Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(11): 17461-17471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342831

RESUMO

Surface ozone and temperature trends were investigated using records from 2000 to 2021 in Southwestern Europe, at El Arenosillo observatory, focusing on June and December. The ozone trends for daily percentiles were increasing in June for lower percentiles (2.5 ± 1.2 ppb decade-1 for the 5th percentile) and decreasing for higher (- 2.2 ± 1.4 ppb decade-1 for the 95th percentile); in December, the trends were growing in the entire range of percentiles, with a peak of 2.2 ± 0.8 ppb decade-1. A declining trend was obtained for the geopotential height at the pressure level of 850 hPa (Z850) in June while highlighting the upward trend in December (26.3 ± 6.5 m decade-1). The hourly trends for ozone and temperature were also explored in these months. In June, the nocturnal ozone trends were growing (4.0 ± 1.2 ppb decade-1 or 10% decade-1 at 8:00 UTC) associated with temperature rises while in the daytime, a decrease in temperature was observed along with an ozone decreasing trend (- 2.6 ± 1.6 ppb decade-1 or - 5% decade-1 at 18:00 UTC). Hourly ozone and temperature trends in December were increasing with peaks of 3.0 ± 0.9 ppb decade-1 (~ 8% decade-1) at 12:00 UTC and 1.6 ± 0.3 °C decade-1 at 19:00 UTC. Two representative scenarios of these months were studied. The ozone decreases in June could be associated with several factors, decreasing in temperatures and a possible weakening of the anticyclonic conditions leading to changes in the mesoscale processes' development. The strengthening of the Azores anticyclone in December could be enhancing the upward ozone trend observed. It is unknown whether the reversal ozone pattern trends found in this region are a local phenomenon; although we suggest that it could be happening on a larger scale as well, future studies should be carried out.


Assuntos
Poluentes Atmosféricos , Ozônio , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Estações do Ano , Europa (Continente)
2.
Artigo em Inglês | MEDLINE | ID: mdl-36498282

RESUMO

Surface ozone concentrations (O3) during the period 2006-2021 are analysed at Córdoba city (southern Iberian Peninsula) in suburban and urban sampling sites. The aims are to present the levels and temporal variations, to explore trends and to quantity the variation in O3 concentrations in the context of the COVID-19 lockdown. The O3 means are higher in the suburban station (62 µg m-3 and 51.3 µg m-3), being the information level threshold only exceeded twice during this period. The daily evolution shows a maximum at about 17:00 UTC, whereas the minimum is reached at about 9:00 UTC, with higher levels in the suburban station. The seasonal evolution of this daily cycle also presents monthly differences in shape and intensity between stations. The trends are analysed by means of daily averages and daily 5th and 95th percentiles, and they show a similar increase in all of these parameters, with special emphasis on the daily P95 concentrations, with 0.27 µg m-3 year-1 and 0.24 µg m-3 year-1. Finally, the impact of the COVID-19 lockdown shows a decline in O3 concentrations over 10%.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Ozônio , Humanos , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , COVID-19/epidemiologia , Estações do Ano , Controle de Doenças Transmissíveis , Poluição do Ar/análise
3.
Environ Res ; 214(Pt 1): 113887, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835171

RESUMO

Surface ozone trends observed at El Arenosillo observatory for the last 22 years (2000-2021) were investigated. The trends for daily averages and daily 5th and 95th percentiles were 1.2 ± 0.3 ppb decade-1, 2.2 ± 0.3 ppb decade-1 and -0.03 ± 0.43 ppb decade-1, respectively, thus showing a significant increase of background ozone. The surface temperature trends were also explored, obtaining trends of 0.5 ± 0.2 °C decade-1, 1.1 ± 0.2 °C decade-1 and -0.3 ± 0.2 °C decade-1 for daily averages, 5th and 95th percentiles, respectively. To identify potential changes in the ozone drivers, the weather pattern shifts were analyzed through the horizontal distribution trends of temperature at 2 m and geopotential height at 850 hPa. A strengthening of the Azores anticyclone and a regional warming were detected, which could contribute to the ozone trends obtained. The surface ozone trend in every month was explored, identifying a monthly pattern, with remarkable opposite trends in December-January (2.4 ± 0.9 ppb decade-1) vs July-August (-0.5 ± 1.1 ppb decade-1). The surface ozone trends for every hour of the day were also explored, identifying two clear patterns. The first pattern occurred from spring to autumn and was characterized by a behavior opposite to the typical daily ozone cycle. The second pattern was observed in winter, and it shows two relative peaks in the ozone trends (around 13:00 and 19:00 UTC). In a context of ozone precursor's depletion, changes in the weather conditions and warmer climate, to improve our knowledge of the ozone trends, we suggest exploring them based on daily and hourly averages.


Assuntos
Poluentes Atmosféricos , Ozônio , Monitoramento Ambiental , Estações do Ano , Tempo (Meteorologia)
4.
Sci Total Environ ; 576: 22-35, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27780097

RESUMO

This review summarizes new information on the current status of ground-level ozone in Europe north of the Alps. There has been a re-distribution in the hourly ozone concentrations in northern Europe during 1990-2015. The highest concentrations during summer daytime hours have decreased while the summer night-time and winter day- and night-time concentrations have increased. The yearly maximum 8-h mean concentrations ([O3]8h,max), a metric used to assess ozone impacts on human health, have decreased significantly during 1990-2015 at four out of eight studied sites in Fennoscandia and northern UK. Also the annual number of days when the yearly [O3]8h,max exceeded the EU Environmental Quality Standard (EQS) target value of 60ppb has decreased. In contrast, the number of days per year when the yearly [O3]8h,max exceeded 35ppb has increased significantly at two sites, while it decreased at one far northern site. [O3]8h,max is predicted not to exceed 60ppb in northern UK and Fennoscandia after 2020. However, the WHO EQS target value of 50ppb will still be exceeded. The AOT40 May-July and AOT40 April-September metrics, used for the protection of vegetation, have decreased significantly at three and four sites, respectively. The EQS for the protection of forests, AOT40 April-September 5000ppbh, is projected to no longer be exceeded for most of northern Europe sometime before the time period 2040-2059. However, if the EQS is based on Phytotoxic Ozone Dose (POD), POD1, it may still be exceeded by 2050. The increasing trend for low and medium range ozone concentrations in combination with a decrease in high concentrations indicate that a new control strategy, with a larger geographical scale than Europe and including methane, is needed for ozone abatement in northern Europe.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Ozônio/análise , Ecossistema , Europa (Continente) , Humanos
5.
Atmos Environ (1994) ; 164: 102-116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30078987

RESUMO

Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)- Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to assess how well the changes in observed ozone air quality are simulated by the model. The changes induced by variations in meteorology and/or emissions are also evaluated during the same timeframe using spectral decomposition of observed and modeled ozone time series with the aim of identifying the underlying forcing mechanisms that control ozone exceedances and making informed recommendations for the optimal use of regional-scale air quality models. The evaluation is focused on the warm season's (i.e., May-September) daily maximum 8-hr (DM8HR) ozone concentrations, the 4th highest (4th) and average of top 10 DM8HR ozone values (top10), as well as the spectrally-decomposed components of the DM8HR ozone time series using the Kolmogorov-Zurbenko (KZ) filter. Results of the dynamic evaluation are presented for six regions in the U.S., consistent with the National Oceanic and Atmospheric Administration (NOAA) climatic regions. During the earlier 11-yr period (1990-2000), the simulated and observed trends are not statistically significant. During the more recent 2000-2010 period, all trends are statistically significant and WRF-CMAQ captures the observed trend in most regions. Given large number of sites for the 2000-2010 period, the model captures the observed trends in the Southwest (SW) and MW but has significantly different trend from that seen in observations for the other regions. Observational analysis reveals that it is the long-term forcing that dictates how high the ozone exceedances will be; there is a strong linear relationship between the long-term forcing and the 4th highest or the average of the top10 ozone concentrations in both observations and model output. This finding indicates that improving the model's ability to reproduce the long-term component will also enable better simulation of ozone extreme values that are of interest to regulatory agencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA