissue engineering may represent a valuable alternative. Being of mesodermal origin, ASCs can be easily induced to differentiate into chondrocyte-like and osteocyte-like elements and used to repair damaged tissues. Moreover, they can be easily harvested and used for autologous implantation. A plethora of ASC-based strategies are being developed worldwide: they include the transplantation of freshly harvested cells, in vitro expanded cells or predifferentiated cells. Moreover, improving their positive effects, ASCs can be implanted in combination with several types of scaffolds that ensure the correct cell positioning; support cell viability, proliferation and migration; and may contribute to their osteogenic or chondrogenic differentiation. Examples of these strategies are described here, showing the enormous therapeutic potential of ASCs in this field. For safety and regulatory issues, most investigations are still at the experimental stage and carried out in vitro and in animal models. Clinical applications have, however, been reported with promising results and no serious adverse effects.

18.
Biomimetics (Basel) ; 8(2)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37366855

RESUMO

Osteochondral tissue (OC) is a complex and multiphasic system comprising cartilage and subchondral bone. The discrete OC architecture is layered with specific zones characterized by different compositions, morphology, collagen orientation, and chondrocyte phenotypes. To date, the treatment of osteochondral defects (OCD) remains a major clinical challenge due to the low self-regenerative capacity of damaged skeletal tissue, as well as the critical lack of functional tissue substitutes. Current clinical approaches fail to fully regenerate damaged OC recapitulating the zonal structure while granting long-term stability. Thus, the development of new biomimetic treatment strategies for the functional repair of OCDs is urgently needed. Here, we review recent developments in the preclinical investigation of novel functional approaches for the resurfacing of skeletal defects. The most recent studies on preclinical augmentation of OCDs and highlights on novel studies for the in vivo replacement of diseased cartilage are presented.

19.
Bioact Mater ; 27: 505-545, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37180643

RESUMO

Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.

20.
Polymers (Basel) ; 15(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242936

RESUMO

Hyaline cartilage has very limited repair capability and cannot be rebuilt predictably using conventional treatments. This study presents Autologous Chondrocyte Implantation (ACI) on two different scaffolds for the treatment of lesions in hyaline cartilage in rabbits. The first one is a commercially available scaffold (Chondro-Gide) made of collagen type I/III and the second one is a polyethersulfone (PES) synthetic membrane, manufactured by phase inversion. The revolutionary idea in the present study is the fact that we used PES membranes, which have unique features and benefits that are desirable for the 3D cultivation of chondrocytes. Sixty-four White New Zealand rabbits were used in this research. Defects penetrating into the subchondral bone were filled with or without the placement of chondrocytes on collagen or PES membranes after two weeks of culture. The expression of the gene encoding type II procollagen, a molecular marker of chondrocytes, was evaluated. Elemental analysis was performed to estimate the weight of tissue grown on the PES membrane. The reparative tissue was analyzed macroscopically and histologically after surgery at 12, 25, and 52 weeks. RT-PCR analysis of the mRNA isolated from cells detached from the polysulphonic membrane revealed the expression of type II procollagen. The elementary analysis of polysulphonic membrane slices after 2 weeks of culture with chondrocytes revealed a concentration of 0.23 mg of tissue on one part of the membrane. Macroscopic and microscopic evaluation indicated that the quality of regenerated tissue was similar after the transplantation of cells placed on polysulphonic or collagen membranes. The established method for the culture and transplantation of chondrocytes placed on polysulphonic membranes resulted in the growth of the regenerated tissue, revealing the morphology of hyaline-like cartilage to be of similar quality to collagen membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA