Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 661
Filtrar
1.
Biochem Biophys Res Commun ; 737: 150500, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39142135

RESUMO

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a vital role in regulating redox homeostasis and reductive biosynthesis. However, if exogenous NADPH can be transported across the plasma membrane has remained elusive. In this study, we present evidence supporting that NADPH can traverse the plasma membranes of cells through a mechanism mediated by the P2X7 receptor (P2X7R). Notably, we observed an augmentation of intracellular NADPH levels in cultured microglia upon exogenous NADPH supplementation in the presence of ATP. The P2X7R-mediated transmembrane transportation of NADPH was validated with P2X7R antagonists, including OX-ATP, BBG, and A-438079, or through P2X7 knockdown, which impeded NADPH transportation into cells. Conversely, overexpression of P2X7 resulted in an enhanced capacity for NADPH transport. Furthermore, transfection of hP2X7 demonstrated the ability to complement NADPH uptake in native HEK293 cells. Our findings provide evidence for the first time that NADPH is transported across the plasma membrane via a P2X7R-mediated pathway. Additionally, we propose an innovative avenue for modulating intracellular NADPH levels. This discovery holds promise for advancing our understanding of the role of NADPH in redox homeostasis and neuroinflammation.

2.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984997

RESUMO

Microparticles (MPs) are secreted by all cells, where they play a key role in intercellular communication, differentiation, inflammation, and cell energy transfer. P2X7 receptor (P2X7R) activation by extracellular ATP (eATP) causes a large MP release and affects their contents in a cell-specific fashion. We investigated MP release and functional impact in microglial cells from P2X7R-WT or P2X7R-KO mice, as well as mouse microglial cell lines characterized for high (N13-P2X7RHigh) or low (N13-P2X7RLow) P2X7R expression. P2X7R stimulation promoted release of a mixed MP population enriched with naked mitochondria. Released mitochondria were taken up and incorporated into the mitochondrial network of the recipient cells in a P2X7R-dependent fashion. NLRP3 and the P2X7R itself were also delivered to the recipient cells. Microparticle transfer increased the energy level of the recipient cells and conferred a pro-inflammatory phenotype. These data show that the P2X7R is a master regulator of intercellular organelle and MP trafficking in immune cells.


Assuntos
Micropartículas Derivadas de Células , Camundongos Knockout , Microglia , Mitocôndrias , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Animais , Microglia/metabolismo , Mitocôndrias/metabolismo , Camundongos , Micropartículas Derivadas de Células/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
3.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39000004

RESUMO

Epilepsy is one of the most common neurological diseases worldwide. Anti-seizure medications (ASMs) with anticonvulsants remain the mainstay of epilepsy treatment. Currently used ASMs are, however, ineffective to suppress seizures in about one third of all patients. Moreover, ASMs show no significant impact on the pathogenic mechanisms involved in epilepsy development or disease progression and may cause serious side-effects, highlighting the need for the identification of new drug targets for a more causal therapy. Compelling evidence has demonstrated a role for purinergic signalling, including the nucleotide adenosine 5'-triphosphate (ATP) during the generation of seizures and epilepsy. Consequently, drugs targeting specific ATP-gated purinergic receptors have been suggested as promising treatment options for epilepsy including the cationic P2X7 receptor (P27XR). P2X7R protein levels have been shown to be increased in the brain of experimental models of epilepsy and in the resected brain tissue of patients with epilepsy. Animal studies have provided evidence that P2X7R blocking can reduce the severity of acute seizures and the epileptic phenotype. The current review will provide a brief summary of recent key findings on P2X7R signalling during seizures and epilepsy focusing on the potential clinical use of treatments based on the P2X7R as an adjunctive therapeutic strategy for drug-refractory seizures and epilepsy.


Assuntos
Anticonvulsivantes , Epilepsia Resistente a Medicamentos , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Humanos , Animais , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Terapia de Alvo Molecular , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo
4.
Saudi Pharm J ; 32(7): 102102, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035363

RESUMO

Post-acute myocardial infarction (AMI) fibrosis is a pathophysiologic process characterised by activation of the profibrotic mediator, transforming growth factor-ß (TGF-ß). AMI is associated with a substantial increase in the levels of extracellular adenosine triphosphate (eATP), which acts on the purinergic P2X7-receptor (P2X7-R) and triggers an inflammatory response that contributes to myocardial fibrotic remodelling. P2X7-R has been implicated in several cardiovascular diseases; however, its role in the regulation of cardiac fibrosis remains unclear. Therefore, the current study aimed to determine the effect of the P2X7-R antagonist, A740003, on post-AMI fibrosis, via the profibrotic TGF-ß1/Smad signalling pathway, and elucidate whether its effect is mediated via the modulation of GSK-3ß. AMI was induced by surgical ligation of the left anterior descending coronary artery, Thereafter, animals were divided into groups: sham control, MI-untreated, MI-vehicle, and MI-A740003 (50 mg/kg/day) and treated for seven days accordingly. The heart weight/body weight ratio of untreated-ligated rats significantly increased by 15.1 %, creatine kinase-MB (CK-MB) significantly increased by 40 %, troponin-I levels significantly increased by 25.4 %, and lactate dehydrogenase significantly increased by 47.2 %, indicating myocardial damage confirmed by morphological changes and massive cardiac fibrosis. The protein expression of cardiac fibronectin, TGF-ß1, and p-Smad2 were also upregulated by 143 %, 40 %, and 8 %, respectively, indicating cardiac fibrosis. The treatment of ligated rats with A740003 led to improvement in all the above-mentioned parameters. Overall, A740003 exhibits potential cardio-protective effects on post-AMI fibrotic remodelling in the animal model of AMI through P2X7-R blockade, possibly by downregulating the profibrotic TGF-ß1/Smad signalling pathway and restoring GSK-3ß phosphorylation. Altogether, treatment with A740003 could serve as a new cardioprotective strategy to attenuate post-AMI fibrotic remodelling.

5.
J Immunol Methods ; 532: 113727, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38997100

RESUMO

Resident macrophages are tissue-specific innate immune cells acting as sentinels, constantly patrolling their assigned tissue to maintain homeostasis, and quickly responding to pathogenic invaders or molecular danger signals molecules when necessary. Adenosine triphosphate (ATP), when released to the extracellular medium, acts as a danger signal through specific purinergic receptors. Interaction of ATP with the purinergic receptor P2X7 activates macrophages and microglial cells in different pathological conditions, triggering inflammation. The highly expressed P2X7 receptor in these cells induces cell membrane permeabilization, inflammasome activation, cell death, and the production of inflammatory mediators, including cytokines and nitrogen and oxygen-reactive species. This review explores the techniques to evaluate the functional and molecular aspects of the P2X7 receptor, particularly in macrophages and microglial cells. Polymerase chain reaction (PCR), Western blotting, and immunocytochemistry or immunohistochemistry are essential for assessing gene and protein expression in these cell types. Evaluation of P2X7 receptor function involves the use of ATP and selective agonists and antagonists and diverse techniques, including electrophysiology, intracellular calcium measurements, ethidium bromide uptake, and propidium iodide cell viability assays. These techniques are crucial for studying the role of P2X7 receptors in immune responses, neuroinflammation, and various pathological conditions. Therefore, a comprehensive understanding of the functional and molecular aspects of the P2X7 receptor in macrophages and microglia is vital for unraveling its involvement in immune modulation and its potential as a therapeutic target. The methodologies presented and discussed herein offer valuable tools for researchers investigating the complexities of P2X7 receptor signaling in innate immune cells in health and disease.


Assuntos
Trifosfato de Adenosina , Macrófagos , Microglia , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/imunologia , Microglia/metabolismo , Microglia/imunologia , Humanos , Trifosfato de Adenosina/metabolismo , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Imuno-Histoquímica , Transdução de Sinais
6.
Clin Immunol ; 265: 110304, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964633

RESUMO

Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.


Assuntos
Cladribina , Citocinas , Imunidade Inata , Monócitos , Esclerose Múltipla Recidivante-Remitente , Humanos , Cladribina/uso terapêutico , Cladribina/farmacologia , Imunidade Inata/efeitos dos fármacos , Feminino , Masculino , Adulto , Estudos Prospectivos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/sangue , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Citocinas/sangue , Citocinas/imunologia , Receptores Purinérgicos P2X7/imunologia , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia , Adulto Jovem
7.
Front Immunol ; 15: 1425938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953020

RESUMO

Introduction: P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems. Methods: Here, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis. Results: No detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4 -/- mice. Discussion: In summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo.


Assuntos
Pulmão , Camundongos Knockout , Camundongos Transgênicos , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Animais , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos , Pulmão/metabolismo , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Ligação Proteica
8.
Redox Biol ; 75: 103249, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38945076

RESUMO

Tumors develop in an oxidative environment characterized by peroxynitrite production and downstream protein tyrosine (Y) nitration. We showed that tyrosine nitration supports schwannoma cell proliferation and regulates cell metabolism in the inheritable tumor disorder NF2-related Schwannomatosis (NF2-SWN). Here, we identified the chaperone Heat shock protein 90 (Hsp90) as the first nitrated protein that acts as a metabolic switch to promote schwannoma cell proliferation. Doubling the endogenous levels of nitrated Hsp90 in schwannoma cells or supplementing nitrated Hsp90 into normal Schwann cells increased their proliferation. Metabolically, nitration on either Y33 or Y56 conferred Hsp90 distinct functions; nitration at Y33 (Hsp90NY33) down-regulated mitochondrial oxidative phosphorylation, while nitration at Y56 (Hsp90NY56) increased glycolysis by activating the purinergic receptor P2X7 in both schwannoma and normal Schwann cells. Hsp90NY33 and Hsp90NY56 showed differential subcellular and spatial distribution corresponding with their metabolic and proliferative functions in schwannoma three-dimensional cell culture models. Collectively, these results underscore the role of tyrosine nitration as a post-translational modification regulating critical cellular processes. Nitrated proteins, particularly nitrated Hsp90, emerge as a novel category of tumor-directed therapeutic targets.

9.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892324

RESUMO

SARS-CoV-2 infection ranges from mild to severe presentations, according to the intensity of the aberrant inflammatory response. Purinergic receptors dually control the inflammatory response: while adenosine A2A receptors (A2ARs) are anti-inflammatory, ATP P2X7 receptors (P2X7Rs) exert pro-inflammatory effects. The aim of this study was to assess if there were differences in allelic and genotypic frequencies of a loss-of-function SNP of ADORA2A (rs2298383) and a gain-of-function single nucleotide polymorphism (SNP) of P2RX7 (rs208294) in the severity of SARS-CoV-2-associated infection. Fifty-five individuals were enrolled and categorized according to the severity of the infection. Endpoint genotyping was performed in blood cells to screen for both SNPs. The TT genotype (vs. CT + CC) and the T allele (vs. C allele) of P2RX7 SNP were found to be associated with more severe forms of COVID-19, whereas the association between ADORA2A SNP and the severity of infection was not significantly different. The T allele of P2RX7 SNP was more frequent in people with more than one comorbidity and with cardiovascular conditions and was associated with colorectal cancer. Our findings suggest a more prominent role of P2X7R rather than of A2AR polymorphisms in SARS-CoV-2 infection, although larger population-based studies should be performed to validate our conclusions.


Assuntos
COVID-19 , Polimorfismo de Nucleotídeo Único , Receptores Purinérgicos P2X7 , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Receptor A2A de Adenosina/genética , Gravidade do Paciente , COVID-19/complicações , COVID-19/genética , COVID-19/patologia , Genótipo , Frequência do Gene , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/genética , Neoplasias do Colo/complicações , Neoplasias do Colo/genética
10.
Stem Cell Res Ther ; 15(1): 168, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886849

RESUMO

BACKGROUND: Mechanical stimulation (MS) significantly increases the release of adenine and uracil nucleotides from bone marrow-derived mesenchymal stem cells (BM-MSCs) undergoing osteogenic differentiation. Released nucleotides acting via ionotropic P2X7 and metabotropic P2Y6 purinoceptors sensitive to ATP and UDP, respectively, control the osteogenic commitment of BM-MSCs and, thus, bone growth and remodelling. Yet, this mechanism is impaired in post-menopausal (Pm)-derived BM-MSCs, mostly because NTPDase3 overexpression decreases the extracellular accumulation of nucleotides below the levels required to activate plasma membrane-bound P2 purinoceptors. This prompted us to investigate whether in vitro MS of BM-MSCs from Pm women could rehabilitate their osteogenic commitment and whether xenotransplantation of MS purinome-primed Pm cells promote repair of critical bone defects in an in vivo animal model. METHODS: BM-MSCs were harvested from the neck of femora of Pm women (70 ± 3 years old) undergoing total hip replacement. The cells grew, for 35 days, in an osteogenic-inducing medium either submitted (SS) or not (CTR) to MS (90 r.p.m. for 30 min) twice a week. Increases in alkaline phosphatase activity and in the amount of osteogenic transcription factors, osterix and osteopontin, denoted osteogenic cells differentiation, while bone nodules formation was ascertain by the alizarin red-staining assay. The luciferin-luciferase bioluminescence assay was used to quantify extracellular ATP. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC. The density of P2Y6 and P2X7 purinoceptors in the cells was assessed by immunofluorescence confocal microscopy. MS-stimulated BM-MSCs from Pm women were xenotransplanted into critical bone defects drilled in the great trochanter of femora of one-year female Wistar rats; bone repair was assessed by histological analysis 10 days after xenotransplantation. RESULTS: MS-stimulated Pm BM-MSCs in culture (i) release 1.6-fold higher ATP amounts, (ii) overexpress P2X7 and P2Y6 purinoceptors, (iii) exhibit higher alkaline phosphatase activity and overexpress the osteogenic transcription factors, osterix and osteopontin, and (iv) form larger bone nodules, than CTR cells. Selective blockage of P2X7 and P2Y6 purinoceptors with A438079 (3 µM) and MRS 2578 (0.1 µM), respectively, prevented the osteogenic commitment of cultured Pm BM-MSCs. Xenotransplanted MS purinome-primed Pm BM-MSCs accelerated the repair of critical bone defects in the in vivo rat model. CONCLUSIONS: Data suggest that in vitro MS restores the purinergic cell-to-cell communication fostering the osteogenic differentiation and osteointegration of BM-MSCs from Pm women, a strategy that may be used in bone regeneration and repair tactics.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Osteogênese , Pós-Menopausa , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Osteogênese/efeitos dos fármacos , Animais , Idoso , Ratos , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Fator de Transcrição Sp7/metabolismo , Fator de Transcrição Sp7/genética , Células Cultivadas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ratos Wistar
11.
Expert Opin Ther Pat ; 34(4): 263-271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38828613

RESUMO

INTRODUCTION: The purinergic P2X7 receptor (P2X7R) is expressed on the surface of many different types of cells, including immune cells. Targeting P2X7R with antagonists has been studied for its potential therapeutic effects in a variety of inflammatory illnesses. AREA COVERED: Many chemical substances, including carboxamides, benzamides and nitrogen containing heterocyclic derivatives have demonstrated promising inhibitory potential for P2X7 receptor. The chemistry and clinical applications of P2X7R antagonists patented from 2018- present are discussed in this review. EXPERT OPINION: Purinergic receptor inhibitor discovery and application has demonstrated the potential for therapeutic intervention, as demonstrated by pharmacological research. Few chemical modalities have been authorized for use in clinical settings, despite the fact that breakthroughs in crystallography and chemical biology have increased the knowledge of purinergic signaling and its consequences in disease. The many research projects and pharmaceutical movements that sustain dynamic P2X receptor programs over decades are evidence of the therapeutic values and academic persistence in purinergic study. P2X7R is an intriguing therapeutic target and possible biomarker for inflammation. Although several companies like Merck and AstraZeneca have published patents on P2X3 antagonists, the search for P2X7R antagonists has not stopped. Numerous pharmaceutical companies have disclosed different scaffolds, and some molecules are presently being studied in clinical studies.


Assuntos
Inflamação , Patentes como Assunto , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Animais , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Desenvolvimento de Medicamentos , Anti-Inflamatórios/farmacologia
12.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928280

RESUMO

The present study examined how P2X7 receptor knockout (KO) modulates central post-stroke pain (CPSP) induced by lesions of the ventrobasal complex (VBC) of the thalamus in behaviors, molecular levels, and electrical recording tests. Following the experimental procedure, the wild-type and P2X7 receptor KO mice were injected with 10 mU/0.2 µL type IV collagenase in the VBC of the thalamus to induce an animal model of stroke-like thalamic hemorrhage. Behavioral data showed that the CPSP group induced thermal and mechanical pain. The P2X7 receptor KO group showed reduced thermal and mechanical pain responses compared to the CPSP group. Molecular assessments revealed that the CPSP group had lower expression of NeuN and KCC2 and higher expression of GFAP, IBA1, and BDNF. The P2X7 KO group showed lower expression of GFAP, IBA1, and BDNF but nonsignificant differences in KCC2 expression than the CPSP group. The expression of NKCC1, GABAa receptor, and TrkB did not differ significantly between the control, CPSP, and P2X7 receptor KO groups. Muscimol, a GABAa agonist, application increased multiunit numbers for monitoring many neurons and [Cl-] outflux in the cytosol in the CPSP group, while P2X7 receptor KO reduced multiunit activity and increased [Cl-] influx compared to the CPSP group. P2X4 receptor expression was significantly decreased in the 100 kDa but not the 50 kDa site in the P2X7 receptor KO group. Altogether, the P2X7 hypothesis of CPSP was proposed, wherein P2X7 receptor KO altered the CPSP pain responses, numbers of astrocytes and microglia, CSD amplitude of the anterior cingulate cortex and the medial dorsal thalamus, BDNF expression, [Cl-] influx, and P2X4 expression in 100 kDa with P2X7 receptors. The present findings have implications for the clinical treatment of CPSP symptoms.


Assuntos
Cotransportadores de K e Cl- , Camundongos Knockout , Receptores Purinérgicos P2X7 , Acidente Vascular Cerebral , Animais , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Camundongos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/complicações , Masculino , Dor/metabolismo , Dor/etiologia , Modelos Animais de Doenças , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Simportadores/metabolismo , Simportadores/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Muscimol/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Tálamo/metabolismo
13.
Brain Behav Immun ; 120: 121-140, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777288

RESUMO

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.


Assuntos
Modelos Animais de Doenças , Microglia , Neurônios , Receptores Purinérgicos P2X7 , Convulsões , Animais , Microglia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Masculino , Camundongos , Convulsões/metabolismo , Convulsões/genética , Neurônios/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Ácido Caínico , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/genética , Hipocampo/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/genética , Camundongos Knockout , Pentilenotetrazol , Transdução de Sinais , Neurônios GABAérgicos/metabolismo , Epilepsia/metabolismo , Epilepsia/genética , Encéfalo/metabolismo
14.
Pharmaceuticals (Basel) ; 17(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794162

RESUMO

P2X7 is an ATP-activated purinergic receptor implicated in pro-inflammatory responses. It is associated with the development of several diseases, including inflammatory and neurodegenerative conditions. Although several P2X7 receptor antagonists have recently been reported in the literature, none of them is approved for clinical use. However, the structure of the known antagonists can serve as a scaffold for discovering effective compounds in clinical therapy. This study aimed to propose an improved virtual screening methodology for the identification of novel potential P2X7 receptor antagonists from natural products through the combination of shape-based and docking approaches. First, a shape-based screening was performed based on the structure of JNJ-47965567, a P2X7 antagonist, using two natural product compound databases, MEGx (~5.8 × 103 compounds) and NATx (~32 × 103 compounds). Then, the compounds selected by the proposed shape-based model, with Shape-Tanimoto score values ranging between 0.624 and 0.799, were filtered for drug-like properties. Finally, the compounds that met the drug-like filter criteria were docked into the P2X7 allosteric binding site, using the docking programs GOLD and DockThor. The docking poses with the best score values were submitted to careful visual inspection of the P2X7 allosteric binding site. Based on our established visual inspection criteria, four compounds from the MEGx database and four from the NATx database were finally selected as potential P2X7 receptor antagonists. The selected compounds are structurally different from known P2X7 antagonists, have drug-like properties, and are predicted to interact with key P2X7 allosteric binding pocket residues, including F88, F92, F95, F103, M105, F108, Y295, Y298, and I310. Therefore, the combination of shape-based screening and docking approaches proposed in our study has proven useful in selecting potential novel P2X7 antagonist candidates from natural-product-derived compounds databases. This approach could also be useful for selecting potential inhibitors/antagonists of other receptors and/or biological targets.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38761206

RESUMO

PURPOSE: P2X7 receptor (P2X7R) is a purinergic cation channel whose activation has been linked with age-related macular degeneration (ARMD). Several nucleoside reverse transcriptase inhibitors, zidovudine (AZT), lamivudine (3TC) and abacavir (ABC), have been shown to inhibit P2X7R and improve outcomes in animal models of ARMD. Our aim is to investigate the association between chronic AZT, 3TC, and ABC therapy and ARMD in a clinical setting. METHODS: This is a retrospective cohort study comparing 445 patients with HIV and confirmed usage of AZT, 3TC, and ABC against 200 patients with HIV without usage of AZT, 3TC, and ABC and 445 non-HIV infected patients. Fundus examination and spectral domain optical coherence tomography (SD-ODT) were used to measure prevalence of early-intermediate stage ARMD, geographic atrophy, and exudative ARMD. RESULTS: There was no statistically significant difference in the prevalence of early-intermediate stage ARMD between the HIV infected patients with a history of AZT, 3TC, and ABC use and the HIV infected patients without AZT, 3TC, and ABC use (p = 0.887). There was also no statistically significant difference in the prevalence of geographical atrophy (p = 0.062) and exudative AMD (p > 0.999) between the HIV infected patients with a history of AZT, 3TC, and ABC use and non-HIV infected patients. CONCLUSION: We did not find an effect of P2X7R inhibiting antiretrovirals usage on early-intermediate stage ARMD, geographical atrophy, or exudative ARMD. Studies with larger cohort and more rigorous medication history are needed to assess the effects on geographical atrophy or exudative ARMD.

16.
Purinergic Signal ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771429

RESUMO

Numerous studies have revealed that the ATP-gated ion channel purinergic 2X7 receptor (P2X7R) plays an important role in tumor progression and the pathogenesis of cancer pain. P2X7R requires activation by extracellular ATP to perform its regulatory role functions. During tumor development or cancer-induced pain, ATP is released from tumor cells or other cells in the tumor microenvironment (such as tumor-associated immune cells), which activates P2X7R, opens ion channels on the cell membrane, affects intracellular molecular metabolism, and regulates the activity of tumor cells. Furthermore, peripheral organs and receptors can be damaged during tumor progression, and P2X7R expression in nerve cells (such as microglia) is significantly upregulated, enhancing sensory afferent information, sensitizing the central nervous system, and inducing or exacerbating pain. These findings reveal that the ATP-P2X7R signaling axis plays a key regulatory role in the pathogenesis of tumors and cancer pain and also has a therapeutic role. Accordingly, in this study, we explored the role of P2X7R in tumors and cancer pain, discussed the pharmacological properties of inhibiting P2X7R activity (such as the use of antagonists) or blocking its expression in the treatment of tumor and cancer pain, and provided an important evidence for the treatment of both in the future.

17.
Open Life Sci ; 19(1): 20220775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585633

RESUMO

Sepsis is defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis-associated encephalopathy (SAE) is the main manifestation of sepsis. Inflammation, peroxidation stress injury, and apoptosis are the main factors involved in the pathogenesis of SAE. A growing body of evidence has proved that P2X7 receptor (P2X7R), a cationic channel receptor that is widely distributed in the body, plays a major role in the occurrence and development of inflammatory injury. Therefore, this review mainly describes the activation of P2X7R in sepsis, which leads to the recruitment of inflammatory cells to the cerebral vasculature, the destruction of the blood-brain barrier, the activation of microglial cells in the brain, the apoptosis of brain cells, and other damage processes. This review also illustrates the potential therapeutic value of P2X7R inhibition in SAE.

18.
Purinergic Signal ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676825

RESUMO

P2X7 receptor (P2X7R) plays an important role in modulating inflammation and fibrosis, but information is limited whether Zusanli (ST36) can inhibit inflammation and fibrosis by regulating P2X7R. Isoprenaline at 5 mg/kg was subcutaneously injected to wild-type and P2X7R knockout mice for 7 days, while treatment groups received electroacupuncture (EA) stimulation at ST36 for 7 sessions. Following 7-session treatment, Masson's trichrome staining was performed to assess the fibrosis. Morphology, electrocardiogram, and echocardiography were carried out to evaluate the cardiac function and structure. Western blotting, hematoxylin and eosin staining, immunohistochemistry, and biochemical analysis of inflammatory cytokine and transmission electron microscopy were carried out to characterize the effect of ST36 on inflammation. P2X7R was overexpressed in ISO-treated mice. EA at ST36, but not at non-points, reduced ISO-induced cardiac fibrosis, increases in HW/BW, R+S wave relative to mice in ISO groups. In addition, EA at ST36 downregulated ISO-upregulated P2X7R and NLRP3 in ventricle. Moreover, EA reduced cytokines of IL-1ß, IL-6, and IL-18 in serum, and inhibited foam cell gathering, inflammatory cell infiltration, and autophagy. However, EA at ST36 failed to attenuate the cardiac fibrosis and hypertrophy in P2X7R knockout mice. In conclusion, EA at ST36 attenuated ISO-induced fibrosis possibly via P2X7R.

19.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38604775

RESUMO

A sublethal ischemic episode [termed preconditioning (PC)] protects neurons in the brain against a subsequent severe ischemic injury. This phenomenon is known as brain ischemic tolerance and has received much attention from researchers because of its robust neuroprotective effects. We have previously reported that PC activates astrocytes and subsequently upregulates P2X7 receptors, thereby leading to ischemic tolerance. However, the downstream signals of P2X7 receptors that are responsible for PC-induced ischemic tolerance remain unknown. Here, we show that PC-induced P2X7 receptor-mediated lactate release from astrocytes has an indispensable role in this event. Using a transient focal cerebral ischemia model caused by middle cerebral artery occlusion, extracellular lactate levels during severe ischemia were significantly increased in mice who experienced PC; this increase was dependent on P2X7 receptors. In addition, the intracerebroventricular injection of lactate protected against cerebral ischemic injury. In in vitro experiments, although stimulation of astrocytes with the P2X7 receptor agonist BzATP had no effect on the protein levels of monocarboxylate transporter (MCT) 1 and MCT4 (which are responsible for lactate release from astrocytes), BzATP induced the plasma membrane translocation of these MCTs via their chaperone CD147. Importantly, CD147 was increased in activated astrocytes after PC, and CD147-blocking antibody abolished the PC-induced facilitation of astrocytic lactate release and ischemic tolerance. Taken together, our findings suggest that astrocytes induce ischemic tolerance via P2X7 receptor-mediated lactate release.


Assuntos
Astrócitos , Precondicionamento Isquêmico , Ácido Láctico , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos , Receptores Purinérgicos P2X7 , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Precondicionamento Isquêmico/métodos , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Isquemia Encefálica/metabolismo , Simportadores/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Proteínas Musculares/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Camundongos , Células Cultivadas , Encéfalo/metabolismo , Camundongos Knockout
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 6249-6261, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38546748

RESUMO

Sepsis is a life-threatening condition characterized by a systemic inflammatory response to infection. Despite extensive research on its pathophysiology, effective therapeutic approaches remain a challenge. This study investigated the potential of resveratrol (RV) and silver nanoparticle-enhanced resveratrol (AgNP-RV) as treatments for sepsis-induced lung injury using a rat model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The study focused on evaluating changes in oxidative status (TAS, TOS, and OSI) and the expression of inflammatory and apoptotic markers (IL-1ß, TNF-α, P2X7R, TLR4, Caspase-3, and Bcl-2) in lung tissue. Both RV and AgNP-RV demonstrated potential in mitigating oxidative stress, inflammation, and apoptosis, with AgNP-RV exhibiting greater efficacy than RV alone (p < 0.05). These findings were corroborated by histopathological analyses, which revealed reduced tissue damage in the RV- and AgNP-RV-treated groups. Our study highlights the therapeutic potential of RV and, particularly, AgNP-RV in combating sepsis-induced oxidative stress, inflammation, and apoptosis. It also underscores the promise of nanoparticle technology in enhancing therapeutic outcomes. However, further investigations are warranted to fully understand the mechanisms of action, especially concerning the role of the P2X7 receptor in the observed effects. Nonetheless, our research suggests that RV and AgNP-RV hold promise as novel strategies for sepsis management.


Assuntos
Apoptose , Nanopartículas Metálicas , Estresse Oxidativo , Resveratrol , Sepse , Prata , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , Prata/farmacologia , Prata/uso terapêutico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ratos Wistar , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ratos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA