Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
2.
BMC Musculoskelet Disord ; 25(1): 769, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354427

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by chronic inflammation and progressive cartilage degradation, ultimately leading to joint dysfunction and disability. Oleocanthal (OC), a bioactive phenolic compound derived from extra virgin olive oil, has garnered significant attention due to its potent anti-inflammatory properties, which are comparable to those of non-steroidal anti-inflammatory drugs (NSAIDs). This study pioneers the investigation into the effects of OC on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway in OA, aiming to validate its efficacy as a functional food-based therapeutic intervention. METHODS: To simulate cartilage tissue in vitro, human bone marrow-derived mesenchymal stem cells (BMSCs) were differentiated into chondrocytes. An inflammatory OA-like environment was induced in these chondrocytes using lipopolysaccharide (LPS) to mimic the pathological conditions of OA. The therapeutic effects of OC were evaluated by treating these inflamed chondrocytes with various concentrations of OC. The study focused on assessing key inflammatory markers, catabolic enzymes, and mitochondrial function to elucidate the protective mechanisms of OC. Mitochondrial function, specifically mitochondrial membrane potential (ΔΨm), was assessed using Rhodamine 123 staining, a fluorescent dye that selectively accumulates in active mitochondria. The integrity of ΔΨm serves as an indicator of mitochondrial and bioenergetic function. Additionally, Western blotting was employed to analyze protein expression levels, while real-time polymerase chain reaction (RT-PCR) was used to quantify gene expression of inflammatory cytokines and catabolic enzymes. Flow cytometry was utilized to measure cell viability and apoptosis, providing a comprehensive evaluation of OC's therapeutic effects on chondrocytes. RESULTS: The results demonstrated that OC significantly downregulated PAR-2 expression in a dose-dependent manner, leading to a substantial reduction in pro-inflammatory cytokines, including TNF-α, IL-1ß, and MCP-1. Furthermore, OC attenuated the expression of catabolic markers such as SOX4 and ADAMTS5, which are critically involved in cartilage matrix degradation. Importantly, OC was found to preserve mitochondrial membrane potential (ΔΨm) in chondrocytes subjected to inflammatory stress, as evidenced by Rhodamine 123 staining, indicating a protective effect on cellular bioenergetics. Additionally, OC modulated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Receptor Activator of Nuclear Factor Kappa-Β (RANK) pathway, suggesting a broader therapeutic action against the multifactorial pathogenesis of OA. CONCLUSIONS: This study is the first to elucidate the modulatory effects of OC on the PAR-2 mediated inflammatory pathway in OA, revealing its potential as a multifaceted therapeutic agent that not only mitigates inflammation but also protects cartilage integrity. The preservation of mitochondrial function and modulation of the RANKL/RANK pathway further underscores OC's comprehensive therapeutic potential in counteracting the complex pathogenesis of OA. These findings position OC as a promising candidate for integration into nutritional interventions aimed at managing OA. However, further research is warranted to fully explore OC's therapeutic potential across different stages of OA and its long-term effects in musculoskeletal disorders.


Assuntos
Anti-Inflamatórios , Condrócitos , Monoterpenos Ciclopentânicos , Células-Tronco Mesenquimais , Osteoartrite , Receptor PAR-2 , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Osteoartrite/metabolismo , Osteoartrite/tratamento farmacológico , Receptor PAR-2/metabolismo , Anti-Inflamatórios/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Monoterpenos Ciclopentânicos/farmacologia , Células Cultivadas , Alimento Funcional , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Lipopolissacarídeos/farmacologia , Aldeídos , Fenóis
3.
Curr Med Chem ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39364871

RESUMO

BACKGROUND: Tobacco smoke is an important inducer of airway epithelial cell aging. Punicalagin(PCG) is a natural anti-aging compound. The effect of PCG on tobacco smoke-induced airway epithelial cell senescence is unknown. OBJECTIVE: Our study investigated whether PCG can treat the human bronchial epithelial cell line (BEAS-2B) aging by inhibiting the protease-activated receptor 2 (PAR2)/m- TOR pathway. METHODS: Bioinformatics techniques were used to analyze the potential biological functions of PAR2. Molecular dynamics evaluated the binding ability of PCG and PAR2. The CCK8 assay was used to detect the cytotoxicity of CSE and PCG. The activity of the PAR2/mTOR pathway and the expression of the characteristic aging markers p16, p21, and SIRT1 are detected by qRT-PCR and Western blotting. Cell senescence was observed by Senescence-associated ß-galactosidase (SA-ß-gal) staining. The senescence-associated secretory phenotype (SASP): concentrations of interleukin IL-6, IL-8, and TNF- α were detected by ELISA. RESULTS: The GSE57148 bioinformatics analysis dataset showed that PAR2 regulates lung senescence through the mTOR signaling pathway. Molecular dynamics results found that PCG and PAR2 had a strong and stable binding force. CSE induces BEAS-2B cell senescence and activates the PAR2/mTOR pathway. Inhibition of PAR2 mitigated the senescence changes. In addition, PCG's pretreatment can significantly alleviate CSE-induced BEAS-2B cell senescence while inhibiting the PAR2/mTOR pathway. CONCLUSION: PCG has a therapeutic effect on the senescence of airway epithelial cells.

4.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241266671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110834

RESUMO

PURPOSE: This investigation aims to explore the protective role of Naringenin (Nar) in bone cancer pain (BCP) via TNF-α-mediated NF-κB/uPA/PAR2 pathway. METHODS: BCP model was manipulated by the injection of LL2 cells into femur of mice. The levels of TNF-α and uPA in bone tissue and serum were studied by ELISA. The expressions of PAR2, PKC-γ, PKA and TRPV1 were determined by qPCR and western blot. Levels of p-IKKß, IKKß, p-p65, p65 were determined by western blot. Levels of p-p65 and uPA in bone tissue were studied by immunohistochemistry. Behavior tests in this investigation included paw withdrawal latency (PWL) and the paw withdrawal threshold (PWT). Radiological analysis and micro-CT were used to study bone structure. The lesions of bone tissue were determined by HE staining. The Dorsal root ganglia (DRG) isolated from mice were used to determine the level of PAR2 pathway. RESULTS: Naringenin improved the BCP-induced bone damage based on the increases of BV/TV, Conn. D, BMD and BMC and the decrease of bone destruction score. Naringenin repressed the reductions of PWT and PWL in BCP mice. Naringenin decreased the levels of PAR2, PKC-γ, PKA and TRPV1 of DRG and reduced the levels of p-IKKß, p-p65, and uPA in serum and bone tissue in BCP. Importantly, naringenin suppressed the enhancement of TNF-α in serum and bone tissue in BCP mice. CONCLUSION: Naringenin alleviated pain sensitization and bone damage of mice with BCP via TNF-α-mediated NF-κB/uPA/PAR2 pathway. We demonstrated a novel pathway for anti-BCP treatment with naringenin.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Flavanonas , NF-kappa B , Animais , Flavanonas/farmacologia , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/complicações , NF-kappa B/metabolismo , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Dor do Câncer/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Feminino
5.
Gut Microbes ; 16(1): 2387857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171684

RESUMO

Imbalances in proteolytic activity have been linked to the development of inflammatory bowel diseases (IBD) and experimental colitis. Proteases in the intestine play important roles in maintaining homeostasis, but exposure of mucosal tissues to excess proteolytic activity can promote pathology through protease-activated receptors (PARs). Previous research implicates microbial proteases in IBD, but the underlying pathways and specific interactions between microbes and PARs remain unclear. In this study, we investigated the role of microbial proteolytic activation of the external domain of PAR2 in intestinal injury using mice expressing PAR2 with a mutated N-terminal external domain that is resistant to canonical activation by proteolytic cleavage. Our findings demonstrate the key role of proteolytic cleavage of the PAR2 external domain in promoting intestinal permeability and inflammation during colitis. In wild-type mice expressing protease-sensitive PAR2, excessive inflammation leads to the expansion of bacterial taxa that cleave the external domain of PAR2, exacerbating colitis severity. In contrast, mice expressing mutated protease-resistant PAR2 exhibit attenuated colitis severity and do not experience the same proteolytic bacterial expansion. Colonization of wild-type mice with proteolytic PAR2-activating Enterococcus and Staphylococcus worsens colitis severity. Our study identifies a previously unknown interaction between proteolytic bacterial communities, which are shaped by inflammation, and the external domain of PAR2 in colitis. The findings should encourage new therapeutic developments for IBD by targeting excessive PAR2 cleavage by bacterial proteases.


Assuntos
Colite , Proteólise , Receptor PAR-2 , Animais , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Colite/microbiologia , Colite/patologia , Colite/metabolismo , Camundongos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/microbiologia , Enterococcus/genética , Enterococcus/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Modelos Animais de Doenças , Humanos , Domínios Proteicos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia
6.
Biomedicines ; 12(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39062196

RESUMO

In Parkinson's disease, neuroinflammation is a double-edged sword; when inflammation occurs it can have harmful effects, despite its important role in battling infections and healing tissue. Once triggered by microglia, astrocytes acquire a reactive state and shift from supporting the survival of neurons to causing their destruction. Activated microglia and Proteinase-activated receptor-2 (PAR2) are key points in the regulation of neuroinflammation. 1-Piperidin Propionic Acid (1-PPA) has been recently described as a novel inhibitor of PAR2. The aim of our study was to evaluate the effect of 1-PPA in neuroinflammation and microglial activation in Parkinson's disease. Protein aggregates and PAR2 expression were analyzed using Thioflavin S assay and immunofluorescence in cultured human fibroblasts from Parkinson's patients, treated or untreated with 1-PPA. A significant decrease in amyloid aggregates was observed after 1-PPA treatment in all patients. A parallel decrease in PAR2 expression, which was higher in sporadic Parkinson's patients, was also observed both at the transcriptional and protein level. In addition, in mouse LPS-activated microglia, the inflammatory profile was significantly downregulated after 1-PPA treatment, with a remarkable decrease in IL-1ß, IL-6, and TNF-α, together with a decreased expression of PAR2. In conclusion, 1-PPA determines the reduction in neuroglia inflammation and amyloid aggregates formation, suggesting that the pharmacological inhibition of PAR2 could be proposed as a novel strategy to control neuroinflammation.

7.
Front Pharmacol ; 15: 1382094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005931

RESUMO

Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways. Using a primary cell culture model of human kidney tubular epithelial cells (HTEC), PAR2 activation induced a concentration dependent, PAR2 antagonist sensitive, secretion of TNF, CSF2, MMP-9, PAI-1 and CTGF. Transcription factors activated by the PAR2 agonist 2F, including NFκB, AP1 and Smad2, were critical for production of these cytokines. A TGF-ß receptor-1 (TGF-ßRI) kinase inhibitor, SB431542, and an EGFR kinase inhibitor, AG1478, ameliorated 2F induced secretion of TNF, CSF2, MMP-9, and PAI-1. Whilst an EGFR blocking antibody, cetuximab, blocked PAR2 induced EGFR and ERK phosphorylation, a TGF-ßRII blocking antibody failed to influence PAR2 induced secretion of PAI-1. Notably simultaneous activation of TGF-ßRII (TGF-ß1) and PAR2 (2F) synergistically enhanced secretion of TNF (2.2-fold), CSF2 (4.4-fold), MMP-9 (15-fold), and PAI-1 (2.5-fold). In summary PAR2 activates critical inflammatory and fibrotic signalling pathways in human kidney tubular epithelial cells. Biased antagonists of PAR2 should be explored as a potential therapy for CKD.

8.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000199

RESUMO

Adiponectin is a circulating hormone secreted by adipose tissue that exerts, unlike other adipokines such as leptin, anti-inflammatory, anti-atherosclerotic and other protective effects on health. Adiponectin receptor agonists are being tested in clinical trials and are expected to show benefits in many diseases. In a recent article, LW Chen's group used monocyte chemoattractant protein-1 (MCP-1/CCL2) to improve plasma levels of adiponectin, suggesting the involvement of dipeptidyl peptidase 4 (DPP4/CD26) in the mechanism. Here, we discuss the significance of the role of DPP4, favoring the increase in DPP4-positive interstitial progenitor cells, a finding that fits with the greater stemness and persistence of other DPP4/CD26-positive cells.


Assuntos
Adipogenia , Tecido Adiposo , Dipeptidil Peptidase 4 , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Adipogenia/genética , Adipogenia/efeitos dos fármacos , Humanos , Tecido Adiposo/metabolismo , Animais , Adiponectina/metabolismo , Adiponectina/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Células Estromais/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos
11.
Int Immunopharmacol ; 137: 112479, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901246

RESUMO

Shen chan decoction (SCD) as a significant Traditional Chinese medicine (TCM) to treat atopic dermatitis (AD), but its mechanism of action has not been clarified, so we started the present study, first possible effects of SCD on AD were predicted using network pharmacology. Next, dinitrochlorobenzene was used to establish a mouse model of AD. After successful modelling, the SCD were administered intragastrically to treat the mice. Eventually, the KEGG pathway enrichment analysis indicated that SCD improved AD mainly through effects on inflammation and the gut microbiota. The experimental findings revealed that SCD treatment attenuated AD symptoms and downregulate the characteristic immune factors, namely IL-4, IL-6 and IgE. Moreover, it promoted a balance between Th1/Th2 cells. Furthermore, the itch signaling pathways involving H1R/PAR-2/TRPV1 were inhibited. The 16S rRNA sequencing results indicated that SCD administration influenced the Firmicutes/Bacteroidetes ratio at the phylum level by augmenting the relative proportions of Lactobacillaceae and Muribaculaceae at the family and genus levels, while decreasing the abundances of Lactococcus and Ruminococcus. These findings suggest that internal administration of SCD is an effective therapeutic approach for AD. We suggest that SCD may be an alternative therapy for the treatment of AD.Additionally, it could offer valuable insights into the pathogenesis of AD and the development of innovative therapeutic agents.


Assuntos
Dermatite Atópica , Dinitroclorobenzeno , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Camundongos Endogâmicos BALB C , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Animais , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Imunoglobulina E/sangue , Masculino , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Farmacologia em Rede , Humanos , Feminino , Equilíbrio Th1-Th2/efeitos dos fármacos , Citocinas/metabolismo , Medicina Tradicional Chinesa , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
12.
Inflamm Regen ; 44(1): 26, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816842

RESUMO

The protease activated receptor 2 (Par2) plays a pivotal role in various damage models, influencing injury, proliferation, inflammation, and regeneration. Despite extensive studies, its binary roles- EITHER aggravating injury or promoting recovery-make a conclusive translational decision on its modulation strategy elusive. Analyzing two liver regeneration models, autoimmune hepatitis and direct hepatic damage, we discovered Par2's outcome depends on the injury's nature. In immune-mediated injury, Par2 exacerbates damage, while in direct tissue injury, it promotes regeneration. Subsequently, we evaluated the clinical significance of this finding by investigating Par2's expression in the context of autoimmune diabetes. We found that the absence of Par2 in all lymphocytes provided full protection against the autoimmune destruction of insulin-producing ß-cells in mice, whereas the introduction of a ß-cell-specific Par2 null mutation accelerated the onset of autoimmune diabetes. This pattern led us to hypothesize whether these observations are universal. A comprehensive review of recent Par2 publications across tissues and systems confirms the claim drafted above: Par2's initial activation in the immune system aggravates inflammation, hindering recovery, whereas its primary activation in the damaged tissue fosters regeneration. As a membrane-anchored receptor, Par2 emerges as an attractive drug target. Our findings highlight a crucial translational modulation strategy in regenerative medicine based on injury type.

13.
Am J Transl Res ; 16(3): 781-793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586088

RESUMO

OBJECTIVE: The pathogenesis of diarrhea-predominant irritable bowel syndrome (IBS-D) is related to damage to the intestinal mucosal barrier function. Based on the Mast cell (MC)/Tryptase/Protease-activated receptor-2 (PAR-2)/Myosin light chain kinase (MLCK) pathway, this study explored the effect of electroacupuncture (EA) on IBS-D rats and its possible mechanism of protecting the intestinal mucosal barrier. METHODS: The IBS-D rat model was established by mother-offspring separation, acetic acid enema, and chronic restraint stress. The efficacy of EA on IBS-D rats was evaluated by observing the rate of loose stool (LSP) and the minimum volume threshold of abdominal withdrawal reflex (AWR) in rats. Mast cells and the ultrastructure of intestinal mucosa were observed by H&E staining, toluidine blue staining, and transmission electron microscopy. The expression levels of Tryptase, PAR-2, MLCK, zonula occludens-1 (ZO-1), and Occludin in rats were detected by ELISA, qRT-PCR, and western blot. RESULTS: After 7 days of intervention, compared to the IBS-D group, the loose stool rates of rats in IBS-D + EA group and IBS-D + ketotifen group were decreased (P < 0.01), the minimum volume thresholds of AWR were improved (P < 0.01), the inflammation of colon tissue decreased, the number of MCs were decreased (P < 0.01), the expression of Tryptase, PAR-2, and MLCK were lowered (P < 0.01, P < 0.05), and the expression of ZO-1 and Occludin were enhanced (P < 0.01, P < 0.05). Compared to the EA group, there was no significant difference in each index between the ketotifen groups (P > 0.05). CONCLUSION: EA has a good therapeutic effect on IBS-D rats. Regulating the MCs/Tryptase/PAR-2/MLCK pathway may be a mechanism to protect the intestinal mucosal barrier.

14.
Inflamm Bowel Dis ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557865

RESUMO

Fibrosis characterized by intestinal strictures is a common complication of Crohn's disease (CD), without specific antifibrotic drugs, which usually relies on surgical intervention. The transcription factor XBP1, a key component of endoplasmic reticulum (ER) stress, is required for degranulation of mast cells and linked to PAR2 activation and fibrosis. Many studies have confirmed that naringin (NAR) can inhibit ER stress and reduce organ fibrosis. We hypothesized that ER stress activated the PAR2-induced epithelial-mesenchymal transition process by stimulating mast cell degranulation to release tryptase and led to intestinal fibrosis in CD patients; NAR might play an antifibrotic role by inhibiting ER stress-induced PAR2 activation. We report that the expression levels of XBP1, mast cell tryptase, and PAR2 are upregulated in fibrotic strictures of CD patients. Molecular docking simulates the interaction of NAR and spliced XBP1. ER stress stimulates degranulation of mast cells to secrete tryptase, activates PAR2-induced epithelial-mesenchymal transition process, and promotes intestinal fibrosis in vitro and vivo experiments, which is inhibited by NAR. Moreover, F2rl1 (the coding gene of PAR2) deletion in intestinal epithelial cells decreases the antifibrotic effect of NAR. Hence, the ER stress-mast cell tryptase-PAR2 axis can promote intestinal fibrosis, and NAR administration can alleviate intestinal fibrosis by inhibiting ER stress-induced PAR2 activation.


Fibrosis characterized by intestinal strictures is a common complication of Crohn's disease. The endoplasmic reticulum stress­mast cell tryptase­PAR2 axis promotes intestinal fibrosis, and naringin administration alleviates intestinal fibrosis by inhibiting endoplasmic reticulum stress­induced PAR2 activation.

15.
Br J Pharmacol ; 181(16): 2725-2749, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637276

RESUMO

BACKGROUND AND PURPOSE: Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH: The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS: We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS: Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.


Assuntos
Quimotripsina , Mucosa Intestinal , Receptor PAR-1 , Receptor PAR-2 , Animais , Humanos , Camundongos , Quimotripsina/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transdução de Sinais
16.
Biomed Pharmacother ; 175: 116622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653114

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is a challenging autoimmune disease, characterized by an immune system assault on insulin-producing ß-cells. As insulin facilitates glucose absorption into cells and tissues, ß-cell deficiency leads to elevated blood glucose levels on one hand and target-tissues starvation on the other. Despite efforts to halt ß-cell destruction and stimulate recovery, success has been limited. Our recent investigations identified Protease-Activated Receptor 2 (Par2) as a promising target in the battle against autoimmunity. We discovered that Par2 activation's effects depend on its initial activation site: exacerbating the disease within the immune system but fostering regeneration in affected tissue. METHODS: We utilized tissue-specific Par2 knockout mice strains with targeted Par2 mutations in ß-cells, lymphocytes, and the eye retina (as a control) in the NOD autoimmune diabetes model, examining T1D onset and ß-cell survival. RESULTS: We discovered that Par2 expression within the immune system accelerates autoimmune processes, while its presence in ß-cells offers protection against ß-cell destruction and T1D onset. This suggests a dual-strategy treatment for T1D: inhibiting Par2 in the immune system while activating it in ß-cells, offering a promising strategy for T1D. CONCLUSIONS: This study highlights Par2's potential as a drug target for autoimmune diseases, particularly T1D. Our results pave the way for precision medicine approaches in treating autoimmune conditions through targeted Par2 modulation.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Camundongos Endogâmicos NOD , Camundongos Knockout , Receptor PAR-2 , Receptor PAR-2/metabolismo , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Autoimunidade , Feminino
17.
Aging Cell ; 23(8): e14184, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38687090

RESUMO

Cellular senescence contributes to inflammatory kidney disease via the secretion of inflammatory and profibrotic factors. Protease-activating receptor 2 (PAR2) is a key regulator of inflammation in kidney diseases. However, the relationship between PAR2 and cellular senescence in kidney disease has not yet been described. In this study, we found that PAR2-mediated metabolic changes in renal tubular epithelial cells induced cellular senescence and increased inflammatory responses. Using an aging and renal injury model, PAR2 expression was shown to be associated with cellular senescence. Under in vitro conditions in NRK52E cells, PAR2 activation induces tubular epithelial cell senescence and senescent cells showed defective fatty acid oxidation (FAO). Cpt1α inhibition showed similar senescent phenotype in the cells, implicating the important role of defective FAO in senescence. Finally, we subjected mice lacking PAR2 to aging and renal injury. PAR2-deficient kidneys are protected from adenine- and cisplatin-induced renal fibrosis and injury, respectively, by reducing senescence and inflammation. Moreover, kidneys lacking PAR2 exhibited reduced numbers of senescent cells and inflammation during aging. These findings offer fresh insights into the mechanisms underlying renal senescence and indicate that targeting PAR2 or FAO may be a promising therapeutic approach for managing kidney injury.


Assuntos
Envelhecimento , Senescência Celular , Fibrose , Inflamação , Receptor PAR-2 , Insuficiência Renal Crônica , Animais , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Envelhecimento/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
Acta Pharm Sin B ; 14(3): 1441-1456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487002

RESUMO

Excessive and uncontrollable inflammatory responses in alveoli can dramatically exacerbate pulmonary disease progressions through vigorous cytokine releases, immune cell infiltration and protease-driven tissue damages. It is an urgent need to explore potential drug strategies for mitigating lung inflammation. Protease-activated receptor 2 (PAR2) as a vital molecular target principally participates in various inflammatory diseases via intracellular signal transduction. However, it has been rarely reported about the role of PAR2 in lung inflammation. This study applied CRISPR-Cas9 system encoding Cas9 and sgRNA (pCas9-PAR2) for PAR2 knockout and fabricated an anionic human serum albumin-based nanoparticles to deliver pCas9-PAR2 with superior inflammation-targeting efficiency and stability (TAP/pCas9-PAR2). TAP/pCas9-PAR2 robustly facilitated pCas9-PAR2 to enter and transfect inflammatory cells, eliciting precise gene editing of PAR2 in vitro and in vivo. Importantly, PAR2 deficiency by TAP/pCas9-PAR2 effectively and safely promoted macrophage polarization, suppressed pro-inflammatory cytokine releases and alleviated acute lung inflammation, uncovering a novel value of PAR2. It also revealed that PAR2-mediated pulmonary inflammation prevented by TAP/pCas9-PAR2 was mainly dependent on ERK-mediated NLRP3/IL-1ß and NO/iNOS signalling. Therefore, this work indicated PAR2 as a novel target for lung inflammation and provided a potential nanodrug strategy for PAR2 deficiency in treating inflammatory diseases.

19.
Handb Clin Neurol ; 199: 583-597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38307672

RESUMO

Despite many migraine-specific treatments that became available over the past 5 years, many patients still suffer from debilitating migraine. Emerging and future directions of migraine research and treatment should consider different aspects including revising the headache diagnostic criteria to reflect disease burden and prognosis, developing biomarkers, including genetic, serum, imaging, and deep phenotyping biomarkers to facilitate personalized medicine for headache treatment. Additionally, research should also emphasize identifying novel treatment targets for drug development. In this chapter, we provide an overview of current studies and controversies in the diagnosis of migraine and available research on potential migraine biomarkers. We also discuss potential treatment targets for migraine, including CGRP, PACAP, orexin, non-µ opioid receptors, nitric oxide, BKCa channel, KATP channel, amylin, TRP channels, prolactin, PAR-2, and other potential targets.


Assuntos
Transtornos de Enxaqueca , Humanos , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Cefaleia , Biomarcadores
20.
J Invest Dermatol ; 144(8): 1829-1842.e4, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38360199

RESUMO

Chronic itch is a common and complex symptom often associated with skin diseases such as atopic dermatitis (AD). Although IL-27 is linked to AD, its role and clinical significance in itch remain undefined. We sought to investigate IL-27 function in itch using tissue-specific transgenic mice, various itch models, behavior scoring, RNA sequencing, and cytokine/kinase array. Our findings show that IL-27 receptors were overexpressed in human AD skin. Intradermal IL-27 injection failed to directly induce itch in mice but upregulated skin protease-activated receptor 2 (PAR2) transcripts, a key factor in itch and AD. IL-27 activated human keratinocytes, increasing PAR2 transcription and activity. Coinjection of SLIGRL (PAR2 agonist) and IL-27 in mice heightened PAR2-mediated itch. In addition, IL-27 boosted BST2 transcription in sensory neurons and keratinocytes. BST2 was upregulated in AD skin, and its injection in mice induced itch-like response. BST2 colocalized with sensory nerve branches in AD skin from both human and murine models. Sensory neurons released BST2, and mice with sensory neuron-specific BST2 knockout displayed reduced itch responses. Overall, this study provides evidence that skin IL-27/PAR2 and neuronal IL-27/BST2 axes are implicated in cutaneous inflammation and pruritus. The discovery of neuronal BST2 in pruritus shed light on BST2 in the itch cascade.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Dermatite Atópica , Prurido , Receptor PAR-2 , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Dermatite Atópica/patologia , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Interleucina-27/metabolismo , Interleucina-27/genética , Queratinócitos/metabolismo , Camundongos Transgênicos , Prurido/metabolismo , Prurido/genética , Prurido/patologia , Prurido/etiologia , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Pele/metabolismo , Pele/patologia , Antígeno 2 do Estroma da Médula Óssea/genética , Antígeno 2 do Estroma da Médula Óssea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA