Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 810
Filtrar
1.
Meat Sci ; 217: 109614, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39089084

RESUMO

This study investigated the effects of the application of glycine (Gly) and Pediococcus pentosaceus R1(Pp), alone or in combination, on the physicochemical properties, oxidative stability, and taste quality of Harbin dry sausages. The results demonstrated that after nine days of fermentation, the Gly + Pp group exhibited significantly (P < 0.05) lower moisture content (19.04%), water activity (0.686), and pH (4.78) values, alongside notably (P < 0.05) higher lactic acid bacteria count (8.11 log CFU/g sausage) and redness value (17.2), compared to the other three groups (P < 0.05). In addition, the dry sausages in the Gly + Pp group exhibited the lowest peroxide value (0.34 meq/kg sausage), thiobarbituric acid reactive substances (0.46 MAD/kg sausage), and protein carbonyl content (1.26 nmol/kg protein) during fermentation, followed by the Gly group, Pp group, and control group. Electronic tongue (e-tongue) and sensory evaluations revealed that the combined treatment with P. pentosaceus R1 and Gly resulted in superior taste characteristics. Besides, partial least squares regression (PLSR) analysis illustrated that the taste qualities characterized using the e-tongue were accordant with the sensory evaluation consequences, and total free amino acids (FAAs) and organic acids contributed to the dry sausages' taste properties. In conclusion, the combined application of Gly and P. pentosaceus R1 enhanced the physicochemical properties, oxidative stability, and taste profile of Harbin dry sausages.

2.
Food Chem ; 460(Pt 3): 140755, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39121768

RESUMO

In this paper, tiger nut oil-loaded microcapsules (TNOMs) were prepared by complexation soybean protein isolate (SPI) and maltodextrin (MD) as wall materials using the spray drying method with tiger nut oil (TNO) as the core material, and its physicochemical properties and stabilities were characterized and analyzed. Under the optimum conditions, the encapsulation efficiency (EE) of TNOMs could reach up to 91.23%. Of note, after 60 days of storage at 60 °C, the peroxide value (PV) of TNO was almost 21.8 times as much as that of TNO encapsulated. Furthermore, TNOMs had good thermal stability below 200 °C and are sufficient for the general food processing needs. By fitting Arrhenius oxidation kinetics model, it was predicted that the shelf life of the product stored at 25 °C was 352.48 d. Therefore, it is promised to be applied to the development of high oleic acid food in the future. This study offered a theoretical framework for utilization and broadening the range of applications of TNO in the food industry.

3.
Foods ; 13(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39123564

RESUMO

This study aimed to assess the impact of Chlorella vulgaris supplementation in broilers' diet, alone or in combination with vitamin E, on meat quality parameters, nutritional value, and oxidative stability during storage time. An experiment was conducted on 180 COBB 500 broiler chickens (14 days old), assigned into six treatments, following a 2 × 3 factorial arrangement. A corn-soybean meal diet was supplemented with three levels of C. vulgaris (0% in group C1, 1% in E1, 2% in E2), two levels of vitamin E (0% in C1, 250 ppm in C2), and a combination of them (1% C. vulgaris + 250 ppm vitamin (E3), 2% C. vulgaris + 250 ppm vitamin (E4)). Dietary incorporation of C. vulgaris, including those supplemented with vitamin E, resulted in a significant increase in meat protein content. DPA and DHA levels increased by 2.01-fold and 1.60-fold in the 2% C. vulgaris + vitamin E group. The PUFA/SFA ratio was increased across all dietary treatments (p < 0.0001). HPI and h/H registered the highest values as a result of 2% C. vulgaris supplementation, being linked with a positive effect in lowering cholesterol levels. Supplementation with 2% C. vulgaris and vitamin E exhibited a 1.45-fold increase in vitamin E concentration in thigh meat compared to the control group, being the highest level registered in thigh meat in this experiment. Metmyoglobin concentrations registered lower values in the thigh meat of the experimental groups, while deoxymyoglobin increased in the same groups when compared to the control group. The inclusion of C. vulgaris (1% and 2%) in combination with vitamin E (250 mg/kg) in broiler diets exhibited the best prevention of lipid oxidation after 7 days of refrigerated storage, defined by the highest efficiency factors assessed in terms of secondary oxidation products.

4.
Food Chem ; 460(Pt 2): 140586, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39079359

RESUMO

This research explored the effect of media milling on complexation of corn starch (CS) and quercetin (QC), interaction mechanism and Pickering emulsifying ability of corn-quercetin (CS-QC) complex. CS-QC with QC/CS ratio of 1:24 had the highest encapsulation efficiency of 76.00 ± 1.30 %. Average volume-mean diameter, average whole molecular size (Rh) and debranchedamylopectinchain length of CS-QC were significantly decreased after milling. Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) spectra confirmed the complexation between CS and QC. Emulsifying capacity and emulsion stability of Pickering emulsion stabilized by 5 % CS-QC complex particles after 120 min milling reached 100.00 % and 100.00. Pickering emulsions stabilized by these complex particles demonstrated superior oxidative stability. These results demonstrated that media milling could be an efficient physical approach to obtain starch-polyphenol complex by enhancing non-covalent interactions, which could not only be used as food-grade Pickering emulsifiers, but also retard lipid oxidation.

5.
Food Chem ; 460(Pt 1): 140567, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39059327

RESUMO

Herein, the complex coacervation of low methoxy pectin (LMP) with three types of gelatins was explored to encapsulate fish oil. The fish oil@gelatin-LMP complex coacervates with good precipitation separation could be obtained at low gelatin concentrations (Fish gelatin, FG: 10-80 mg/mL; porcine skin gelatin, PSG: 10-40 mg/mL; bovine skin gelatin, BSG: 10-80 mg/mL), high gelatin: fish oil mass ratios (4:1-1:1), appropriate gelatin: LMP mass ratios (3:1-12:1 for FG and PSG, 6:1 for BSG), and appropriate pH (FG: 4.90-5.50; PSG: 4.80-5.40; BSG: 4.10-4.50). FG induced similar loading ability, lower encapsulation ability, and comparable peroxide values to the mammalian gelatins. FG induced higher or similar free fatty acid released percentages to mammalian gelatins in the in vitro gastrointestinal model at low gelatin concentrations (10-40 mg/mL). These results provided useful information to understand the protein-polysaccharide complex coacervation to encapsulate oil-based bioactive substances.

6.
J Oleo Sci ; 73(8): 1113-1124, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39019619

RESUMO

The essential oil extracted from the flower buds of Lonicerae japonicae (LJEO) was employed in the high-temperature (65℃) accelerated preservation of sunflower oil. In the present investigation, the addition of the essential oil at a concentration of 800 ppm significantly inhibited the decrease in the oxidative stability of sunflower oil. This positive effect was achieved by significantly hindering the reduction in acidity value (AV), peroxide value (PV), p-anisidine value (AnV), the total oxidation value (TOTOX) (p < 0.01), and the levels of thiobarbituric acid reactive substance (TBARS), the absorbance at 232/268 nm (K232/K268) and total polar compounds (TPC) (p < 0.01). Besides, it also significantly enhances the sensory attributes of Maye, including taste, flavor, and appearance, improving its overall acceptability through the addition of certain potential fragrance molecules (p < 0.01). Furthermore, one of the primary chemical compounds in LJEO, eugenol, has demonstrated significant natural antioxidant properties in the traditional deep-frying procedure for the product, Maye. Consequently, together with eugenol, the essential oil LJEO could be employed as a possible effective antioxidant for the typical long-term preservation and even the traditional deep-frying procedures, and developed as effective antioxidant extracted from plants for the whole food industry.


Assuntos
Antioxidantes , Culinária , Flores , Temperatura Alta , Lonicera , Óleos Voláteis , Oxirredução , Óleo de Girassol , Óleos Voláteis/farmacologia , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/química , Flores/química , Óleo de Girassol/química , Lonicera/química , Antioxidantes/farmacologia , Culinária/métodos , Oxirredução/efeitos dos fármacos , Eugenol/farmacologia , Conservação de Alimentos/métodos , Paladar , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Substâncias Reativas com Ácido Tiobarbitúrico
7.
Food Res Int ; 191: 114695, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059908

RESUMO

Roasting walnut kernel significantly improves the oxidative stability and sensory properties of its oil. However, the effect of roasting temperatures on the molecular change of main components and micronutrients in walnut oil is still unclear. Herein, lipidomics and metabolomics were integrated to comprehensively profile the walnut oil obtained at different roasting temperatures (30 °C, 120 °C, 140 °C, 160 °C, and 180 °C). Lipidomics showed that the content of glycerolipids, sphingolipids, and glycerophospholipids decreased with roasting temperatures, while the oxidized fatty acids and triglycerides increased. Ratios of linoleic acid and linolenic acid varied with roasting temperatures and were most close to 4-6:1 at 140 °C, 160 °C, and 180 °C. Major classes of micronutrients showed a tendency to increase at the roasting temperature of 120 °C and 140 °C, then decrease at 160 °C and 180 °C. Liposoluble amino acids identified for the first time in walnut oil varied with roasting temperatures. Correlation analysis demonstrated that the higher contents of liposoluble amino acids and phenolics are positively associated with enhanced oxidative stability of walnut oil obtained at 140 °C. Furthermore, glutamine and 5-oxo-D-proline were expected to be potential biomarkers to differentiate the fresh and roasted walnut oil. The study is expected to provide new insight into the change mechanism of both major lipids and micronutrients in walnut oil during the roasting process.


Assuntos
Culinária , Temperatura Alta , Juglans , Lipidômica , Metabolômica , Oxirredução , Óleos de Plantas , Juglans/química , Óleos de Plantas/química , Culinária/métodos , Triglicerídeos/análise , Aminoácidos/análise , Ácidos Graxos/análise
8.
Antioxidants (Basel) ; 13(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39061888

RESUMO

Biodiesel has several drawbacks, such as being prone to oxidation, having reduced stability, and having limited storage time. Antioxidants compatible with biodiesel are being used to address its drawbacks. Utilizing antioxidants effectively improves the quality of biodiesel. Enhancing the quality of biodiesel for use as a clean energy source benefits both the global economy and ecology. Therefore, we believe that our work will contribute to the advancement of the biodiesel industry worldwide. This study used blends consisting of 20% biodiesel and 80% diesel fuel. Isatin-thiosemicarbazones were tested as additives in blends at a concentration of 3000 parts per million (ppm) using an oxifast device and were compared with the chemical antioxidant Trolox. FT-IR, DSC, and TGA were used to characterize these samples. DSC measured sample crystallization temperatures (Tc). Samples with antioxidants showed decreased values compared to the non-antioxidant diesel sample D100. Several DSC tests were conducted to determine the antioxidant strengths of various samples. The results show that the FT-IR spectrum's antioxidant effect regions grow clearer with antioxidants. The extra antioxidant is effective. Biodiesel's oxidative stability improves with isatin-thiosemicarbazones at varying concentrations. The kinetics of thermal decomposition of isatin-thiosemicarbazones under non-isothermal conditions were determined using the Kissinger, Ozawa, and Boswell techniques. The activation energies of compounds 1 and 2 were calculated as 137-147 kJ mol-1 and 173-183 kJ mol-1, respectively.

9.
J Colloid Interface Sci ; 674: 925-937, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959738

RESUMO

Proton exchange membranes with high ionic conductivity and good chemical stability are critical for achieving high power density and long lifespan of direct methanol cells (DMFCs). Herein, a zwitterionic molecule was grafted onto the surface of polyvinylidene fluoride (PVDF) nanofibers to obtain functionalized PVDF porous substrate (SBMA-PDA@PVDF). Then, sulfonated poly(ether ether ketone) (SPEEK) was filled into the pores of SBMA-PDA@PVDF, and further ionic cross-linked via H2SO4 to prepare the composite membrane (SBMA-PDA@PVDF/SPEEK). The basic groups on the zwitterionic interface could not only establish ionic cross-linking with SPEEK to increase chemical stability and reduce swelling, but also serve as the adsorption sites for subsequent H2SO4 cross-linking to significantly enhance proton conductivity. Super-high proton conductivity (165.34 mS cm-1, 80 °C) was achieved for the membrane, which was 2.12 times higher than that of the pure SPEEK. Moreover, the SBMA-PDA@PVDF/SPEEK membrane exhibited remarkably improved oxidative stability of 91.6 % mass retention after soaking in Fenton's agent for 12 h, while pure SPEEK completely decomposed. Satisfactorily, the DMFC assembled with SBMA-PDA@PVDF/SPEEK exhibited a peak power density of 99.01 mW cm-2, which was twice as much as that of commercial Nafion 212 (48.88 mW cm-2). After 235 h durability test, only 11 % voltage loss was observed.

10.
Chemistry ; : e202402004, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958607

RESUMO

Novel fluorinated, pyrrolidinium-based dicationic ionic liquids (FDILs) as high-performance electrolytes in energy storage devices have been prepared, displaying unprecedented electrochemical stabilities (up to 7 V); thermal stability (up to 370 °C) and ion transport (up to 1.45 mS cm­1). FDILs were designed with a fluorinated ether linker and paired with TFSI/FSI counterions. To comprehensively asess the impact of the fluorinated spacer on their electrochemical, thermal, and physico-chemical properties, a comparison with their non-fluorinated counterparts was conducted. With a specific focus on their application as electrolytes in next-generation high-voltage lithium-ion batteries, the impact of the Li-salt on the characteristics of dicationic ILs was systematically evaluated. The incorporation of a fluorinated linker demonstrates significantly superior properties compared to their non-fluorinated counterparts, presenting a promising alternative towards next-generation high-voltage energy storage systems.

11.
Foods ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38890911

RESUMO

In this study, tomato seed (TS) samples were subjected to different roasting conditions (90-170 °C and 10-30 min) to compare their effects on the chemical composition and oxidative stability of tomato seed oil (TSO). Unroasted TS was considered as a control sample. Our results revealed that moderate roasting (130 °C/20 min) can significantly increase the content of linoleic acid (54.01-54.89%), linolenic acid (2.17-2.41%), phytosterols (2789.56-3037.31 mg/kg), squalene (5.06-13.10 mg/kg), total phenols (22.37-22.67 mg GAE/100 g), and other functional components (p < 0.05) in TSO, while the antioxidant activity (via DPPH, ABTS, and FRAP assays) also increased. In addition, the tocopherol content decreased significantly (758.53-729.50 mg/kg). Accelerated oxidation experiments showed that roasting (170 °C/30 min) increased the oxidative stability index (OSI) of TSO from 5.35 to 7.07 h (p < 0.05). Furthermore, roasting gradually increased the content of 5-hydroxymethylfurfural (HMF) (0-1.74 mg/kg), which indicates that the oxidative stability and the degree of the Maillard reaction increased upon roasting. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that moderate roasting (130 °C/20 min) improved the chemical composition, antioxidant activity, and oxidative stability of TSO. Furthermore, this work provides a useful theoretical basis for the processing and wide application of TSO in the pharmaceutical and food industries.

12.
Animals (Basel) ; 14(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891689

RESUMO

Zinc is essential for animals, playing a vital role in enzyme systems and various biochemical reactions. It is crucial to ensure a sufficient intake of zinc through the diet to maintain efficient homeostasis. Only few studies on zinc effect in cow lactating diet evaluated the effects on milk and cheese quality, with conflicting findings. 24 cows of the Friesian breed were divided into two groups (CTR: control and TRT: treated group). Cows were selected for age, body weight, parity and phase of lactations (mid lactation, 140-160 days). CTR diet contained 38 mg/kg of Zn and TRT diet was supplied with 120 mg/kg of complete feed for 60 days. The objective of current investigation was to evaluate the impact of a dietary Zinc Oxide (ZnO) integration of lactating Friesian cows on chemical composition, zinc content, fatty acid and proteic profile, ammine content, pH, aw, texture, and sensory profile of cheese and to improve the chemical-nutritional quality of milk and cheese. The results showed that ZnO supplementation reduced mesophilic aerobic bacteria and Presumptive Pseudomonas spp. growth, proteolysis, biogenic amines content, lipid oxidation, odour intensity and sour and increased hardness, gumminess, chewiness, elasticity of cheese. Biogenic amines are considered an important aspect of food safety. ZnO integration in cow diet could represent a promising strategy for improving the quality, the safety and shelf-life of caciotta cheese.

