Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683374

RESUMO

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Assuntos
Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Brasil , Humanos , Malária Vivax/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Caspases/genética , Caspases/metabolismo , Expressão Gênica/genética
2.
Biomedicines ; 12(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255246

RESUMO

(1) Background: Malaria remains a significant global public health issue. Since parasites quickly became resistant to most of the available antimalarial drugs, treatment effectiveness must be constantly monitored. In Brazil, up to 10% of cases of vivax malaria resistant to chloroquine (CQ) have been registered. Unlike P. falciparum, there are no definitive molecular markers for the chemoresistance of P. vivax to CQ. This work aimed to investigate whether polymorphisms in the pvcrt-o and pvmdr1 genes could be used as markers for assessing its resistance to CQ. (2) Methods: A total of 130 samples from P. vivax malaria cases with no clinical and/or parasitological evidence of CQ resistance were studied through polymerase chain reaction for gene amplification followed by target DNA sequencing. (3) Results: In the pvcrt-o exons, the K10 insert was present in 14% of the isolates. Regarding pvmdr1, T958M and F1076L haplotypes showed frequencies of 95% and 3%, respectively, while the SNP Y976F was not detected. (4) Conclusions: Since K10-pvcrt-o and F1076L/T958M-pvmdr1 polymorphisms were detected in samples from patients who responded well to CQ treatment, it can be concluded that mutations in these genes do not seem to have a potential for association with the phenotype of CQ resistance.

3.
Cytokine ; 169: 156278, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356261

RESUMO

BACKGROUND: The innate immune response plays an important role during malaria. Toll-like receptors (TLR) are capable of recognizing pathogen molecules. We aimed to evaluate five polymorphisms in TLR-4, TLR-6, and TLR-9 genes and their association with cytokine levels and clinical parameters in malaria from the Brazil-French Guiana border. METHODS: A case-control study was conducted in Amapá, Brazil. P. vivax patients and individuals not infected were evaluated. Genotyping of five SNPs was carried out by qPCR. Circulating cytokines were measured by CBA. The MSP-119 IgG antibodies were performed by ELISA. RESULTS: An association between TLR4 A299G with parasitemia was observed. There was an increase for IFN-ɤ, TNF-ɑ, IL-6, and IL-10 in the TLR-4 A299G and T3911, TLR-6 S249P, and TLR-9 1486C/T, SNPs for the studied malarial groups. There were significant findings for the TLR-4 variants A299G and T3911, TLR-9 1237C/T, and 1486C/T. For the reactivity of MSP-119 antibodies levels, no significant results were found in malaria, and control groups. CONCLUSIONS: The profile of the immune response observed by polymorphisms in TLRs genes does not seem to be standard for all types of malaria infection around the world. This can depend on the human population and the species of Plasmodium.


Assuntos
Malária Vivax , Malária , Humanos , Malária Vivax/genética , Receptor Toll-Like 9 , Receptor 4 Toll-Like/genética , Receptor 6 Toll-Like/genética , Estudos de Casos e Controles , Brasil , Guiana Francesa , Proteína 1 de Superfície de Merozoito/genética , Genótipo , Predisposição Genética para Doença , Receptores Toll-Like/genética , Polimorfismo de Nucleotídeo Único/genética , Plasmodium vivax/genética
4.
Lancet Reg Health Am ; 18: 100407, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36844021

RESUMO

Background: Each year, 92 million pregnant women are at risk of contracting malaria during pregnancy, with the underestimation of the mortality and morbidity burden associated with Plasmodium vivax. During pregnancy, P. vivax infection is associated with low birth weight, maternal anaemia, premature delivery, and stillbirth. In the State of Acre (Brazil), high transmission leaves pregnant women at greater risk of contracting malaria and having a greater number of recurrences. The study of genetic diversity and the association of haplotypes with adverse pregnancy effects is of great importance for the control of the disease. Here we investigate the genetic diversity of P. vivax parasites infecting pregnant women across their pregnancies. Methods: P. vivax DNA was extracted from 330 samples from 177 women followed during pregnancy, collected in the State of Acre, Brazil. All samples were negative for Plasmodium falciparum DNA. Sequence data for the Pvmsp1 gene was analysed alongside data from six microsatellite (MS) markers. Allelic frequencies, haplotype frequencies, expected heterozygosity (HE) were calculated. Whole genome sequencing (WGS) was conducted on four samples from pregnant women and phylogenetic analysis performed with other samples from South American regions. Findings: Initially, the pregnant women were stratified into two groups-1 recurrence and 2 or more recurrences-in which no differences were observed in clinical gestational outcomes or in placental histological changes between the two groups. Then we evaluated the parasites genetically. An average of 18.5 distinct alleles were found at each of the MS loci, and the HE calculated for each marker indicates a high genetic diversity occurring within the population. There was a high percentage of polyclonal infections (61.7%, 108/175), and one haplotype (H1) occurred frequently (20%), with only 9 of the haplotypes appearing in more than one patient. Interpretation: Most pregnant women had polyclonal infections that could be the result of relapses and/or re-infections. The high percentage of H1 parasites, along with the low frequency of many other haplotypes are suggestive of a clonal expansion. Phylogenetic analysis shows that P. vivax population within pregnant women clustered with other Brazilian samples in the region. Funding: FAPESP and CNPq - Brazil.

5.
Malar J ; 21(1): 360, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457056

RESUMO

BACKGROUND: Pregnant women have increased susceptibility to Plasmodium falciparum malaria and acquire protective antibodies over successive pregnancies. Most studies that investigated malaria antibody responses in pregnant women are from high transmission areas in sub-Saharan Africa, while reports from Latin America are scarce and inconsistent. The present study sought to explore the development of antibodies against P. falciparum and Plasmodium vivax antigens in pregnant women living in a low transmission area in the Brazilian Amazon. METHODS: In a prospective cohort study, plasma samples from 408 pregnant women (of whom 111 were infected with P. falciparum, 96 had infections with P. falciparum and P. vivax, and 201 had no Plasmodium infection) were used to measure antibody levels. Levels of IgG and opsonizing antibody to pregnancy-specific variant surface antigens (VSAs) on infected erythrocytes (IEs), 10 recombinant VAR2CSA Duffy binding like (DBL domains), 10 non-pregnancy-specific P. falciparum merozoite antigens, and 10 P. vivax antigens were measured by flow cytometry, ELISA, and multiplex assays. Antibody levels and seropositivity among the groups were compared. RESULTS: Antibodies to VSAs on P. falciparum IEs were generally low but were higher in currently infected women and women with multiple P. falciparum episodes over pregnancy. Many women (21%-69%) had antibodies against each individual VAR2CSA DBL domain, and antibodies to DBLs correlated with each other (r ≥ 0.55, p < 0.0001), but not with antibody to VSA or history of infection. Infection with either malaria species was associated with higher seropositivity rate for antibodies against P. vivax proteins, adjusted odds ratios (95% CI) ranged from 5.6 (3.2, 9.7), p < 0.0001 for PVDBPII-Sal1 to 15.7 (8.3, 29.7), p < 0.0001 for PvTRAg_2. CONCLUSIONS: Pregnant Brazilian women had low levels of antibodies to pregnancy-specific VSAs that increased with exposure. They frequently recognized both VAR2CSA DBL domains and P. vivax antigens, but only the latter varied with infection. Apparent antibody prevalence is highly dependent on the assay platform used.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Gravidez , Feminino , Humanos , Plasmodium falciparum , Brasil/epidemiologia , Plasmodium vivax , Gestantes , Estudos Prospectivos , Antígenos de Protozoários , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Antígenos de Superfície
6.
Front Cell Infect Microbiol ; 12: 901423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118037

RESUMO

Introduction: Herein, we tested the hypothesis that Asymptomatic P. vivax (Pv) infected individuals (Asym) feature different epidemiological, clinical and biochemical characteristics, as well as hematological parameters, potentially predictive of clinical immunity in comparison to symptomatic Pv infected individuals (Sym). Methodology: Between 2018 - 2021, we conducted 11 population screenings (PS, Day 0 (D0)) in 13 different riverine communities around Iquitos city, in the Peruvian Amazon, to identify Pv Sym and Asym individuals. A group of these individuals agreed to participate in a nested case - control study to evaluate biochemical and hematological parameters. Pv Asym individuals did not present common malaria symptoms (fever, headache, and chills), had a positive/negative microscopy result, a positive qPCR result, reported no history of antimalarial treatment during the last month, and were followed-up weekly until Day 21 (D21). Control individuals, had a negative malaria microscopy and qPCR result, no history of antimalarial treatment or malaria infections during the last three years, and no history of comorbidities or chronic infections. Results: From the 2159 individuals screened during PS, data revealed a low but heterogeneous Pv prevalence across the communities (11.4%), where most infections were Asym (66.7%) and submicroscopic (82.9%). A total of 29 Asym, 49 Sym, and 30 control individuals participated in the nested case - control study (n=78). Ten of the individuals that were initially Asym at D0, experienced malaria symptoms during follow up and therefore, were included in the Sym group. 29 individuals remained Asym throughout all follow-ups. High levels of eosinophils were found in Asym individuals in comparison to Sym and controls. Conclusion: For the first-time, key epidemiological, hematological, and biochemical features are reported from Pv Asym infections from the Peruvian Amazon. These results should be considered for the design and reshaping of malaria control measures as the country moves toward malaria elimination.


Assuntos
Malária Vivax , Malária , Infecções Assintomáticas/epidemiologia , Humanos , Malária Vivax/epidemiologia , Peru/epidemiologia , Prevalência
7.
Malar J ; 21(1): 144, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35527254

RESUMO

BACKGROUND: Over a third of the world's population is at risk of Plasmodium vivax-induced malaria. The unique aspect of the parasite's biology and interactions with the human host make it harder to control and eliminate the disease. Glucose-6-phosphate dehydrogenase (G6PD) deficiency and Duffy-negative blood groups are two red blood cell (RBC) variations that can confer protection against malaria. METHODS: Molecular genotyping of G6PD and Duffy variants was performed in 225 unrelated patients (97 with uncomplicated and 128 with severe vivax malaria) recruited at a Reference Centre for Infectious Diseases in Manaus. G6PD and Duffy variants characterizations were performed using Real Time PCR (qPCR) and PCR-RFLP, respectively. RESULTS: The Duffy blood group system showed a phenotypic distribution Fy(a + b-) of 70 (31.1%), Fy(a + b +) 96 (42.7%), Fy(a-b +) 56 (24.9%) and Fy(a-b-) 1 (0.44%.) The genotype FY*A/FY*B was predominant in both uncomplicated (45.3%) and severe malaria (39.2%). Only one Duffy phenotype Fy(a-b) was found and this involved uncomplicated vivax malaria. The G6PD c.202G > A variant was found in 11 (4.88%) females and 18 (8.0%) males, while c.376A > G was found in 20 females (8.88%) and 23 (10.22%) male patients. When combined GATA mutated and c.202G > A and c.376A > G mutated, was observed at a lower frequency in uncomplicated (3.7%) in comparison to severe malaria (37.9%). The phenotype Fy(a-b +) (p = 0.022) with FY*B/FY*B (p = 0.015) genotype correlated with higher parasitaemia. CONCLUSIONS: A high prevalence of G6PD c202G > A and c.376A > G and Duffy variants is observed in Manaus, an endemic area for vivax malaria. In addition, this study reports for the first time the Duffy null phenotype Fy(a-b-) in the population of the Amazonas state. Moreover, it is understood that the relationship between G6PD and Duffy variants can modify clinical symptoms in malaria caused by P. vivax and this deserves to be further investigated and explored among this population.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Brasil/epidemiologia , Sistema do Grupo Sanguíneo Duffy/genética , Feminino , Genótipo , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Malária Vivax/epidemiologia , Masculino , Plasmodium vivax/genética
8.
Microorganisms ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35630348

RESUMO

Signal regulatory protein α (SIRPα) is an immunoreceptor expressed in myeloid innate immune cells that signals for inhibition of both phagocytosis and inflammatory response. Malaria parasites have evolutionarily selected multiple mechanisms that allow them to evade host immune defenses, including the modulation of cells belonging to innate immunity. Notwithstanding, little attention has been given to SIRPα in the context of immunosuppressive states induced by malaria. The present study attempted to investigate if malaria parasites are endowed with the capacity of modulating the expression of SIRPα on cells of innate immune system. Human peripheral blood mononuclear cells (PBMC) from healthy individuals were incubated in the presence of lipopolysaccharide (LPS) or crude extracts of P. falciparum or P. vivax and then, the expression of SIRPα was evaluated by flow cytometry. As expected, LPS showed an inhibitory effect on the expression of SIRPα in the population of monocytes, characterized by cell morphology in flow cytometry analysis, while Plasmodium extracts induced a significant positive modulation. Additional phenotyping of cells revealed that the modulatory potential of Plasmodium antigens on SIRPα expression was restricted to the population of monocytes (CD14+CD11c+), as no effect on myeloid dendritic cells (CD14-CD11c+) was observed. We hypothesize that malaria parasites explore inhibitory signaling of SIRPα to suppress antiparasitic immune responses contributing to the establishment of infection. Nevertheless, further studies are still required to better understand the role of SIRPα modulation in malaria immunity and pathogenesis.

9.
Lancet Reg Health Am ; 12: 100285, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36776427

RESUMO

Background: Malaria in pregnancy (MiP) is a public health problem in the Brazilian Amazon region that requires special attention due to associated serious adverse consequences, such as low birth weight, increased prematurity and spontaneous abortion rates. In Brazil, there have been no comprehensive epidemiological studies of MiP. In this study, we aimed to explore the spatial and spatiotemporal patterns of MiP in Brazil and epidemiologically characterize this population of pregnant women over a period of 15 years. Methods: We performed a national-scale ecological analysis using a Bayesian space-time hierarchical model to estimate the incidence rates of MiP between 1 January 2004 and 31 December 2018. We mapped the high-incidence clusters among pregnant women aged 10-49 years old using a Poisson model, and we characterized the population based on data from the Epidemiological Surveillance Information System for Malaria (SIVEP-Malaria). Findings: We consolidated the data of 61,833 women with MiP in Brazil. Our results showed a reduction of 50·1% (95% CI: 47·3 to 52·9) in the number of malaria cases over the period analysed, with Plasmodium vivax malaria having the highest incidence. MiP was widely distributed throughout the Amazon region, and spatial and spatiotemporal analyses revealed statistically significant clusters in some municipalities of Amazonas, Acre, Rondônia and Pará. In addition, we observed that younger pregnant women had a higher risk of infection, and the administration of appropriate treatment requires more attention. Interpretation: This nationwide study provides robust evidence that, despite the reduction in the number of MiP cases in the country, it remains a serious public health problem, especially for young pregnant women. Our analyses highlight focus areas for strengthening interventions to control and eliminate MiP. Funding: FAPESP and CNPq - Brazil.

10.
Braz. J. Biol. ; 82: 1-6, 2022. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32666

RESUMO

Plasmodium vivax is the most common human malaria parasite in Asian countries including Pakistan. Present study was designed to explore the genetic diversity of plasmodium vivax genotypes based on Pvmsp-3α and Pvmsp-3βgenes using allelic specific nested PCR and RFLP assays markers from field isolates in district Mardan, Pakistan. Blood samples of 200 P. vivax malarial patients were collected after taking their written informed consent. Genetic diversity in nested PCR products was determined by Restriction Fragment Length Polymorphism (RFLP) utilizing Alu1 and PstI restriction enzymes for alpha and beta gene products digestion, respectively. For analysis the genetic diversity of the sub allelic variants of Pvmsp3α and Pvmsp3β genes, Chi-Square test was performed by utilizing Minitab programming software 18. The P value 0.05 was considered as statistically significant. For Pvmsp 3α genes after gel electrophoresis of digested products, four distinct genotypes were obtained from total of 50 samples; type A: 35 (70%) (1.5-2.0 kb), 12 of type B (24%) (1.5-1.7 kb), 2 of type C (4%) (0.5-1.5) and one for type D (2%) (0.5-0.65 kb) which could be characterized into 9 allelic pattern (A1-A4, B1-B3, C1, D), in which A3 remained the most predominant. For Pvmsp-3βgenes, three distinct genotypes were obtained from 50 samples; 40(80%) of type A (1.5-2.5 kb), 9 (18%) of type B (1.0-1.5kb) and 1(2%) of type C (0.65 kb) which could be characterized into 6 allelic patterns (A1-A3, B1-B2, and C1). Most dominant one in Type A was A1 alleles which were noted (46%), while in Type B, the most dominant were B1 (10%).This study is the first ever report of molecular epidemiology and genetic variation in Pvmsp-3α and Pvmsp-3β genes of P. vivax isolates by using PCR/RFLP from District Mardan and [...].(AU)


O Plasmodium vivax é o parasita da malária humana mais comum nos países asiáticos, incluindo o Paquistão. O presente estudo foi desenhado para explorar a diversidade genética de genótipos de Plasmodium vivax baseados nos genes Pvmsp-3α e Pvmsp-3β, usando marcadores de ensaios alélicos nested PCR e RFLP de isolados de campo no distrito de Mardan, Paquistão. Amostras de sangue de 200 pacientes com malária por P. vivax foram coletadas após assinatura do termo de consentimento livre e esclarecido. A diversidade genética em produtos de PCR nested foi determinada por polimorfismo de fragmento de restrição (RFLP) utilizando as enzimas de restrição Alu1 e PstI para a digestão dos produtos dos genes alfa e beta, respectivamente. Para análise da diversidade genética das variantes subalélicas dos genes Pvmsp3α e Pvmsp3β, o teste Qui-quadrado foi realizado utilizando o software de programação Minitab 18. O valor P = 0,05 foi considerado estatisticamente significativo. Para os genes Pvmsp 3α, após eletroforese em gel de produtos digeridos, quatro genótipos distintos foram obtidos de um total de 50 amostras; tipo A: 35 (70%) (1,5-2,0 kb), 12 do tipo B (24%) (1,5-1,7 kb), 2 do tipo C (4%) (0,5-1,5) e um para o tipo D (2%) (0,5-0,65 kb), que podem ser caracterizados em nove padrões alélicos (A1-A4, B1-B3, C1, D), em que A3 permaneceu como o mais predominante. Para Pvmsp-3βgenes, três genótipos distintos foram obtidos a partir de 50 amostras; 40 (80%) do tipo A (1,5-2,5 kb), 9 (18%) do tipo B (1,0-1,5 kb) e 1 (2%) do tipo C (0,65 kb), que podem ser caracterizados em seis padrões alélicos (A1-A3, B1-B2 e C1). Os mais dominantes no tipo A foram o alelo A1, observados em 46%, enquanto, no tipo B, os mais dominantes foram B1 (10%). Este estudo é o primeiro relato de epidemiologia molecular e variação genética em Pvmsp-3α. Os genes Pvmsp-3β de isolados de P. vivax utilizando PCR/RFLP do Distrito Mardan mostraram um nível notável de diversidade genética nos genes estudados [...].(AU)


Assuntos
Humanos , Plasmodium vivax/genética , Plasmodium vivax/parasitologia , Merozoítos , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Polimorfismo de Fragmento de Restrição/genética
11.
Braz. j. biol ; 82: e241110, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1278500

RESUMO

Plasmodium vivax is the most common human malaria parasite in Asian countries including Pakistan. Present study was designed to explore the genetic diversity of plasmodium vivax genotypes based on Pvmsp-3α and Pvmsp-3ßgenes using allelic specific nested PCR and RFLP assays markers from field isolates in district Mardan, Pakistan. Blood samples of 200 P. vivax malarial patients were collected after taking their written informed consent. Genetic diversity in nested PCR products was determined by Restriction Fragment Length Polymorphism (RFLP) utilizing Alu1 and PstI restriction enzymes for alpha and beta gene products digestion, respectively. For analysis the genetic diversity of the sub allelic variants of Pvmsp3α and Pvmsp3ß genes, Chi-Square test was performed by utilizing Minitab programming software 18. The P value 0.05 was considered as statistically significant. For Pvmsp3α genes after gel electrophoresis of digested products, four distinct genotypes were obtained from total of 50 samples; type A: 35 (70%) (1.5-2.0 kb), 12 of type B (24%) (1.5-1.7 kb), 2 of type C (4%) (0.5-1.5) and one for type D (2%) (0.5-0.65 kb) which could be characterized into 9 allelic pattern (A1-A4, B1-B3, C1, D), in which A3 remained the most predominant. For Pvmsp-3ßgenes, three distinct genotypes were obtained from 50 samples; 40(80%) of type A (1.5-2.5 kb), 9 (18%) of type B (1.0-1.5kb) and 1(2%) of type C (0.65 kb) which could be characterized into 6 allelic patterns (A1-A3, B1-B2, and C1). Most dominant one in Type A was A1 alleles which were noted (46%), while in Type B, the most dominant were B1 (10%).This study is the first ever report of molecular epidemiology and genetic variation in Pvmsp-3α and Pvmsp-3ß genes of P. vivax isolates by using PCR/RFLP from District Mardan and showed a remarkable level of genetic diversity in the studied genes of circulating parasites in the study area. The results of this study will contribute in future studies about the genetic structure of parasite and vaccine development against the malaria.


O Plasmodium vivax é o parasita da malária humana mais comum nos países asiáticos, incluindo o Paquistão. O presente estudo foi desenhado para explorar a diversidade genética de genótipos de Plasmodium vivax baseados nos genes Pvmsp-3α e Pvmsp-3ß, usando marcadores de ensaios alélicos nested PCR e RFLP de isolados de campo no distrito de Mardan, Paquistão. Amostras de sangue de 200 pacientes com malária por P. vivax foram coletadas após assinatura do termo de consentimento livre e esclarecido. A diversidade genética em produtos de PCR nested foi determinada por polimorfismo de fragmento de restrição (RFLP) utilizando as enzimas de restrição Alu1 e PstI para a digestão dos produtos dos genes alfa e beta, respectivamente. Para análise da diversidade genética das variantes subalélicas dos genes Pvmsp3α e Pvmsp3ß, o teste Qui-quadrado foi realizado utilizando o software de programação Minitab 18. O valor P = 0,05 foi considerado estatisticamente significativo. Para os genes Pvmsp3α, após eletroforese em gel de produtos digeridos, quatro genótipos distintos foram obtidos de um total de 50 amostras; tipo A: 35 (70%) (1,5-2,0 kb), 12 do tipo B (24%) (1,5-1,7 kb), 2 do tipo C (4%) (0,5-1,5) e um para o tipo D (2%) (0,5-0,65 kb), que podem ser caracterizados em nove padrões alélicos (A1-A4, B1-B3, C1, D), em que A3 permaneceu como o mais predominante. Para Pvmsp-3ßgenes, três genótipos distintos foram obtidos a partir de 50 amostras; 40 (80%) do tipo A (1,5-2,5 kb), 9 (18%) do tipo B (1,0-1,5 kb) e 1 (2%) do tipo C (0,65 kb), que podem ser caracterizados em seis padrões alélicos (A1-A3, B1-B2 e C1). Os mais dominantes no tipo A foram o alelo A1, observados em 46%, enquanto, no tipo B, os mais dominantes foram B1 (10%). Este estudo é o primeiro relato de epidemiologia molecular e variação genética em Pvmsp-3α. Os genes Pvmsp-3ß de isolados de P. vivax utilizando PCR/RFLP do Distrito Mardan mostraram um nível notável de diversidade genética nos genes estudados de parasitas circulantes na área de estudo. Os resultados desse estudo contribuirão em estudos futuros sobre a estrutura genética do parasita e o desenvolvimento de vacinas contra a malária.


Assuntos
Humanos , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Paquistão , Variação Genética , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase , Genótipo
12.
Braz. j. biol ; 82: 1-6, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468521

RESUMO

Plasmodium vivax is the most common human malaria parasite in Asian countries including Pakistan. Present study was designed to explore the genetic diversity of plasmodium vivax genotypes based on Pvmsp-3α and Pvmsp-3βgenes using allelic specific nested PCR and RFLP assays markers from field isolates in district Mardan, Pakistan. Blood samples of 200 P. vivax malarial patients were collected after taking their written informed consent. Genetic diversity in nested PCR products was determined by Restriction Fragment Length Polymorphism (RFLP) utilizing Alu1 and PstI restriction enzymes for alpha and beta gene products digestion, respectively. For analysis the genetic diversity of the sub allelic variants of Pvmsp3α and Pvmsp3β genes, Chi-Square test was performed by utilizing Minitab programming software 18. The P value 0.05 was considered as statistically significant. For Pvmsp 3α genes after gel electrophoresis of digested products, four distinct genotypes were obtained from total of 50 samples; type A: 35 (70%) (1.5-2.0 kb), 12 of type B (24%) (1.5-1.7 kb), 2 of type C (4%) (0.5-1.5) and one for type D (2%) (0.5-0.65 kb) which could be characterized into 9 allelic pattern (A1-A4, B1-B3, C1, D), in which A3 remained the most predominant. For Pvmsp-3βgenes, three distinct genotypes were obtained from 50 samples; 40(80%) of type A (1.5-2.5 kb), 9 (18%) of type B (1.0-1.5kb) and 1(2%) of type C (0.65 kb) which could be characterized into 6 allelic patterns (A1-A3, B1-B2, and C1). Most dominant one in Type A was A1 alleles which were noted (46%), while in Type B, the most dominant were B1 (10%).This study is the first ever report of molecular epidemiology and genetic variation in Pvmsp-3α and Pvmsp-3β genes of P. vivax isolates by using PCR/RFLP from District Mardan and [...].


O Plasmodium vivax é o parasita da malária humana mais comum nos países asiáticos, incluindo o Paquistão. O presente estudo foi desenhado para explorar a diversidade genética de genótipos de Plasmodium vivax baseados nos genes Pvmsp-3α e Pvmsp-3β, usando marcadores de ensaios alélicos nested PCR e RFLP de isolados de campo no distrito de Mardan, Paquistão. Amostras de sangue de 200 pacientes com malária por P. vivax foram coletadas após assinatura do termo de consentimento livre e esclarecido. A diversidade genética em produtos de PCR nested foi determinada por polimorfismo de fragmento de restrição (RFLP) utilizando as enzimas de restrição Alu1 e PstI para a digestão dos produtos dos genes alfa e beta, respectivamente. Para análise da diversidade genética das variantes subalélicas dos genes Pvmsp3α e Pvmsp3β, o teste Qui-quadrado foi realizado utilizando o software de programação Minitab 18. O valor P = 0,05 foi considerado estatisticamente significativo. Para os genes Pvmsp 3α, após eletroforese em gel de produtos digeridos, quatro genótipos distintos foram obtidos de um total de 50 amostras; tipo A: 35 (70%) (1,5-2,0 kb), 12 do tipo B (24%) (1,5-1,7 kb), 2 do tipo C (4%) (0,5-1,5) e um para o tipo D (2%) (0,5-0,65 kb), que podem ser caracterizados em nove padrões alélicos (A1-A4, B1-B3, C1, D), em que A3 permaneceu como o mais predominante. Para Pvmsp-3βgenes, três genótipos distintos foram obtidos a partir de 50 amostras; 40 (80%) do tipo A (1,5-2,5 kb), 9 (18%) do tipo B (1,0-1,5 kb) e 1 (2%) do tipo C (0,65 kb), que podem ser caracterizados em seis padrões alélicos (A1-A3, B1-B2 e C1). Os mais dominantes no tipo A foram o alelo A1, observados em 46%, enquanto, no tipo B, os mais dominantes foram B1 (10%). Este estudo é o primeiro relato de epidemiologia molecular e variação genética em Pvmsp-3α. Os genes Pvmsp-3β de isolados de P. vivax utilizando PCR/RFLP do Distrito Mardan mostraram um nível notável de diversidade genética nos genes estudados [...].


Assuntos
Humanos , Merozoítos , Plasmodium vivax/genética , Plasmodium vivax/parasitologia , Polimorfismo de Fragmento de Restrição/genética , Proteínas de Membrana/análise , Proteínas de Membrana/genética
13.
Braz. j. biol ; 822022.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468708

RESUMO

Abstract Plasmodium vivax is the most common human malaria parasite in Asian countries including Pakistan. Present study was designed to explore the genetic diversity of plasmodium vivax genotypes based on Pvmsp-3 and Pvmsp-3genes using allelic specific nested PCR and RFLP assays markers from field isolates in district Mardan, Pakistan. Blood samples of 200 P. vivax malarial patients were collected after taking their written informed consent. Genetic diversity in nested PCR products was determined by Restriction Fragment Length Polymorphism (RFLP) utilizing Alu1 and PstI restriction enzymes for alpha and beta gene products digestion, respectively. For analysis the genetic diversity of the sub allelic variants of Pvmsp3 and Pvmsp3 genes, Chi-Square test was performed by utilizing Minitab programming software 18. The P value 0.05 was considered as statistically significant. For Pvmsp-3 genes after gel electrophoresis of digested products, four distinct genotypes were obtained from total of 50 samples; type A: 35 (70%) (1.5-2.0 kb), 12 of type B (24%) (1.5-1.7 kb), 2 of type C (4%) (0.5-1.5) and one for type D (2%) (0.5-0.65 kb) which could be characterized into 9 allelic pattern (A1-A4, B1-B3, C1, D), in which A3 remained the most predominant. For Pvmsp-3genes, three distinct genotypes were obtained from 50 samples; 40(80%) of type A (1.5-2.5 kb), 9 (18%) of type B (1.0-1.5kb) and 1(2%) of type C (0.65 kb) which could be characterized into 6 allelic patterns (A1-A3, B1-B2, and C1). Most dominant one in Type A was A1 alleles which were noted (46%), while in Type B, the most dominant were B1 (10%).This study is the first ever report of molecular epidemiology and genetic variation in Pvmsp-3 and Pvmsp-3 genes of P. vivax isolates by using PCR/RFLP from District Mardan and showed a remarkable level of genetic diversity in the studied genes of circulating parasites in the study area. The results of this study will contribute in future studies about the genetic structure of parasite and vaccine development against the malaria.


Resumo O Plasmodium vivax é o parasita da malária humana mais comum nos países asiáticos, incluindo o Paquistão. O presente estudo foi desenhado para explorar a diversidade genética de genótipos de Plasmodium vivax baseados nos genes Pvmsp-3 e Pvmsp-3, usando marcadores de ensaios alélicos nested PCR e RFLP de isolados de campo no distrito de Mardan, Paquistão. Amostras de sangue de 200 pacientes com malária por P. vivax foram coletadas após assinatura do termo de consentimento livre e esclarecido. A diversidade genética em produtos de PCR nested foi determinada por polimorfismo de fragmento de restrição (RFLP) utilizando as enzimas de restrição Alu1 e PstI para a digestão dos produtos dos genes alfa e beta, respectivamente. Para análise da diversidade genética das variantes subalélicas dos genes Pvmsp3 e Pvmsp3, o teste Qui-quadrado foi realizado utilizando o software de programação Minitab 18. O valor P = 0,05 foi considerado estatisticamente significativo. Para os genes Pvmsp-3, após eletroforese em gel de produtos digeridos, quatro genótipos distintos foram obtidos de um total de 50 amostras; tipo A: 35 (70%) (1,5-2,0 kb), 12 do tipo B (24%) (1,5-1,7 kb), 2 do tipo C (4%) (0,5-1,5) e um para o tipo D (2%) (0,5-0,65 kb), que podem ser caracterizados em nove padrões alélicos (A1-A4, B1-B3, C1, D), em que A3 permaneceu como o mais predominante. Para Pvmsp-3genes, três genótipos distintos foram obtidos a partir de 50 amostras; 40 (80%) do tipo A (1,5-2,5 kb), 9 (18%) do tipo B (1,0-1,5 kb) e 1 (2%) do tipo C (0,65 kb), que podem ser caracterizados em seis padrões alélicos (A1-A3, B1-B2 e C1). Os mais dominantes no tipo A foram o alelo A1, observados em 46%, enquanto, no tipo B, os mais dominantes foram B1 (10%). Este estudo é o primeiro relato de epidemiologia molecular e variação genética em Pvmsp-3. Os genes Pvmsp-3 de isolados de P. vivax utilizando PCR/RFLP do Distrito Mardan mostraram um nível notável de diversidade genética nos genes estudados de parasitas circulantes na área de estudo. Os resultados desse estudo contribuirão em estudos futuros sobre a estrutura genética do parasita e o desenvolvimento de vacinas contra a malária.

14.
Braz. J. Pharm. Sci. (Online) ; 58: e20453, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420370

RESUMO

Abstract Malaria is a disease caused by Plasmodium spp. protozoa. The ability of Plasmodium to develop resistance to current antimalarial drugs makes the study of chemotherapeutic alternatives extremely important. This study aimed to evaluate the antimalarial activity of compound 3286938 (1-(3-benzyloxy-4-methoxy-phenyl)-3-(3,4,5-trimethoxy-phenyl)-propan-1-one), which presents in its structure a 3,4,5-trimethoxyphenyl group, in vitro, using the W2 strain of P. falciparum and against circulating strains of P. vivax and P. falciparum from the state of Rondônia. The compound 3286938 obtained an IC50 of 24.4 µM against the W2 strain of P. falciparum, and against the circulating strains, it presented a median (MD)=38.7 µM for P. vivax and MD=6.7 µM for P. falciparum. As for toxicity, 3286938 showed CC50 > 500 µM for VERO and HepG2 strains with a selectivity index greater than 12.9, a ratio calculated for P. falciparum and P. vivax regarding Vero and HepG2 cells. The compound was not considered hemolytic in in vitro assays, thus indicating the specificity of its antiplasmodial action. Based on the results presented, and considering the unprecedented character of the compound, it can be concluded that 3286938 was shown to be promising for complementary in vitro and in vivo studies aiming to produce effective antiplasmodial action.

15.
mBio ; 12(4): e0124721, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311577

RESUMO

Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage. IMPORTANCE Plasmodium vivax is the most widely distributed causative agent of human malaria. To achieve parasite control, the human immune system develops a substantial inflammatory response that is also responsible for the symptoms of the disease. Among the cells involved in this response, monocytes play an important role. Here, we show that monocyte metabolism is altered during malaria, with its mitochondria playing a major function in this switch. This change involves a reprograming process in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. The resulting altered mitochondrial membrane potential leads to an increase in mitochondrial reactive oxygen species rather than ATP. These data suggest that agents that change metabolism should be investigated and used with caution during malaria.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Monócitos/metabolismo , Monócitos/patologia , Plasmodium vivax/imunologia , Reticulócitos/parasitologia , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Idoso , Feminino , Expressão Gênica , Glicólise , Humanos , Malária Vivax/imunologia , Malária Vivax/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Monócitos/citologia , Monócitos/imunologia , Fagossomos/imunologia , Fagossomos/parasitologia , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Adulto Jovem
16.
Pathogens ; 10(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801386

RESUMO

The measurement of recent malaria exposure can support malaria control efforts. This study evaluated serological responses to an in-house Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) expressed in a Baculovirus system as sero-marker of recent exposure to P. vivax (Pv) in the Peruvian Amazon. In a first evaluation, IgGs against PvMSP8 and PvMSP10 proteins were measured by Luminex in a cohort of 422 Amazonian individuals with known history of Pv exposure (monthly data of infection status by qPCR and/or microscopy over five months). Both serological responses were able to discriminate between exposed and non-exposed individuals in a good manner, with slightly higher performance of anti-PvMSP10 IgGs (area under the curve AUC = 0.78 [95% CI = 0.72-0.83]) than anti-PvMSP8 IgGs (AUC = 0.72 [95% CI = 0.67-0.78]) (p = 0.01). In a second evaluation, the analysis by ELISA of 1251 plasma samples, collected during a population-based cross-sectional survey, confirmed the good performance of anti-PvMSP8 IgGs for discriminating between individuals with Pv infection at the time of survey and/or with antecedent of Pv in the past month (AUC = 0.79 [95% CI = 0.74-0.83]). Anti-PvMSP8 IgG antibodies can be considered as a good biomarker of recent Pv exposure in low-moderate transmission settings of the Peruvian Amazon.

17.
Parasitol Res ; 120(5): 1789-1797, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33797613

RESUMO

Invasion of Plasmodium into the red blood cell involves the interactions of a substantial number of proteins, with red cell membrane proteins as the most involved throughout the process from entry to exit. The objective of this work was to identify proteins of the human erythrocyte membrane capable of generating an antigenic response to P. falciparum and P. vivax infection, with the goal of searching for new molecular targets of interest with an immunological origin to prevent Plasmodium infection. To identify these proteins, an immunoproteomic technique was carried out in four stages: protein separation (electrophoresis), detection of antigenic proteins (western blotting), identification of proteins of interest (mass spectrometry), and interpretation of the data (bioinformatic analysis). Four proteins were identified from extracts of membrane proteins from erythrocytes infected with P. falciparum: Spectrin, Ankyrin-1, Band 3 and band 4.2, and a single protein was identified from erythrocytes infected with P. vivax: Band 3. These results demonstrate that modifications in the red blood cell membrane during infection with P. falciparum and P. vivax can generate an immune response, altering proteins of great structural and functional importance.


Assuntos
Membrana Eritrocítica/imunologia , Malária Falciparum/imunologia , Malária Vivax/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Adulto , Anquirinas/imunologia , Proteínas do Citoesqueleto , Feminino , Humanos , Masculino , Proteínas de Membrana/análise , Pessoa de Meia-Idade
18.
Mem. Inst. Oswaldo Cruz ; 116: e200584, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1250360

RESUMO

In the present study, we investigated the genetic diversity of Plasmodium vivax metacaspase 1 (PvMCA1) catalytic domain in two municipalities of the main malaria hotspot in Brazil, i.e., the Juruá Valley, and observed complete sequence identity among all P. vivax field isolates and the Sal-1 reference strain. Analysis of PvMCA1 catalytic domain in different P. vivax genomic sequences publicly available also revealed a high degree of conservation worldwide, with very few amino acid substitutions that were not related to putative histidine and cysteine catalytic residues, whose involvement with the active site of protease was herein predicted by molecular modeling. The genetic conservation presented by PvMCA1 may contribute to its eligibility as a druggable target candidate in vivax malaria.


Assuntos
Humanos , Plasmodium vivax/genética , Malária Vivax , Variação Genética/genética , Brasil , Proteínas de Protozoários/genética , Domínio Catalítico
19.
Infect Genet Evol ; 86: 104592, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33059085

RESUMO

Plasmodium vivax merozoite surface proteins (PvMSP) 1 and 7 are considered vaccine targets. Genetic diversity knowledge is crucial to assess their potential as immunogens and to provide insights about population structure in different epidemiological contexts. Here, we investigate the variability of pvmsp-142, pvmsp-7E, and pvmsp-7F genes in 227 samples from the Brazilian Amazon (BA) and Rio de Janeiro Atlantic Forest (AF). pvmsp-142 has 63 polymorphisms - 57 nonsynonymous - generating a nucleotide diversity of π = 0.009 in AF, and π = 0.018 in BA. In pvmsp-7E, 134 polymorphisms - 103 nonsynonymous - generate the nucleotide diversity of π = 0.027 in AF, and π = 0.042 in BA. The pvmsp-7F has only two SNPs - A610G and A1054T -, with nucleotide diversity of π = 0.0004 in AF, and π = 0.0007 in BA. The haplotype diversity of pvmsp-142, pvmsp-7E, and pvmsp-7F genes is 0.997, 1.00, and 0.649, respectively. None of the pvmsp-142 or pvmsp-7E sequences are identical to the Salvador 1 strain's sequence. Conversely, most of pvmsp-7F sequences (94/48%) are identical to Sal-1. We evaluated eight B-cell epitopes in pvmsp-7E, four of them showed higher nucleotide diversity compared to pvmsp-7E's epitopes. Positive selection was detected in pvmsp-142, pvmsp-7E central region, and pvmsp-7F with Tajima's D. In pvmsp-7E, the significant nucleotide and haplotype diversities with low genetic differentiation, could be indicative of balancing selection. The genetic differentiation of pvmsp-142 (0.315) and pvmsp-7F (0.354) genes between AF and BA regions is significant, which is not the case for pvmsp-7E (0.193). We conclude that pvmsp-142 and pvmsp-7E have great genetic diversity even in AF region, an enclosure area with deficient transmission levels of P. vivax zoonotic malaria. In both Brazilian regions, pvmsp-119, pvmsp-7E, and pvmsp-7F are conserved, most likely due to their roles in parasite survival, and could be considered potential targets for a "blood-stage vaccine".


Assuntos
Variação Genética , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Proteínas de Membrana/genética , Proteína 1 de Superfície de Merozoito/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Brasil/epidemiologia , Interações Hospedeiro-Parasita , Humanos , Malária Vivax/transmissão , Vigilância em Saúde Pública
20.
Artigo em Inglês | MEDLINE | ID: mdl-32266169

RESUMO

Following the injection of Plasmodium sporozoites by a female Anopheles mosquito into the dermis, they become engaged on a long journey to hepatic tissue where they must migrate through different types of cell to become established in parasitophorous vacuoles in hepatocytes. Studies have shown that proteins such as cell traversal protein for Plasmodium ookinetes and sporozoites (CelTOS) play a crucial role in cell-traversal ability. Although CelTOS has been extensively studied in various species and included in pre-clinical assays it remains unknown which P. vivax CelTOS (PvCelTOS) regions are key in its interaction with traversed or target cells (Kupffer or hepatocytes) and what type of pressure, association and polymorphism these important regions could have to improve their candidacy as important vaccine antigens. This work has described producing a recombinant PvCelTOS which was recognized by ~30% P. vivax-infected individuals, thereby confirming its ability for inducing a natural immune response. PvCelTOS' genetic diversity in Colombia and its ability to interact with HeLa (traversal cell) and/or HepG2 cell (target cell) external membrane have been assessed. One region in the PvCelTOS amino-terminal region and another in its C-terminus were seen to be participating in host-pathogen interactions. These regions had important functional constraint signals (ω < 0.3 and several sites under negative selection) and were able to inhibit specific rPvCelTOS binding to HeLa cells. This led to suggesting that sequences between aa 41-60 (40833) and 141-160 (40838) represent promising candidates for an anti-P. vivax subunit-based vaccine.


Assuntos
Plasmodium vivax , Esporozoítos , Animais , Antígenos de Protozoários/genética , Colômbia , Feminino , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA