Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Microorganisms ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399671

RESUMO

Microorganisms colonizing modern water-based metalworking fluids (MWFs) have been implicated in various occupational respiratory health hazards to machinists. An understanding of the exposure risks from specific microbial groups/genera/species (pathogenic or allergenic) and their endotoxins and the need for strategies for effective, timely fluid management warrant real-time extended tracking of the establishment of microbial diversity and the prevailing fluid-related factors. In the current study, the microbial community composition, succession, and dynamics of a freshly recharged industrial semi-synthetic MWF operation was tracked in real-time over a period of 50 weeks, using a combination of microbiological and molecular approaches. Substantial initial bacterial count (both viable and non-viable) even in the freshly recharged MWF pointed to the inefficiency of the dumping, cleaning, and recharge (DCR) process. Subsequent temporal analysis using optimized targeted genus/group-specific qPCR confirmed the presence of Pseudomonads, Enterics, Legionellae, Mycobacteria (M. immunogenum), Actinomycetes, and Fungi. In contrast, selective culturing using commercial culture media yielded non-specific isolates and collectively revealed Gram-negative (13 genera representing 19 isolates) and Gram-positive (2 genera representing 6 isolates) bacteria and fungi but not mycobacteria. Citrobacter sp. and Bacillus cereus represented the most frequent Gram-negative and Gram-positive isolates, respectively, across different media and Nectria haematococca isolation as the first evidence of this fungal pathogen colonizing semi-synthetic MWF. Unbiased PCR-DGGE analysis revealed a more diverse whole community composition revealing 22 bacterial phylotypes and their succession. Surges in the endotoxin level coincided with the spikes in Gram-negative bacterial population and biocide additions. Taken together, the results showed that semi-synthetic MWF is conducive for the growth of a highly diverse microbial community including potential bacterial and fungal pathogens, the current DCR practices are inefficient in combating microbial reestablishment, and the practice of periodic biocide additions facilitates the build-up of endotoxins and non-viable bacterial population.

2.
Foods ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174403

RESUMO

Quinoa and amaranth are of special interest since they are increasingly used for the development of new bakery products with enhanced nutritional value. The aim of the study was to evaluate the agronomic, microbiological, and nutritional characteristics of quinoa and amaranth seeds grown in Southern Italy. For this reason, quinoa Titicaca and three amaranth accessions (5, 12, and 14) were cultivated in different experimental fields in the Campania Region and analyzed for the cultivation aspects, chemical composition, and microbiological quality of the seeds. All seeds showed a good adaptability to cultivation in the experimental areas of the Mediterranean basin. Quinoa seeds were characterized by their higher protein, fat, and ash content than the amaranth seeds, which were characterized by their higher value in dietary fiber. All seeds, regardless of the geographical area of production, were contaminated with yeasts, moulds, and spore-forming bacteria, mainly Bacillus cereus, B. licheniformis, B. safensis and B. subtilis, as identified by 16S rRNA sequencing analysis. So, the detection of Bacillus spp. must be strongly monitored, as quinoa and amaranth seeds could be used in bread production, where they can cause ropiness, resulting in great economic losses for the industries.

3.
Food Res Int ; 161: 111796, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192883

RESUMO

The aim of the study was to set up a liquid sourdough obtained using stone-ground soft wheat (Triticum aestivum) flour to be exploited in breadmaking. Therefore, a Type II sourdough (dough yield = 350) was developed from a stable stone-ground wheat Type I sourdough (dough yield = 156) used as inoculum. Both sourdoughs were analyzed for lactic acid bacteria (LAB) viable counts, pH and total titratable acidity (TTA), LAB biodiversity by a combined culture-dependent and -independent approach (PCR-DGGE) and they were tested for their breadmaking ability. In addition, the chemical and rheological features and volatile organic compounds of the stone-ground soft wheat flour used in the experiment were investigated. The flour had a high protein content, good bakery properties and it also presented a rich aroma pattern characterized not only by the prevalence of green grass, flowery, and sweet aromas but also nutty, roasted and popcorn aromas. The sourdoughs I and II used in the trial were characterized by viable LAB counts, pH and TTA values typical of mature sourdoughs, i.e., approximately 9 log cfu gr-1 and mL, pH 3.9 and 10 mL 0.1 N NaOH. In addition, Levilactobacillus brevis and Companilactobacillus paralimentarius species represented the LAB stable microbiota of both sourdoughs. Both sourdoughs efficiently produce acceptable experimental breads characterized by different volatile profiles thus indicating that the type of sourdough fermentation significantly influenced the features of the final products. Overall, for the first time in the present study stone-ground wheat flour and bread have been characterized for their volatile aroma profile and sensory properties.


Assuntos
Lactobacillales , Compostos Orgânicos Voláteis , Pão/microbiologia , Farinha/microbiologia , Hidróxido de Sódio , Triticum/metabolismo , Compostos Orgânicos Voláteis/metabolismo
4.
Int J Food Microbiol ; 382: 109934, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36130465

RESUMO

Kombucha is a mildly sweet, slightly acidic fermented beverage, commercially available worldwide, that has attracted increasing consumers' interest due to its potential health benefits. Kombucha is commonly prepared using sugared black or green tea, but also other plant substrates are frequently utilised. Kombucha is obtained by fermentation using a symbiotic culture of bacteria and yeasts, whose composition varies depending on inoculum origin, plant substrates and environmental conditions. After fermentation, kombucha drinks are usually refrigerated at 4 °C, in order to maintain their biological and functional properties. There are no reports on the fate of microbial communities of kombucha in relation to long-term storage time and temperature. Here, for the first time, we monitored the diversity and dynamics of the microbial communities of a kombucha beverage fermented with different herbs during storage at 4 °C and at room temperature, for a period of 90 days, utilising culture-dependent and independent approaches. Moreover, cultivable yeasts and acetic acid bacteria (AAB) were isolated from the beverage, inoculated in pure culture, identified by molecular methods, and yeasts assessed for their functional properties. Total yeast counts were not affected by storage temperature and time, although their community composition changed, as Saccharomyces species significantly decreased after 45 days of storage at room temperature, completely disappearing after 90 days. On the other hand, Dekkera anomala (Brettanomyces anomalus), representing 52 % of the yeast isolates, remained viable up to 90 days at both storage temperatures, and was able to produce high levels of organic acids and exopolysaccharides. Data from DGGE (Denaturing Gradient Gel Electrophoresis) band sequencing confirmed that it was the dominant yeast species in all samples across storage. Other yeast isolates were represented by Saccharomyces and Zygosaccharomyces species. Among AAB, Gluconobacter oxydans, Novacetimonas hansenii and Komagataeibacter saccharivorans represented 46, 36 and 18 % of the isolates, whose occurrence remained unchanged across storage at 4 °C and did not vary up to 20 days of storage at room temperature. This work showed that the combination of culture-dependent and independent approaches is important for obtaining a complete picture of the distinctive core microbial community in kombucha beverages during storage, elucidating its diversity and composition, and preliminary characterizing yeast strains with putative functional activities.


Assuntos
Ácido Acético , Leveduras , Bebidas/microbiologia , Fermentação , Chá/microbiologia , Temperatura
5.
Braz J Microbiol ; 53(3): 1593-1598, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35689157

RESUMO

This study aimed to provide a further characterization of the lactic microbiota present in Minas artisanal cheese (MAC) from the Serro region by using culture-independent methods, as a complementary analysis of a previous study. The total DNA extracted from MAC samples (n = 55) was subjected to repetitive extragenic palindromic-PCR (rep-PCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Rep-PCR analysis showed that core microbiota of Serro MAC was closely related, independent of the production town, farm size, or time of production. The sequencing of PCR-DGGE bands identified the prevalence of Lactococcus lactis in all samples, and Streptococcus salivarius was also identified. Thus, we conclude that when more accurate methods are unavailable, rep-PCR can be used as a culture-independent method to demonstrate if the microbiota is closely related or not among the samples. PCR-DGGE results also matched to the main findings of high-throughput sequencing, previously presented, confirming its confidence to detect the main microbial groups present in the raw milk cheeses.


Assuntos
Queijo , Lactococcus lactis , Microbiota , Animais , Queijo/microbiologia , DNA Bacteriano/genética , Microbiologia de Alimentos , Lactococcus lactis/genética , Microbiota/genética , Leite/microbiologia
6.
Arch Microbiol ; 204(1): 109, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978623

RESUMO

Mangroves are highly productive unique ecosystems harboring diverse unexplored microbial communities that play crucial roles in nutrient cycling as well as in maintaining ecosystem services. The mangrove-associated microbial communities transform the dead vegetation into nutrient sources of nitrogen, phosphorus, potash, etc. To understand the genetic and functional diversity of the bacterial communities involved in nitrogen cycling of this ecosystem, this study explored the diversity and distribution of both the nitrogen fixers and denitrifiers associated with the rhizospheres of Avicennia marina, Rhizophora mucronata, Suaeda maritima, and Salicornia brachiata of the Pichavaram mangroves. A combination of both culturable and unculturable (PCR-DGGE) approaches was adopted to explore the bacterial communities involved in nitrogen fixation by targeting the nifH genes, and the denitrifiers were explored by targeting the nirS and nosZ genes. Across the rhizospheres, Gammaproteobacteria was found to be predominant representing both nitrogen fixers and denitrifiers as revealed by culturable and unculturable analyses. Sequence analysis of soil nifH, nirS and nosZ genes clustered to unculturable, with few groups clustering with culturable groups, viz., Pseudomonas sp. and Halomonas sp. A total of 16 different culturable genera were isolated and characterized in this study. Other phyla like Firmicutes and Actinobacteria were also observed. The PCR-DGGE analysis also revealed the presence of 29 novel nifH sequences that were not reported earlier. Thus, the mangrove ecosystems serve as potential source for identifying unexplored novel microbial communities that contribute to nutrient cycling.


Assuntos
Microbiota , Rizosfera , Microbiota/genética , Nitrogênio/análise , Ciclo do Nitrogênio , Solo , Microbiologia do Solo
7.
Microb Ecol ; 83(2): 492-500, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33973059

RESUMO

Honey bees (Apis mellifera) provide invaluable benefits for food production and maintenance of biodiversity of natural environments through pollination. They are widely spread across the world, being adapted to different climatic conditions. To survive the winter in cold temperate regions, honey bees developed different strategies including storage of honey and pollen, confinement of individuals during the winter, and an annual cycle of colony growth and reproduction. Under these conditions, winter honey bees experience physiological changes, including changes in immunity and the composition of honey bee gut microbiota. However, under tropical or subtropical climates, the life cycle can experience alterations, i.e., queens lay eggs during almost all the year and new honey bees emerge constantly. In the present study, we characterized nurses' honey bee gut microbiota in colonies under subtropical region through a year, combining qPCR, PCR-DGGE, and 16S rDNA high-throughput sequencing. We also identified environmental variables involved in those changes. Our results showed that under the mentioned conditions, the number of bacteria is stable throughout the year. Diversity of gut microbiota is higher in spring and lower in summer and winter. Gradual changes in compositions occur between seasons: Lactobacillus spp. predominate in spring while Gilliamella apicola and Snodgrasella alvi predominate in summer and winter. Environmental variables (mainly precipitations) affected the composition of the honey bee gut microbiota. Our findings provide new insights into the dynamics of honey bee gut microbiota and may be useful to understand the adaptation of bees to different environmental conditions.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Abelhas , Biodiversidade , Microbioma Gastrointestinal/genética , Polinização , Estações do Ano
8.
Bioresour Bioprocess ; 9(1): 45, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38647844

RESUMO

In recent years the use of organic matter soil amendments, such as agricultural by-products, has been implemented with the aim of increasing soil fertility, while minimizing the environmental impact of agriculture. Sheep wool residues (SWR) have shown beneficial effects on plant nutrition and soil properties, while only few works assessed their impact on soil microbial communities. The main aim of this work was to investigate the possible valorization of two SWR types (scoured residues, white wool, WW, and carbonized scoured residues, black wool, BW) as organic soil amendments, in pot-grown olive trees, by evaluating their impact on soil bacterial communities and mycorrhizal symbionts. The two SWR types did not negatively impact on the diversity and composition of soil bacterial communities, as revealed by PCR-denaturating gradient gel electrophoresis (PCR-DGGE) of partial 16S rRNA gene, and on the activity of native arbuscular mycorrhizal fungi (AMF), while positively affecting plant growth. Only the highest doses of one SWR type (2% BW) caused a decrease in bacterial diversity and native AMF ability to colonize olive roots. DGGE bands sequencing allowed the identification of the major bacterial taxa. Sequences corresponding to Ohtaekwangia spp., Beta proteobacterium, Blastocatella sp., Ramlibacter monticola and Massilia frigida/rubra, Dongia sp. and Chloroflexi were mainly represented in SWR-amended soils, while those represented by Chryseolinea soli and Acidobacteria were abundant in control soil. Overall, this work showed that SWR may be valorized as organic soil amendments, as soil bacteria and AMF, representing key factors of biological soil fertility, were not negatively affected, while the activity of bacterial genera and species known for their ability to decompose complex compounds was boosted. Further studies will investigate the biodegradation efficiency of the diverse bacterial taxa developing in SWR-amended soils.

9.
Rev. argent. microbiol ; 53(4): 11-20, Dec. 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1376417

RESUMO

ABSTRACT The driving forces behind many soil processes are microorganisms and they are able to respond immediately to environmental changes. The soil microbial community impacts on many soil properties. More than one-third of the terrestrial ecosystems are semiarid. However, a limited number of studies have been conducted to characterize soil fungal communities in semiarid grasslands, in particular those of agricultural fields. The aim of this study was to explore changes in the diversity and structure of soil fungal communities in semiarid grasslands, after different doses of glyphosate were applied under field conditions. Changes in soil fungal communities were examined using different approaches including culturing, calcofluor white stain and denaturing gradient gel electrophoresis (DGGE). The different approaches complement each other, revealing different aspects of the effect of glyphosate on soil fungal communities. We demonstrated a negative effect of glyphosate on soil fungal biomass at high doses and an early and transitory stimulatory effect on soil fungal biomass. We also found a negative effect of glyphosate on the species richness of cultivable fungi and changes in the molecular structure of soil fungal communities after double doses or long-term glyphosate application. In summary, our findings demonstrate an overall negative effect of glyphosate on soil fungal communities.


RESUMEN Los microorganismos del suelo son los responsables de llevar a cabo la mayoría de los procesos biológicos que ocurren en el suelo, y son capaces de reaccionar ante el estrés ambiental. Más de un tercio de los ecosistemas terrestres son semiáridos. Sin embargo, son escasos los estudios realizados para caracterizar las comunidades fúngicas en suelos agrícolas en ecosistemas semiáridos. El objetivo del presente trabajo fue estudiar los cambios que se producen en la biomasa, la diversidad y la estructura de las comunidades fúngicas del suelo, luego de la aplicación de distintas dosis de glifosato en condiciones de campo. Se emplearon diferentes técnicas incluidas el cultivo, la tinción directa con blanco de calcoflúor y PCR acoplada a electroforesis en geles de gradiente desnaturalizante (DGGE). Las distintas metodologías empleadas se complementan entre sí al detectar cada una distintos aspectos del efecto del glifosato en las comunidades fúngicas del suelo. Se encontró que el glifosato produce un efecto negativo sobre la biomasa fúngica, también se encontró un efecto transitorio estimulante inmediatamente posterior a la aplicación del herbicida. Además, se vio un efecto negativo sobre la riqueza de hongos cultivables, así como también cambios en la estructura molecular de las comunidades luego de aplicaciones repetidas. En conclusión, se demostró un efecto negativo generalizado sobre las comunidades fúngicas del suelo.


Assuntos
Microbiota , Micobioma , Solo , Microbiologia do Solo , Fungos , Glicina/análogos & derivados
10.
Curr Res Food Sci ; 4: 746-751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746808

RESUMO

Greek avgotaracho Mesolonghiou (fish eggs from Flathead Mullet) is a highly valuable food product which holds Protected Destination of Origin status. The aim of this work was to use PCR-DGGE technique to examine whether there is a correlation between bacteria population in fish eggs and geographical origin. Cluster analysis of fish eggs from three geographical locations (Mesolonghi, Australia and Mauritania) discriminated samples according to their provenance. Moreover, we utilized emulsion-PCR amplification in DGGE analysis in order to investigate whether we could obtain further information about food products' bacteria communities. PCR-DGGE proved to be a suitable method for fish eggs traceability, moreover emulsion PCR-DGGE provides better results. Emulsion-PCR can face up the existing limitations of conventional PCR and thus can be demonstrated as alternative molecular technique for complex and processed matrices, regarding food traceability and authentication.

11.
BMC Vet Res ; 17(1): 325, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641885

RESUMO

BACKGROUND: Mycoplasma species have been associated with economically important diseases affecting ruminants worldwide and include contagious bovine pleuropneumonia (CBPP), contagious caprine pleuropneumonia (CCPP) and contagious agalactia, listed by the World Organisation for Animal Health (OIE). The Mycoplasma Team at the Animal and Plant Health Agency provides an identification service for Mycoplasma and Ureaplasma species of veterinary importance to the United Kingdom (UK), supporting the detection of new and emerging pathogens, as well as contributing to the surveillance of endemic, and the OIE listed diseases exotic to the UK. Mycoplasma and other Mollicutes species were identified from diagnostic samples from farmed ruminants in England and Wales using a combination of culture and 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis, submitted between 2005 and 2019. RESULTS: A total of 5578 mollicutes identifications, which include mycoplasmas and the related acholeoplasmas and ureaplasmas, were made from farmed ruminant animals during the study period. Throughout the study period, the pathogen Mycoplasma bovis was consistently the most frequently identified species, accounting for 1411 (32%) of 4447 molecular identifications in cattle, primarily detected in the lungs of pneumonic calves, followed by joints and milk of cattle showing signs of arthritis and mastitis, respectively. M. bovirhinis, M. alkalescens, M. dispar, M. arginini and Ureaplasma diversum, were also common. Mixed species, principally M. bovis with M. alkalescens, M. arginini or M. bovirhinis were also prevalent, particularly from respiratory samples. The non-cultivable blood-borne haemoplasmas Candidatus 'Mycoplasma haemobos' and Mycoplasma wenyonii were identified from cattle, with the latter species most often associated with milk-drop. M. ovipneumoniae was the predominant species identified from sheep and goats experiencing respiratory disease, while M. conjunctivae preponderated in ocular samples. The UK remains free of the ruminant mycoplasmas listed by OIE. CONCLUSIONS: The continued high prevalence of M. bovis identifications confirms its ongoing dominance and importance as a significant pathogen of cattle in England and Wales, particularly in association with respiratory disease. M. ovipneumoniae has seen a general increase in prevalence in recent years, notably in coughing lambs and should therefore be considered as a primary differential diagnosis of respiratory disease in small ruminants.


Assuntos
Doenças dos Animais/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma/isolamento & purificação , Ruminantes/microbiologia , Doenças dos Animais/epidemiologia , Animais , Inglaterra/epidemiologia , Mycoplasma/classificação , Mycoplasma/genética , Infecções por Mycoplasma/epidemiologia , RNA Ribossômico 16S , Tenericutes/classificação , Tenericutes/isolamento & purificação , País de Gales/epidemiologia
12.
J Biosci Bioeng ; 132(2): 154-160, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34024749

RESUMO

An anaerobic microbial consortium capable of reductively dehalogenating 2,4,6-triiodophenol (2,4,6-TIP) was enriched from the marine sponge Hymeniacidon sinapium. The enrichment reductively deiodinated 100 µM of 2,4,6-TIP to 4-iodophenol (4-IP) and 2-iodophenol (2-IP) in the presence of sterile sponge tissue as the sole carbon source and electron donor. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis revealed that bacteria closely related with Vallitalea guaymasensis and Oceanirhabdus sediminicola, both of which are members of the order Clostridiales, were predominant in the enrichment. When glucose was added to the enrichment as alternative carbon source, one of these bacteria grew predominantly, which was subsequently isolated as a pure culture. The strain, designated as TIP-1, showed 99.7% 16S rRNA gene sequence similarity with V. guaymasensis. In the presence of glucose, strain TIP-1 reductively deiodinated 2,4,6-TIP to 2-IP and 4-IP at a molar ratio of 3:1, during which 2,4-diiodophenol (2,4-DIP) and 2,6-diiodophenol (2,6-DIP) were observed as deiodinated intermediates. Glucose was required for 2,4,6-TIP deiodination, but 2,4,6-TIP was not essential for growth of strain TIP-1. The strain also deiodinated 2,4-DIP to 2-IP and 4-IP at a molar ratio of 1:1, and 2,6-DIP to 2-IP, but further deiodination of the monoiodophenols was not observed. These results suggest that strain TIP-1 removed both ortho- and para-substituted iodines equally. Such deiodinating bacteria could be applied to the mineralization or dehalogenation of triiodobenzene derivatives, which are widely used as X-ray contrast media.


Assuntos
Clostridiaceae , Clostridiales , Poríferos , Animais , DNA Bacteriano , Fenóis , Filogenia , RNA Ribossômico 16S/genética
13.
Front Microbiol ; 12: 579920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790872

RESUMO

Under consecutive monoculture, the abundance of pathogenic fungi, such as Fusarium oxysporum in the rhizosphere of Radix pseudostellariae, negatively affects the yield and quality of the plant. Therefore, it is pertinent to explore the role of antagonistic fungi for the management of fungal pathogens such as F. oxysporum. Our PCR-denatured gradient gel electrophoresis (DGGE) results revealed that the diversity of Trichoderma spp. was significantly declined due to extended monoculture. Similarly, quantitative PCR analysis showed a decline in Trichoderma spp., whereas a significant increase was observed in F. oxysporum. Furthermore, seven Trichoderma isolates from the R. pseudostellariae rhizosphere were identified and evaluated in vitro for their potentiality to antagonize F. oxysporum. The highest and lowest percentage of inhibition (PI) observed among these isolates were 47.91 and 16.67%, respectively. In in vivo assays, the R. pseudostellariae treated with four Trichoderma isolates, having PI > 30%, was used to evaluate the biocontrol efficiency against F. oxysporum in which T. harzianum ZC51 enhanced the growth of the plant without displaying any disease symptoms. Furthermore, the expression of eight defense-related genes of R. pseudostellariae in response to a combination of F. oxysporum and T. harzianum ZC51 treatment was checked, and most of these defense genes were found to be upregulated. In conclusion, this study reveals that the extended monoculture of R. pseudostellariae could alter the Trichoderma communities in the plant rhizosphere leading to relatively low level of antagonistic microorganisms. However, T. harzianum ZC51 could inhibit the pathogenic F. oxysporum and induce the expression of R. pseudostellariae defense genes. Hence, T. harzianum ZC51 improves the plant resistance and reduces the growth inhibitory effect of consecutive monoculture problem.

14.
J Appl Microbiol ; 131(5): 2325-2335, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33797823

RESUMO

AIMS: This study aimed to clarify the cause of quality reduction in Korean sourdough after successive back-slopping. METHODS AND RESULTS: We investigated the dynamic changes in lactic acid bacteria during the back-slopping process using genetic fingerprinting techniques. During the initial propagation phases, the dominant lactic acid bacteria were Fructilactobacillus sanfranciscensis (<5 log CFU per g sourdough), Latilactobacillus curvatus (9·5 log CFU per g sourdough) and Levilactobacillus brevis (6·5 log CFU per g sourdough). However, after the 11th propagation, F. sanfranciscensis became more prominent (>9·0 log CFU per g sourdough), whereas L. curvatus and L. brevis rapidly decreased. Monitoring these bacteria in the co-culture system revealed that acid-tolerant F. sanfranciscensis rapidly utilized maltose (1·65 g l-1  h-1 ) and produced large amounts of lactic acid, whereas L. brevis and L. curvatus consumed maltose slowly and L. curvatus was poorly tolerant to lactic acid. CONCLUSION: The results indicate that competition exists between the lactic acid bacteria in sourdough during the back-slopping process, and microbial succession by acid-tolerant species results in quality reduction of sourdough. SIGNIFICANCE AND IMPACT OF THE STUDY: This study uncovered the cause of microbial changes during the propagation of Korean sourdough and proposed a strategy to develop starters to produce high-quality bakery products.


Assuntos
Lactobacillales , Pão , Fermentação , Farinha/análise , Microbiologia de Alimentos , Lactobacillales/genética , República da Coreia
15.
Physiol Behav ; 233: 113356, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577871

RESUMO

RATIONALE: Compulsive behaviour, present in different psychiatric disorders such as obsessive-compulsive disorder, schizophrenia and drug abuse, is associated with altered levels of serotonin (5-hydroxytryptamine, 5-HT). The gut microbiota regulates tryptophan (TRP) metabolism and may affect global 5-H synthesis in the enteric and central nervous systems, suggesting a possible involvement of gut microbiota in compulsive spectrum disorders. OBJECTIVES: The present study investigated whether chronic TRP depletion by diet alters the faecal bacterial community profiles of compulsive versus non-compulsive rats in schedule-induced polydipsia (SIP). Peripheral plasma 5-HT and brain-derived neurotrophic factor (BDNF) levels were evaluated. METHODS: Wistar rats were selected as High Drinkers (HD) or Low Drinkers (LD) according to their SIP behaviour and were fed for 14 days with either a TRP-free diet (T-) or a TRP-supplemented diet (T+). The faecal bacterial community structure was investigated with 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis. RESULTS: Compulsive HD rats showed a lower bacterial diversity than LD rats, irrespectively of the diet. The TRP-depleted HD rats, the only group increasing compulsive licking in SIP, showed a reduction of bacterial evenness and a highly functionally organized community compared with the other groups, indicating that this bacterial community is more fragile to external changes due to the dominance of a low number of species. The chronic TRP depletion by diet effectively reduced peripheral plasma 5-HT levels in both HD and LD rats, while plasma BDNF levels were not altered. CONCLUSIONS: These results highlight the possible implication of reduced microbial diversity in compulsive behaviour and the involvement of the serotonergic system in modulating the gut brain-axis in compulsive spectrum disorders.


Assuntos
Polidipsia , Triptofano , Animais , Dieta , RNA Ribossômico 16S/genética , Ratos , Ratos Wistar
16.
Zoonoses Public Health ; 68(4): 344-352, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33586362

RESUMO

Enterohepatic Helicobacter (EHH) species have been increasingly associated with acute gastroenteritis, inflammatory bowel disease and hepatobiliary diseases in humans. However, their host range and transmission routes are poorly understood. Therefore, the aim of this study was to determine the presence of EHH in healthy dogs using both cultivation-dependent and -independent methods. Three hundred and ninety faecal samples from domestic dogs without gastrointestinal symptoms were analysed between June 2018 and July 2019 in Valdivia (South of Chile). Samples were inoculated on selective medium and in parallel were filtrated over an antibiotic-free blood agar. Both media were incubated in a microaerobic atmosphere at 37°C for 7 days. Colonies were identified by PCR and phylogenetic analysis. A subset of 50 samples (half of them positive for EHH by cultivation and the remaining half negative) was analysed by PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) for direct detection. Cultivation method detected EHH in 15.4% (60/390) of the samples, being the most prevalent species H. canis (5.8%, 23/390) and H. canicola (5.1%, 20/390), followed by H. bilis (3.6%, 14/390) and 'H. winghamensis' (1.3%, 5/390). In contrast, PCR-DGGE method detected Helicobacter DNA in almost all (96%, 48/50) tested samples. On the other hand, the method used also allowed to isolate other Campylobacterales, in fact 44.3% (173/390) of the samples were positive for Campylobacter upsaliensis (43.3%, 169/390) followed by C. jejuni (2.0%, 8/390). Moreover, two strains that presented Campylobacter-like morphology were finally identified as Anaerobiospirillum succiniciproducens. Our results indicate that healthy domestic dogs commonly carry EHH and other Campylobacter species. However, further studies are needed to determine whether and how these Helicobacter and Campylobacter species can be transmitted to humans.


Assuntos
Reservatórios de Doenças/veterinária , Doenças do Cão/microbiologia , Infecções por Helicobacter/veterinária , Helicobacter/isolamento & purificação , Animais , Campylobacter/isolamento & purificação , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Chile , Estudos Transversais , DNA Bacteriano/isolamento & purificação , Reservatórios de Doenças/microbiologia , Cães , Fezes/microbiologia , Helicobacter/classificação , Helicobacter/genética , Infecções por Helicobacter/microbiologia , Filogenia
17.
Rev Argent Microbiol ; 53(4): 349-358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33551324

RESUMO

The driving forces behind many soil processes are microorganisms and they are able to respond immediately to environmental changes. The soil microbial community impacts on many soil properties. More than one-third of the terrestrial ecosystems are semiarid. However, a limited number of studies have been conducted to characterize soil fungal communities in semiarid grasslands, in particular those of agricultural fields. The aim of this study was to explore changes in the diversity and structure of soil fungal communities in semiarid grasslands, after different doses of glyphosate were applied under field conditions. Changes in soil fungal communities were examined using different approaches including culturing, calcofluor white stain and denaturing gradient gel electrophoresis (DGGE). The different approaches complement each other, revealing different aspects of the effect of glyphosate on soil fungal communities. We demonstrated a negative effect of glyphosate on soil fungal biomass at high doses and an early and transitory stimulatory effect on soil fungal biomass. We also found a negative effect of glyphosate on the species richness of cultivable fungi and changes in the molecular structure of soil fungal communities after double doses or long-term glyphosate application. In summary, our findings demonstrate an overall negative effect of glyphosate on soil fungal communities.


Assuntos
Microbiota , Micobioma , Fungos , Glicina/análogos & derivados , Solo , Microbiologia do Solo , Glifosato
18.
Bioresour Technol ; 324: 124639, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33434875

RESUMO

In this study, a laboratory-scale sequencing batch reactor (SBR) equipped with aerobic granular sludge (AGS) technology was continuously operated for 220 days to remove ammonium from an existing landfill leachate. The ammonium removal was characterized by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) technology. This method helped to analyze the long-term community structural stability of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and denitrifying bacteria (DB) throughout the experiment. Simultaneously, 16S rRNA gene cloning and sequencing analysis identified the dominant species of different microbial species. Experimental results confirmed that ammonium removal was inhibited at the high nitrogen loading rate (NLR) stage while the low NLR stage achieved satisfactory ammonium removal. Moreover, the findings demonstrated that functionally stable wastewater treatment bioreactors facilitated the occurrence of stable microbial community structures.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Reatores Biológicos , Nitrogênio , RNA Ribossômico 16S/genética , Esgotos
19.
Foods ; 9(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158141

RESUMO

The aim of the present study was to assess the microecosystem of 13 homemade spontaneously fermented wheat sourdoughs from different regions of Greece, through the combined use of culture-dependent (classical approach; clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and identification by PCR species-specific for Lactiplantibacillus plantarum, and sequencing of the 16S-rRNA and 26S-rRNA gene, for Lactic Acid Bacteria (LAB) and yeasts, respectively) and independent approaches [DNA- and RNA-based PCR-Denaturing Gradient Gel Electrophoresis (DGGE)]. The pH and Total Titratable Acidity (TTA) values ranged from 3.64-5.05 and from 0.50-1.59% lactic acid, respectively. Yeast and lactic acid bacteria populations ranged within 4.60-6.32 and 6.28-9.20 log CFU/g, respectively. The yeast: LAB ratio varied from 1:23-1:10,000. A total of 207 bacterial and 195 yeast isolates were obtained and a culture-dependent assessment of their taxonomic affiliation revealed dominance of Lb. plantarum in three sourdoughs, Levilactobacillus brevis in four sourdoughs and co-dominance of these species in two sourdoughs. In addition, Companilactobacillusparalimentarius dominated in two sourdoughs and Fructilactobacillussanfranciscensis and Latilactobacillus sakei in one sourdough each. Lactococcus lactis, Lb. curvatus, Leuconostoc citreum, Ln. mesenteroides and Lb. zymae were also recovered from some samples. Regarding the yeast microbiota, it was dominated by Saccharomyces cerevisiae in 11 sourdoughs and Pichia membranifaciens and P. fermentans in one sourdough each. Wickerhamomyces anomalus and Kazachstania humilis were also recovered from one sample. RNA-based PCR-DGGE provided with nearly identical results with DNA-based one; in only one sample the latter provided an additional band. In general, the limitations of this approach, namely co-migration of amplicons from different species to the same electrophoretic position and multiband profile of specific isolates, greatly reduced resolution capacity, which resulted in only partial verification of the microbial ecology detected by culture-dependent approach in the majority of sourdough samples. Our knowledge regarding the microecosystem of spontaneously fermented Greek wheat-based sourdoughs was expanded, through the study of sourdoughs originating from regions of Greece that were not previously assessed.

20.
Arch Microbiol ; 202(10): 2607-2617, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32691102

RESUMO

Actinomycetales is an order of actinobacteria that have an important role in the decomposition of organic matter. Their abundance and distribution can reflect a good level of soil fertility as well as biological activity. In this research study, actinomycetal diversity in soil was investigated under various field treatments with biowastes. Initially, unvegetated agricultural soil plots of 4 m2 had been annually amended with increasing rates of municipal solid waste compost (MSWC at 40, 80 and 120 t ha-1 year-1) and farmyard manure (FM at 40 and 120 t ha-1 year-1) for eight consecutive years. Control consisted of unamended soil and all treatments were distributed in four randomized complete blocks. At the end of the experimental period, total DNA was extracted from fresh topsoil samples (0-20 cm) then nested PCR-DGGE sequencing method was applied to assess the long-term effect of treatments on the diversity of actinomycetes. Analytical outcomes revealed the presence of ten actinomycetal families with Streptomycetaceae, Pseudonocardiaceae and Nocardioidaceae being the most dominant regardless to changes in experimental conditions. Besides, the long-term accumulation of both biowastes in soil affected the diversity of actinomycetal communities in different ways including contribution, stimulation or inhibition. Interestingly, soil treated with MSWC at an equivalent rate of 40 t ha-1 year-1 was likely to provide optimal growth conditions for major identified genera because it showed the highest actinomycetal diversity as compared to the rest of the treatments.


Assuntos
Actinomycetales/classificação , Actinomycetales/genética , Agricultura/métodos , Biodiversidade , Perfil Genético , Microbiologia do Solo , Esterco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...