13.
Nanomaterials (Basel) ; 14(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38869524

RESUMO

The chemical stability of azithromycin (AZM) may be compromised depending on the imposed thermo-oxidative conditions. This report addresses evidence of this process under varying conditions of temperature (20-80 °C), exposure time to UV radiation (1-3 h irradiation at 257 nm), and air saturation (1-3 h saturation with atmospheric air at 1.2 L min-1 and 15 kPa) through electrochemical measurements performed with a thermoactivated cerium molybdate (Ce2(MoO4)3)/multi-walled carbon nanotubes (MWCNT)-based composite electrode. Thermal treatment at 120 °C led to coordinated water elimination in Ce2(MoO4)3, improving its electrocatalytic effect on antibiotic oxidation, while MWCNT were essential to reduce the charge-transfer resistance and promote signal amplification. Theoretical-experimental data revealed remarkable reactivity for the irreversible oxidation of AZM on the working sensor using phosphate buffer (pH = 8) prepared in CH3OH/H2O (10:90%, v/v). Highly sensitive (230 nM detection limit) and precise (RSD < 4.0%) measurements were recorded under these conditions. The results also showed that AZM reduces its half-life as the temperature, exposure time to UV radiation, and air saturation increase. This fact reinforces the need for continuous quality control of AZM-based pharmaceuticals, using conditions closer to those observed during their transport and storage, reducing impacts on consumers' health.

14.
Heliyon ; 10(10): e31436, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831843

RESUMO

Alternative fuels can be produced from both non-edible feedstocks and edible crops. The higher production costs and contaminating nature of vegetable biofuels, which cause engine component failure, make it conceivable to encourage the synthesis of biodiesel from non-edible sources. One of the most widely utilized alternative fuels is Jatropha biofuel, which has performance levels comparable to diesel fuels and can be used with CI (Compression Ignition) engines without any modifications. However when it comes to oxidative stability properties that impact shelf life and commercialization, the majority of biodiesels-including Jatropha-are lacking. Therefore, the objective of this study was to enhance the oxidative stability and other physicochemical parameters, such performance and emission characteristics, of Jatropha biodiesel with diesel blends by adding additives like DEE (diethyl ether) and MA (moringa oleifera antioxidant). The seeds of jatropha and moringa were harvested by hand and then mechanically extracted with a screw press. A conical flask containing the precisely weighed amount of oil is filled with 50 mL of neutral alcohol. The combination is then heated for an hour using a water condenser over a bath. Using phenolphthalein indicator, the contents are titrated with KOH solution after cooling. Weight of oil taken (w)/volume of KOH used (mL) × normality of KOH is the formula used to determine the acidity value of jatropha oil. It is therefore below the minimum level set by ASTM D 675, which is 2.5 mg KOH/g. Methanol was used in the transesterification process to produce biodiesel, and potassium hydroxide (KOH) was used as a catalyst. Then, using 5 % DEE and 10 % MA additives, the physicochemical properties of jatropha biodiesel-such as density, kinematics viscosity, calorific value, and oxidative stability-were characterized. The percentage of improvement of the biodiesel's mentioned properties with these additives was 0.68 %, 2.8 %, 0.73 %, and 33.8 %, respectively. The brake thermal efficiency (BTE) of B40MA10DEE05D45 increased by 8.52 % whereas the brake specific fuel consumption (BSFC) of B50MA10DEE05D35, which is Made up of 44 % diesel, 50 % jatropha biodiesel, 5 % DEE, and 10 % MA fuels, declined by 5.14 %. As a result of these additions, the blended fuel's CO, HC, and NOx emissions were reduced by 3.51 %, 2.25 %, and 8.64 %, respectively. Therefore, a 20 % blend of Jatropha biodiesel and diesel containing antioxidants from Moringa can be used in compression ignition engines without the need for engine modifications and with high oxidation stability.

15.
Int J Biol Macromol ; 271(Pt 2): 132336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744371

RESUMO

The current study entails the encapsulation validity to enclose naturally occurring food preservatives, such as cinnamon essential oil (CM), within various wall materials. This approach has demonstrated enhanced encapsulated compounds' stability, efficiency, and bioactivity. The base carrier system consisted of a solid lipid (Berry wax, RW) individually blended with whey protein (WYN), maltodextrin (MDN), and gum Arabic (GMC) as wall materials. The resulting formulations were freeze-dried: WYN/RW/CM, MDN/RW/CM, and GMC/RW/CM. The study comprehensively analyzed encapsulation efficiency, morphology, crystallinity, thermal, and physiochemical properties. When RW was combined with WYN, MDN, and GMC, the microcapsule WYN/RW/CM showed the highest efficiency at 93.4 %, while the GMC/RW/CM exhibited the highest relative crystallinity at 46.54 %. Furthermore, the investigation assessed storage stability, release of bioactive compounds, and oxidative stability during storage at 4 °C/ 25 % RH ± 5 % and 25 °C/40 % RH ± 5 % for 55 days, revealing optimal stability in the WYN/RW/CM microcapsule. Additionally, the antimicrobial activity was assessed at various concentrations of microcapsules, revealing their inhibitory effect against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) bacteria. The WYN/RW/CM microcapsule exhibited the highest inhibition activity in both strains, reaching 40 mm. This study demonstrates that combining WYN with RW as a wall material has greater efficiency in encapsulation and potential uses in various industrial sectors.


Assuntos
Antioxidantes , Cápsulas , Cinnamomum zeylanicum , Óleos Voláteis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cinnamomum zeylanicum/química , Biopolímeros/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Goma Arábica/química , Estabilidade de Medicamentos , Polissacarídeos/química , Polissacarídeos/farmacologia , Proteínas do Soro do Leite/química , Fenômenos Químicos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana
16.
Food Chem ; 454: 139790, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805931

RESUMO

Germination of seeds is known to affect the nutritional composition of cold-pressed oils. This study focused on the effects of germination on the antioxidants and oxidative stability of linseed and sunflower seed oil. As hypothesized, germination led to increased antioxidant activities and tocopherol, chlorophyll and carotenoid content. Analysis revealed a 37.2 ± 3.5-fold and 11.6 ± 1.5-fold increase in polyphenol content in linseed and sunflower seed oil from germinated seeds, respectively. Using LC-HRMS/MS, profiles with up to 69 polyphenolic substances were identified in germinated seed oils for the first time. Germination promoted lipid hydrolysis, as evidenced by NMR, with overall significant decreases in triacylglycerol content leading to increased diacylglycerol and free fatty acid values. Rancimat measurements predicted a 4.10 ± 0.52-fold longer shelf-life for germinated linseed oil. This study successfully demonstrated the potential of germination to develop PUFA-rich oils with enhanced antioxidant capacity and oxidative stability.


Assuntos
Antioxidantes , Germinação , Óleo de Semente do Linho , Valor Nutritivo , Oxirredução , Óleos de Plantas , Sementes , Óleo de Girassol , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Óleo de Girassol/química , Óleo de Girassol/metabolismo , Óleo de Semente do Linho/metabolismo , Óleo de Semente do Linho/química , Óleos de Plantas/química , Óleos de Plantas/análise , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/metabolismo , Linho/química , Linho/crescimento & desenvolvimento , Linho/metabolismo , Helianthus/crescimento & desenvolvimento , Helianthus/química , Helianthus/metabolismo
17.
Food Chem X ; 22: 101453, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803670

RESUMO

This study aimed to explore the possibility of enriching cold-pressed Virginia (VIO) and Valencia (VAO) peanut oils with omega-3 fatty acids (FAs) from walnut oil (WO) to produce blended oils with improved nutritional value. The oxidative stability of pure and blended oils was examined under accelerated conditions (60 °C) for 28 days. The FA and tocopherol profiles, as well as nutritional quality indices, were determined. As the proportion of WO increased in the blends, the levels of linoleic and α-linolenic essential FAs increased, while oleic acid content decreased. Furthermore, γ- and δ-tocopherol levels rose, whereas α-tocopherol declined. Among the studied blends, VIO:WO blends, especially at a (70:30) ratio, were nutritionally favorable with a balanced FA profile. During storage, notable changes were observed in tocopherol levels, along with subtle alterations in the FA profile of the blended oils. Hence, the oxidative stability of pure VIO and VAO decreased with WO incorporation.

18.
Foods ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731741

RESUMO

The current investigations were aimed at the determination of the hydrolytic and oxidative stability of commercial pomegranate seed oils provided by four different producers, and to assess the oils' primary quality parameters. During storage, many changes occur in oils that can significantly affect their quality. The oils were tested for acid and peroxide values, fatty acid profile, and their distribution between the sn-1,3 and sn-2 positions of triacylglycerols. The oxidative stability was also determined, and melting curves were plotted for the oils. The analyzed oils were stored for one month in a dark place at refrigerator temperature. Based on the obtained results, it was found that the acid values for most oils did not exceed the permissible level determined by the Codex Alimentarius. However, in all oils, the peroxide value exceeded the permissible level set by the standard EN ISO 3960:2017-03 and the Codex Alimentarius after the one-month storage period. The examined pomegranate seed oils were found to be valuable sources of polyunsaturated fatty acids, especially punicic acid, which was the most abundant fatty acid present in these oils. In all analyzed oils, linoleic acid predominated in the sn-2 position of the triacylglycerols. Pomegranate seed oils did not exhibit good oxidative stability, as the oxidation induction times for all tested oils were very short. The storage period significantly affected the content of the primary oxidation products and oxidative stability of the oils.

19.
Foods ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731773

RESUMO

Cold-pressed moringa, milk thistle, and jujube seed oils were investigated in terms of their characteristic profiles, thermal properties, and oxidative stability. The findings proved that the extracted oils were characterized by high nutritional values, which encourages their use in various fields. Results showed significant differences between the obtained oils. Overall, jujube seed oil exhibited the best quality parameters, with acidity equal to 0.762 versus 1% for the moringa and milk thistle seed oils. Milk thistle seed oil showed absorbance in the UV-C (100-290 nm), UV-B (290-320 nm), and UV-A (320-400 nm) ranges, while the moringa and jujube seed oils showed absorbance only in the UV-B and UV-A ranges. Concerning bioactive compounds, jujube seed oil presented the highest content of polyphenols, which promoted a good scavenging capacity (90% at 10 µg/mL) compared to the moringa and milk thistle seed oils. Assessing the thermal properties of the obtained oils showed the presence of four groups of triglycerides in the moringa and milk thistle seed oils, and two groups of triglycerides in the jujube seed oil. The thermograms were constant at temperatures above 10 °C for milk thistle seed oil, 15 °C for jujube seed oil, and 30 °C for moringa seed oil, which corresponded to complete liquefaction of the oils. The extinction coefficients K232 and K270, monitored during storage for 60 days at 60 °C, proved that jujube seed oil had the highest polyphenols content and was the most stable against thermal oxidation.

20.
Food Sci Biotechnol ; 33(8): 1839-1846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752120

RESUMO

Effects of autoxidation and light irradiation on the oxidative stability were evaluated in rice oil from two brown rice flours including 'Baromi2' and 'Samkwang'. 'Baromi2' is a newly developed variety for rice flour production while 'Samkwang' is a typical rice variety as a control. Degree of oxidation and volatile profiles were evaluated in rice oil stored at 60 °C or under fluorescent light at 25 °C. The oil yields of 'Baromi2' and 'Samkang' were 2.63 and 1.78%, respectively whereas rice oil from 'Baromi2' had lower degree of unsaturation than 'Samkang'. Rice oil from 'Samkwang' possessed higher volatile compounds and more oxidized products during autoxidation whereas rice oil from 'Baromi2' had more oxidation products under light irradiation. Hexanal and 2-heptenal were major headspace volatile from heated rice oil while 2-heptenal and 1-octene-3-ol were main volatiles from light irradiated rice oil, which implies the involvement of singlet oxygen in rice oil during photooxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA