Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105139, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544646

RESUMO

The levels of non-coding RNAs (ncRNAs) are regulated by transcription, RNA processing, and RNA degradation pathways. One mechanism for the degradation of ncRNAs involves the addition of oligo(A) tails by non-canonical poly(A) polymerases, which then recruit processive sequence-independent 3' to 5' exonucleases for RNA degradation. This pathway of decay is also regulated by three 3' to 5' exoribonucleases, USB1, PARN, and TOE1, which remove oligo(A) tails and thereby can protect ncRNAs from decay in a manner analogous to the deubiquitination of proteins. Loss-of-function mutations in these genes lead to premature degradation of some ncRNAs and lead to specific human diseases such as Poikiloderma with Neutropenia (PN) for USB1, Dyskeratosis Congenita (DC) for PARN and Pontocerebellar Hypoplasia type 7 (PCH7) for TOE1. Herein, we review the biochemical properties of USB1, PARN, and TOE1, how they modulate ncRNA levels, and their roles in human diseases.


Assuntos
Exorribonucleases , RNA não Traduzido , Humanos , Disceratose Congênita/fisiopatologia , Exorribonucleases/genética , Exorribonucleases/metabolismo , Neutropenia/fisiopatologia , Estabilidade de RNA/genética , RNA não Traduzido/genética , Mutação com Perda de Função
2.
Respirology ; 27(3): 226-235, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981600

RESUMO

BACKGROUND AND OBJECTIVE: Poly(A)-specific ribonuclease (PARN) mutations have been associated with familial pulmonary fibrosis. This study aims to describe the phenotype of patients with interstitial lung disease (ILD) and heterozygous PARN mutations. METHODS: We performed a retrospective, observational, non-interventional study of patients with an ILD diagnosis and a pathogenic heterozygous PARN mutation followed up in a centre of the OrphaLung network. RESULTS: We included 31 patients (29 from 16 kindreds and two sporadic patients). The median age at ILD diagnosis was 59 years (range 54 to 63). In total, 23 (74%) patients had a smoking history and/or fibrogenic exposure. The pulmonary phenotypes were heterogenous, but the most frequent diagnosis was idiopathic pulmonary fibrosis (n = 12, 39%). Haematological abnormalities were identified in three patients and liver disease in two. In total, 21 patients received a specific treatment for ILD: steroids (n = 13), antifibrotic agents (n = 11), immunosuppressants (n = 5) and N-acetyl cysteine (n = 2). The median forced vital capacity decline for the whole sample was 256 ml/year (range -363 to -148). After a median follow-up of 32 months (range 18 to 66), 10 patients had died and six had undergone lung transplantation. The median transplantation-free survival was 54 months (95% CI 29 to ∞). Extra-pulmonary features were less frequent with PARN mutation than telomerase reverse transcriptase (TERT) or telomerase RNA component (TERC) mutation. CONCLUSION: IPF is common among individuals with PARN mutation, but other ILD subtypes may be observed.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Exorribonucleases , Humanos , Fibrose Pulmonar Idiopática/genética , Doenças Pulmonares Intersticiais/genética , Mutação/genética , Estudos Retrospectivos
3.
Life Sci ; 285: 119953, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520768

RESUMO

In eukaryotic cells, the balance between the synthesis and the degradation decides the steady-state levels of messenger RNAs (mRNA). The removal of adenosine residues from the poly(A) tail, called deadenylation, is the first and the most crucial step in the process of mRNA degradation. Poly (A)-specific ribonuclease (PARN) is one such enzyme that catalyses the process of deadenylation. Although PARN has been primarily known as the regulator of the mRNA stability, recent evidence clearly suggests several other functions of PARN, including a role in embryogenesis, oocyte maturation, cell-cycle progression, telomere biology, non-coding RNA maturation and ribosome biogenesis. Also, deregulated PARN activity is shown to be a hallmark of specific disease conditions. Pathogenic variants in the PARN gene have been observed in various cancers and inherited bone marrow failure syndromes. The focus in this review is to highlight the emerging functions of PARN, particularly in the context of human diseases.


Assuntos
Adenosina/metabolismo , Doença/genética , Exorribonucleases/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Evolução Molecular , Exorribonucleases/genética , Humanos , Biossíntese de Proteínas , RNA não Traduzido/metabolismo , Ribossomos/metabolismo , Homeostase do Telômero
4.
RNA Biol ; 18(3): 305-315, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32813614

RESUMO

Maintenance of telomeres is essential for genome integrity and replicative capacity in eukaryotic cells. Telomerase, the ribonucleoprotein complex that catalyses telomere synthesis is minimally composed of a reverse transcriptase and an RNA component. The sequence and structural domains of human telomerase RNA (hTR) have been extensively characterized, while the regulation of hTR transcription, maturation, and localization, is not fully understood. Here, we provide an up-to-date review of hTR, with an emphasis on current breakthroughs uncovering the mechanisms of hTR maturation and localization.


Assuntos
Regulação da Expressão Gênica , RNA/genética , RNA/metabolismo , Telomerase/genética , Telomerase/metabolismo , Humanos , Metilação , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , RNA/química , Capuzes de RNA , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Transporte de RNA , Relação Estrutura-Atividade , Telomerase/química , Transcrição Gênica
5.
Osteoporos Int ; 32(6): 1227-1231, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33244623

RESUMO

We report a case of a young male patient with clinical signs of dyskeratosis congenita who presented with multiple bilateral low-traumatic hip fractures. Whole exome sequencing (WES) showed a previously unreported mutation in the poly(A)-specific ribonuclease (PARN) gene. Zoledronic acid 5 mg over 3 years was effective at preventing further fractures. A male patient was referred to our clinic at age 24 due to multiple bilateral hip fractures. At the time of admission, the patient's height was 160 cm and weight 40 kg; bone mineral density (BMD) at the lumbar spine was normal (L1-L4 0.0 Z-score). The patient was found to have abnormal skin pigmentation, hyperkeratosis of palms and soles, nail dystrophy, and signs of bone marrow failure (BMF). Bone fragility first presented at 5 years old with a wrist fracture, followed by multiple bilateral low-traumatic hip fractures without falls from 14 to 24 years. WES showed a previously unreported mutation (NM_002582.3: c.1652delA; p.His551fs) in the poly(A)-specific ribonuclease (PARN) gene. Flow fish telomere measurement result was 5.9 (reference range 8.0-12.6), which is consistent with the DC diagnosis. Permanent fixation with internal metal rods and zoledronic acid 5 mg over 3 years was effective at preventing further fractures over 4 years of follow-up. Additionally, BMF did not progress over 4 years of observation. DC associated with PARN gene mutations might predispose to low-traumatic multiple hip fractures in adolescents and young adults. Treatment with zoledronic acid in this case was effective and safe at preventing further fractures.


Assuntos
Disceratose Congênita , Exorribonucleases/genética , Fraturas do Quadril , Adolescente , Adulto , Transtornos da Insuficiência da Medula Óssea , Pré-Escolar , Disceratose Congênita/complicações , Disceratose Congênita/genética , Fraturas do Quadril/genética , Humanos , Masculino , Mutação , Telômero , Adulto Jovem
6.
Neurobiol Dis ; 147: 105148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184027

RESUMO

Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer's disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer's disease patient brains. Alzheimer's disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way.


Assuntos
Doença de Alzheimer/patologia , Proteínas de Caenorhabditis elegans/metabolismo , Exorribonucleases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Tauopatias/patologia , Doença de Alzheimer/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Caenorhabditis elegans , Humanos , Fenótipo , Tauopatias/metabolismo
7.
Trends Pharmacol Sci ; 41(8): 506-508, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32482456

RESUMO

Genetic defects in telomere maintenance result in stem cell exhaustion and a spectrum of telomere biology diseases. Systemic treatments beyond organ transplantation are lacking for these diseases. Nagpal and colleagues identified small molecules that restore telomere maintenance in patient-derived stem cells, offering a promising therapy for telomere biology diseases.


Assuntos
Disceratose Congênita , Telomerase , Humanos , RNA , Células-Tronco/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo
8.
J Biol Chem ; 295(30): 10255-10270, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32457045

RESUMO

Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.


Assuntos
Exorribonucleases/metabolismo , Sirtuína 1/metabolismo , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Acetilação , Exorribonucleases/genética , Técnicas de Inativação de Genes , Células HCT116 , Células HeLa , Humanos , Lisina/genética , Lisina/metabolismo , Sirtuína 1/genética , Telomerase/genética , Telômero/genética
9.
J Clin Lab Anal ; 34(9): e23375, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32452087

RESUMO

BACKGROUND: Dyskeratosis congenita (DC) is a syndrome resulting from defective telomere maintenance. Immunodeficiency associated with DC can cause significant morbidity and lead to premature mortality, but the immunological characteristics and molecular hallmark of DC patients, especially young patients, have not been described in detail. METHODS: We summarize the clinical data of two juvenile patients with DC. Gene mutations were identified by whole-exome and direct sequencing. Swiss-PdbViewer was used to predict the pathogenicity of identified mutations. The relative telomere length was determined by QPCR, and a comprehensive analysis of lymphocyte subsets and CD57 expression was performed by flow cytometry. RESULTS: Both patients showed typical features of DC without severe infection. In addition, patient 1 (P1) was diagnosed with Hoyeraal-Hreidarsson syndrome due to cerebellar hypoplasia. Gene sequencing showed P1 had a compound heterozygous mutation (c.204G > T and c.178-245del) in PARN and P2 had a novel hemizygous mutation in DKC1 (c.1051A > G). Lymphocyte subset analysis showed B and NK cytopenia, an inverted CD4:CD8 ratio, and decreased naïve CD4 and CD8 cells. A significant increase in CD21low B cells and skewed numbers of helper T cells (Th), regulatory T cells (Treg), follicular regulatory T cells (Tfr), and follicular helper T cells (Tfh) were also detected. Short telomere lengths, increased CD57 expression, and an expansion of CD8 effector memory T cells re-expressing CD45RA (TEMRA) were also found in both patients. CONCLUSION: Unique immunologic abnormalities, CD8 T-cell senescence, and shortened telomere together as a hallmark occur in young DC patients before progression to severe disease.


Assuntos
Linfócitos T CD8-Positivos/patologia , Proteínas de Ciclo Celular/genética , Disceratose Congênita , Exorribonucleases/genética , Subpopulações de Linfócitos/patologia , Proteínas Nucleares/genética , Senescência Celular , Criança , Disceratose Congênita/genética , Disceratose Congênita/patologia , Feminino , Humanos , Masculino , Mutação/genética
10.
Cell Stem Cell ; 26(6): 896-909.e8, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320679

RESUMO

Genetic lesions that reduce telomerase activity inhibit stem cell replication and cause a range of incurable diseases, including dyskeratosis congenita (DC) and pulmonary fibrosis (PF). Modalities to restore telomerase in stem cells throughout the body remain unclear. Here, we describe small-molecule PAPD5 inhibitors that demonstrate telomere restoration in vitro, in stem cell models, and in vivo. PAPD5 is a non-canonical polymerase that oligoadenylates and destabilizes telomerase RNA component (TERC). We identified BCH001, a specific PAPD5 inhibitor that restored telomerase activity and telomere length in DC patient induced pluripotent stem cells. When human blood stem cells engineered to carry DC-causing PARN mutations were xenotransplanted into immunodeficient mice, oral treatment with a repurposed PAPD5 inhibitor, the dihydroquinolizinone RG7834, rescued TERC 3' end maturation and telomere length. These findings pave the way for developing systemic telomere therapeutics to counteract stem cell exhaustion in DC, PF, and possibly other aging-related diseases.


Assuntos
Disceratose Congênita , Células-Tronco Pluripotentes Induzidas , Telomerase , Animais , Disceratose Congênita/tratamento farmacológico , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mutação/genética , RNA , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo
11.
Plants (Basel) ; 8(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569782

RESUMO

When plants are exposed to sulfur limitation, they upregulate the sulfate assimilation pathway at the expense of growth-promoting measures. Upon cessation of the stress, however, protective measures are deactivated, and growth is restored. In accordance with these findings, transcripts of sulfur-deficiency marker genes are rapidly degraded when starved plants are resupplied with sulfur. Yet it remains unclear which enzymes are responsible for the degradation of transcripts during the recovery from starvation. In eukaryotes, mRNA decay is often initiated by the cleavage of poly(A) tails via deadenylases. As mutations in the poly(A) ribonuclease PARN have been linked to altered abiotic stress responses in Arabidopsis thaliana, we investigated the role of PARN in the recovery from sulfur starvation. Despite the presence of putative PARN-recruiting AU-rich elements in sulfur-responsive transcripts, sulfur-depleted PARN hypomorphic mutants were able to reset their transcriptome to pre-starvation conditions just as readily as wildtype plants. Currently, the subcellular localization of PARN is disputed, with studies reporting both nuclear and cytosolic localization. We detected PARN in cytoplasmic speckles and reconciled the diverging views in literature by identifying two PARN splice variants whose predicted localization is in agreement with those observations.

12.
Cells ; 8(8)2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387300

RESUMO

Poly(A)-specific ribonuclease (PARN), a multifunctional multi-domain deadenylase, is crucial to the regulation of mRNA turnover and the maturation of various non-coding RNAs. Despite extensive studies of the well-folding domains responsible for PARN catalysis, the structure and function of the C-terminal domain (CTD) remains elusive. PARN is a cytoplasm-nucleus shuttle protein with concentrated nucleolar distribution. Here, we identify the nuclear and nucleolar localization signals in the CTD of PARN. Spectroscopic studies indicated that PARN-CTD is intrinsically disordered with loosely packed local structures/tertiary structure. Phosphorylation-mimic mutation S557D disrupted the local structure and facilitated the binding of the CTD with the well-folded domains, with no impact on PARN deadenylase activity. Under normal conditions, the nucleolus-residing PARN recruited CBP80 into the nucleoli to repress its deadenylase activity, while DNA damage-induced phosphorylation of PARN-S557 expelled CBP80 from the nucleoli to discharge activity inhibition and attracted nucleoplasm-located CstF-50 into the nucleoli to activate deadenylation. The structure switch-induced function switch of PARN reshaped the profile of small nuclear non-coding RNAs to respond to DNA damage. Our findings highlight that the structure switch of the CTD induced by posttranslational modifications redefines the subset of binding partners, and thereby the RNA targets in the nucleoli.


Assuntos
Núcleo Celular/metabolismo , Dano ao DNA , Exorribonucleases/metabolismo , Sinais de Localização Nuclear , Dobramento de Proteína , Transporte Ativo do Núcleo Celular , Animais , Células CHO , Cricetinae , Cricetulus , Exorribonucleases/química , Células HEK293 , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/química
13.
Hum Mutat ; 40(12): 2414-2429, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31448843

RESUMO

PARN encodes poly(A)-specific ribonuclease. Biallelic and monoallelic PARN variants are associated with Hoyeraal-Hreidarsson syndrome/dyskeratosis congenita and idiopathic pulmonary fibrosis (IPF), respectively. The molecular features associated with incomplete penetrance of PARN-associated IPF have not been described. We report a family with a rare missense, p.Y91C, and a novel insertion, p.(I274*), PARN variant. We found PARN p.Y91C had reduced deadenylase activity and the p.(I274*) transcript was depleted. Detailed analysis of the consequences of these variants revealed that, while PARN protein was lowest in the severely affected biallelic child who had the shortest telomeres, it was also reduced in his mother with the p.(I274*) variant but telomeres at the 50th percentile. Increased adenylation of telomerase RNA, human telomerase RNA, and certain small nucleolar RNAs, and impaired ribosomal RNA maturation were observed in cells derived from the severely affected biallelic carrier, but not in the other, less affected biallelic carrier, who had less severely shortened telomeres, nor in the monoallelic carriers who were unaffected and had telomeres ranging from the 1st to the 50th percentiles. We identified hsa-miR-202-5p as a potential negative regulator of PARN. We propose one or more genetic modifiers influence the impact of PARN variants on its targets and this underlies incomplete penetrance of PARN-associated disease.


Assuntos
Disceratose Congênita/genética , Exorribonucleases/genética , Retardo do Crescimento Fetal/genética , Deficiência Intelectual/genética , MicroRNAs/genética , Microcefalia/genética , Mutagênese Insercional , Mutação de Sentido Incorreto , Adolescente , Linhagem Celular , Pré-Escolar , Regulação para Baixo , Exorribonucleases/metabolismo , Feminino , Humanos , Masculino , Linhagem , Penetrância , Encurtamento do Telômero
14.
EMBO Mol Med ; 11(7): e10201, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31273937

RESUMO

PARN, poly(A)-specific ribonuclease, regulates the turnover of mRNAs and the maturation and stabilization of the hTR RNA component of telomerase. Biallelic PARN mutations were associated with Høyeraal-Hreidarsson (HH) syndrome, a rare telomere biology disorder that, because of its severity, is likely not exclusively due to hTR down-regulation. Whether PARN deficiency was affecting the expression of telomere-related genes was still unclear. Using cells from two unrelated HH individuals carrying novel PARN mutations and a human PARN knock-out (KO) cell line with inducible PARN complementation, we found that PARN deficiency affects both telomere length and stability and down-regulates the expression of TRF1, TRF2, TPP1, RAP1, and POT1 shelterin transcripts. Down-regulation of dyskerin-encoding DKC1 mRNA was also observed and found to result from p53 activation in PARN-deficient cells. We further showed that PARN deficiency compromises ribosomal RNA biogenesis in patients' fibroblasts and cells from heterozygous Parn KO mice. Homozygous Parn KO however resulted in early embryonic lethality that was not overcome by p53 KO. Our results refine our knowledge on the pleiotropic cellular consequences of PARN deficiency.


Assuntos
Disceratose Congênita/metabolismo , Exorribonucleases/deficiência , Retardo do Crescimento Fetal/metabolismo , Deficiência Intelectual/metabolismo , Microcefalia/metabolismo , RNA Ribossômico/biossíntese , Homeostase do Telômero , Telômero/metabolismo , Animais , Pré-Escolar , Modelos Animais de Doenças , Disceratose Congênita/genética , Disceratose Congênita/patologia , Exorribonucleases/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Camundongos , Camundongos Knockout , Microcefalia/genética , Microcefalia/patologia , RNA Ribossômico/genética , Complexo Shelterina , Telômero/genética , Telômero/patologia , Proteínas de Ligação a Telômeros
15.
Biochem Biophys Rep ; 18: 100626, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30949591

RESUMO

Poly(A)-specific ribonuclease (PARN) catalyzes the degradation of mRNA poly(A) tail to regulate translation efficiency and mRNA decay in higher eukaryotic cells. The full-length PARN is a multi-domain protein containing the catalytic nuclease domain, the R3H domain, the RRM domain and the C-terminal intrinsically unstructured domain (CTD). The roles of the three well-structured RNA-binding domains have been extensively studied, while little is known about CTD. In this research, the impact of CTD on PARN stability and aggregatory potency was studied by comparing the thermal inactivation and denaturation behaviors of full-length PARN with two N-terminal fragments lacking CTD. Our results showed that K+ induced additional regular secondary structures and enhanced PARN stability against heat-induced inactivation, unfolding and aggregation. CTD prevented PARN from thermal inactivation but promoted thermal aggregation to initiate at a temperature much lower than that required for inactivation and unfolding. Blue-shift of Trp fluorescence during thermal transitions suggested that heat treatment induced rearrangements of domain organizations. CTD amplified the stabilizing effect of K+, implying the roles of CTD was mainly achieved by electrostatic interactions. These results suggested that CTD might dynamically interact with the main body of the molecule and release of CTD promoted self-association via electrostatic interactions.

16.
Mol Cell ; 73(6): 1204-1216.e4, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30770239

RESUMO

PARN loss-of-function mutations cause a severe form of the hereditary disease dyskeratosis congenita (DC). PARN deficiency affects the stability of non-coding RNAs such as human telomerase RNA (hTR), but these effects do not explain the severe disease in patients. We demonstrate that PARN deficiency affects the levels of numerous miRNAs in human cells. PARN regulates miRNA levels by stabilizing either mature or precursor miRNAs by removing oligo(A) tails added by the poly(A) polymerase PAPD5, which if remaining recruit the exonuclease DIS3L or DIS3L2 to degrade the miRNA. PARN knockdown destabilizes multiple miRNAs that repress p53 translation, which leads to an increase in p53 accumulation in a Dicer-dependent manner, thus explaining why PARN-defective patients show p53 accumulation. This work also reveals that DIS3L and DIS3L2 are critical 3' to 5' exonucleases that regulate miRNA stability, with the addition and removal of 3' end extensions controlling miRNA levels in the cell.


Assuntos
Exorribonucleases/metabolismo , MicroRNAs/metabolismo , Estabilidade de RNA , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/enzimologia , Regiões 3' não Traduzidas , Antineoplásicos/farmacologia , Sobrevivência Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Doxorrubicina/farmacologia , Etoposídeo/farmacologia , Exorribonucleases/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HeLa , Humanos , MicroRNAs/genética , Poliadenilação , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
17.
RNA ; 25(3): 388-405, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30591540

RESUMO

The 3' ends of metazoan microRNAs (miRNAs) are initially defined by the RNase III enzymes during maturation, but subsequently experience extensive modifications by several enzymatic activities. For example, terminal nucleotidyltransferases (TENTs) elongate miRNAs by adding one or a few nucleotides to their 3' ends, which occasionally leads to differential regulation of miRNA stability or function. However, the catalytic entities that shorten miRNAs and the molecular consequences of such shortening are less well understood, especially in vertebrates. Here, we report that poly(A)-specific ribonuclease (PARN) sculpts the 3' ends of miRNAs in human cells. By generating PARN knockout cells and characterizing their miRNAome, we demonstrate that PARN digests the 3' extensions of miRNAs that are derived from the genome or attached by TENTs, thereby effectively reducing the length of miRNAs. Surprisingly, PARN-mediated shortening has little impact on miRNA stability, suggesting that this process likely operates to finalize miRNA maturation, rather than to initiate miRNA decay. PARN-mediated shortening is pervasive across most miRNAs and appears to be a conserved mechanism contributing to the 3' end formation of vertebrate miRNAs. Our findings add miRNAs to the expanding list of noncoding RNAs whose 3' end formation depends on PARN.


Assuntos
Exorribonucleases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Linhagem Celular , Exorribonucleases/genética , Edição de Genes , Marcação de Genes , Humanos , Camundongos , Clivagem do RNA , Interferência de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Transcriptoma
18.
Artigo em Inglês | MEDLINE | ID: mdl-30397104

RESUMO

Genomes are under constant threat of invasion by transposable elements and other genomic parasites. How can host genomes recognize these elements and target them for degradation? This requires a system that is highly adaptable, and at the same time highly specific. Current data suggest that perturbation of transcription patterns by transposon insertions could be detected by the RNAi surveillance pathway. Multiple transposon insertions might generate sufficient amounts of primal small RNAs to initiate generation of secondary small RNAs and silencing. At the same time primal small RNAs need to be constantly degraded to reduce the level of noise small RNAs below the threshold required for initiation of silencing. Failure in RNA degradation results in loss of fidelity of small RNA pathways and silencing of ectopic targets.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Assuntos
Elementos de DNA Transponíveis , Interferência de RNA , RNA/metabolismo , Eucariotos/metabolismo
19.
Cancer Metastasis Rev ; 37(2-3): 491-507, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30091053

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3'-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new "players" in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.


Assuntos
Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosfolipase D/genética , Fosfolipase D/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Biomarcadores Tumorais , Progressão da Doença , Exorribonucleases/metabolismo , Feminino , Humanos , MicroRNAs/genética , Biossíntese de Proteínas , RNA não Traduzido/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
20.
Mol Cell ; 70(6): 1081-1088.e5, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932901

RESUMO

Multiple deadenylases are known in vertebrates, the PAN2-PAN3 (PAN2/3) and CCR4-NOT (CNOT) complexes, and PARN, yet their differential functions remain ambiguous. Moreover, the role of poly(A) binding protein (PABP) is obscure, limiting our understanding of the deadenylation mechanism. Here, we show that CNOT serves as a predominant nonspecific deadenylase for cytoplasmic poly(A)+ RNAs, and PABP promotes deadenylation while preventing premature uridylation and decay. PAN2/3 selectively trims long tails (>∼150 nt) with minimal effect on transcriptome, whereas PARN does not affect mRNA deadenylation. CAF1 and CCR4, catalytic subunits of CNOT, display distinct activities: CAF1 trims naked poly(A) segments and is blocked by PABPC, whereas CCR4 is activated by PABPC to shorten PABPC-protected sequences. Concerted actions of CAF1 and CCR4 delineate the ∼27 nt periodic PABPC footprints along shortening tail. Our study unveils distinct functions of deadenylases and PABPC, re-drawing the view on mRNA deadenylation and regulation.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Receptores CCR4/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular/metabolismo , Citoplasma/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Poli A/metabolismo , Proteínas de Ligação a Poli(A)/genética , Poliadenilação , RNA Mensageiro/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA