Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1433750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239097

RESUMO

Throughout our evolutionary history, physical activity has played a significant role in shaping our physiology. Advances in exercise science have further reinforced this concept by highlighting how exercise can change gene expression and molecular signaling to achieve various beneficial outcomes. Several studies have shown that exercise can alter neuronal functions to prevent neurodegenerative conditions like Parkinson's and Alzheimer's diseases. However, individual genotypes, phenotypes, and varying exercise protocols hinder the prescription of exercise as standard therapy. Moreover, exercise-induced molecular signaling targets can be double-edged swords, making it difficult to use exercise as the primary candidate for beneficial effects. For example, activating PGC-1 alpha and BDNF through exercise could produce several benefits in maintaining brain health, such as plasticity, neuronal survival, memory formation, cognition, and synaptic transmission. However, higher expression of BDNF might play a negative role in bipolar disorder. Therefore, further understanding of a specific mechanistic approach is required. This review focuses on how exercise-induced activation of these molecules could support brain health and discusses the potential underlying mechanisms of the effect of exercise-induced PGC-1 alpha and BDNF on brain health.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Encéfalo , Exercício Físico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Exercício Físico/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Animais , Plasticidade Neuronal/fisiologia
2.
Nutrients ; 16(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39203743

RESUMO

In frail older adults (mean age 85 years old), a 3-month supplementation with a low dose (6 g/day) of medium-chain triglycerides (MCTs; C8:0 and C10:0) given at a meal increased muscle mass and function, relative to supplementation with long-chain triglycerides (LCTs), but it decreased fat mass. The reduction in fat mass was partly due to increased postprandial energy expenditure by stimulation of the sympathetic nervous system (SNS). However, the extracellular signals to ameliorate sarcopenia are unclear. The following three potential extracellular signals to increase muscle mass and function after MCT supplementation are discussed: (1) Activating SNS-the hypothesis for this is based on evidence that a beta2-adrenergic receptor agonist acutely (1-24 h) markedly upregulates isoforms of peroxisomal proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNAs, promotes mitochondrial biogenesis, and chronically (~1 month) induces muscle hypertrophy. (2) An increased concentration of plasma acyl-ghrelin stimulates growth hormone secretion. (3) A nitrogen-sparing effect of ketone bodies, which fuel skeletal muscle, may promote muscle protein synthesis and prevent muscle protein breakdown. This review will help guide clinical trials of using MCTs to treat primary (age-related) sarcopenia.


Assuntos
Idoso Fragilizado , Músculo Esquelético , Sarcopenia , Triglicerídeos , Humanos , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Idoso de 80 Anos ou mais , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Idoso , Suplementos Nutricionais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Corpos Cetônicos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Masculino
3.
Biomedicines ; 12(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062010

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disease for which there is a lack of effective pharmacological treatments. Hirudin, a natural peptide extracted from leeches, has been used for broad pharmacological purposes. In this study, we investigated the therapeutic effects of hirudin on IPF and its related mechanism of action. By constructing a mouse model of pulmonary fibrosis and treating it with hirudin in vivo, we found that hirudin exerted anti-fibrotic, anti-oxidative, and anti-fibroblast senescence effects. Moreover, using an in vitro model of stress-induced premature senescence in primary mouse lung fibroblasts and treating with hirudin, we observed inhibition of fibroblast senescence and upregulation of PGC1-alpha and Sirt3 expression. However, specific silencing of PGC1-alpha or Sirt3 suppressed the anti-fibroblast senescence effect of hirudin. Thus, the PGC1-alpha/Sirt3 pathway mediates the anti-fibroblast senescence effect of hirudin, potentially serving as a molecular mechanism underlying its anti-fibrosis and anti-oxidative stress effects exerted on the lungs.

4.
Physiol Rep ; 12(12): e16117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898524

RESUMO

This study aimed to investigate how intermittent hyperoxic exposure (three cycles of 21% O2 [10 min] and 30% O2 [15 min]) affects exercise performance in mice. Three hours after the acute exposure, there was an observed increase in mRNA levels of phosphofructokinase (Bayes factor [BF] ≥ 10), mitochondrial transcription factor-A (BF ≥10), PPAR-α (BF ≥3), and PPAR-γ (BF ≥3) in the red gastrocnemius muscle (Gr). Four weeks of exercise training under intermittent (INT), but not continuous (HYP), hyperoxia significantly (BF ≥30) increased maximal exercise capacity compared to normoxic exercise-trained (ET) group. INT group exhibited significantly higher activity levels of 3-hydroxyacyl-CoA-dehydrogenase (HAD) in Gr (BF = 7.9) compared to ET group. Pyruvate dehydrogenase complex activity levels were significantly higher in INT group compared to ET group in white gastrocnemius, diaphragm, and left ventricle (BF ≥3). NT-PGC1α protein levels in Gr (BF = 7.7) and HAD activity levels in Gr (BF = 6.9) and soleus muscles (BF = 3.3) showed a significant positive correlation with maximal work values. These findings suggest that exercise training under intermittent hyperoxia is a beneficial strategy for enhancing endurance performance by improving fatty acid and pyruvic acid utilization.


Assuntos
Músculo Esquelético , Condicionamento Físico Animal , Resistência Física , Animais , Masculino , Músculo Esquelético/metabolismo , Camundongos , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Camundongos Endogâmicos C57BL , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , PPAR alfa/metabolismo , PPAR alfa/genética , PPAR gama/metabolismo , PPAR gama/genética , Fosfofrutoquinases/metabolismo , Fosfofrutoquinases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA , Proteínas Mitocondriais
5.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905062

RESUMO

Sarcopenia burdens the elderly population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are missing. The glucocorticoid prednisone remodels muscle metabolism based on frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone rescued muscle quality in aged 24-month-old mice to levels comparable to young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing PGC1alpha and its co-factor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1alpha, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed the myocyte-specific Lipin1 as non-redundant factor coaxing PGC1alpha upregulation to the stimulation of both oxidative and anabolic capacities. Our study unveils an aging-resistant druggable program in myocytes to coordinately rescue energy and mass in sarcopenia.

6.
Front Mol Neurosci ; 16: 1149906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822967

RESUMO

Peroxisome proliferator-activated receptor PPARγ coactivator-α (PGC-1α) is concentrated in inhibitory interneurons and plays a vital role in neuropsychiatric diseases. We previously reported some characteristic features of schizophrenia (SZ) in GABAergic neuron-specific Pgc-1alpha knockout (KO) mice (Dlx5/6-Cre: Pgc-1alphaf/f). However, there is a fundamental gap in the molecular mechanism by which the Pgc-1alpha gene is involved in the neurobehavioral abnormalities of SZ. The loss of critical period (CP) triggers-maturations of parvalbumin interneurons (PVIs) and brakes-and the formation of perineuronal nets (PNNs) implicates mistimed trajectories during adult brain development. In this study, using the Pgc-1alpha KO mouse line, we investigated the association of Pgc-1alpha gene deletion with SZ-like behavioral deficits, PVI maturation, PNN integrity and synaptic ultrastructure. These findings suggest that Pgc-1alpha gene deletion resulted in a failure of CP onset and closure, thereby prolonging cortical plasticity timing. To determine whether the manipulation of the PNN structure is a potential method of altering neuronal plasticity, GM6001, a broad-spectrum matrix metalloproteinase (MMP)-inhibitor was applied. Here we confirmed that the treatment could effectively correct the CP plasticity window and ameliorate the synaptic ultrastructure in the Pgc-1alpha KO brain. Moreover, the intervention effect on neuronal plasticity was followed by the rescue of short-term habituation deficits and the mitigation of aberrant salience, which are some characteristic features of SZ. Taken collectively, these findings suggest that the role of PGC-1α in regulating cortical plasticity is mediated, at least partially, through the regulation of CP onset/closure. Strategically introduced reinforcement of molecular brakes may be a novel preventive therapy for psychiatric disorders associated with PGC-1α dysregulation.

7.
Adv Exp Med Biol ; 1415: 49-53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440013

RESUMO

Human age-related macular degeneration (AMD) is a prevalent age-related disease which causes retinal dysfunction and disability. Genetic and cell culture studies from AMD patients have implicated impaired activity of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). PGC-1α is a transcriptional co-regulator that acts to control a plethora of metabolic processes relevant to AMD pathophysiology including gluconeogenesis, oxidative phosphorylation, and response to oxidative injury. Perturbation of PGC-1α activity in mice causes AMD-like RPE and retinal pathology. There is potential for therapeutic modulation of the PGC-1α pathway in AMD treatment.


Assuntos
Degeneração Macular , PPAR gama , Humanos , Camundongos , Animais , Mitocôndrias/metabolismo , Envelhecimento/genética , Estresse Oxidativo , Degeneração Macular/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
8.
Front Mol Neurosci ; 16: 1117146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008779

RESUMO

L-lactate plays a critical role in learning and memory. Studies in rats showed that administration of exogenous L-lactate into the anterior cingulate cortex and hippocampus (HPC) improved decision-making and enhanced long-term memory formation, respectively. Although the molecular mechanisms by which L-lactate confers its beneficial effect are an active area of investigations, one recent study found that L-lactate supplementation results in a mild reactive oxygen species burst and induction of pro-survival pathways. To further investigate the molecular changes induced by L-lactate, we injected rats with either L-lactate or artificial CSF bilaterally into the dorsal HPC and collected the HPC after 60 minutes for mass spectrometry. We identified increased levels of several proteins that include SIRT3, KIF5B, OXR1, PYGM, and ATG7 in the HPC of the L-lactate treated rats. SIRT3 (Sirtuin 3) is a key regulator of mitochondrial functions and homeostasis and protects cells against oxidative stress. Further experiments identified increased expression of the key regulator of mitochondrial biogenesis (PGC-1α) and mitochondrial proteins (ATPB, Cyt-c) as well as increased mitochondrial DNA (mtDNA) copy number in the HPC of L-lactate treated rats. OXR1 (Oxidation resistance protein 1) is known to maintain mitochondrial stability. It mitigates the deleterious effects of oxidative damage in neurons by inducing a resistance response against oxidative stress. Together, our study suggests that L-lactate can induce expression of key regulators of mitochondrial biogenesis and antioxidant defense. These findings create new research avenues to explore their contribution to the L-lactate's beneficial effect in cognitive functions as these cellular responses might enable neurons to generate more ATP to meet energy demand of neuronal activity and synaptic plasticity as well as attenuate the associated oxidative stress.

9.
Physiol Rep ; 10(23): e15534, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36514879

RESUMO

This study was designed to (1) investigate the effects of acute exercise under intermittent hypoxia on muscle mRNA and protein levels, and (2) clarify the mechanisms by which exercise under intermittent hypoxia improves endurance capacity. Experiment-1: Male mice were subjected to either acute endurance exercise, exercise under hypoxia (14% O2 ), exercise under intermittent hypoxia (Int, three cycles of room air [10 min] and 14% O2 [15 min]). At 3 h after exercise under intermittent hypoxia, sirtuin-6 mRNA levels and nuclear prolyl hydroxylases-2 protein levels were significantly upregulated in white gastrocnemius muscle in the Int group. Experiment-2: Mice were assigned to sedentary control (Sed), normoxic exercise-trained (ET), hypoxic exercise-trained (HYP) or exercise-trained under intermittent hypoxia (INT) groups. Exercise capacity was significantly greater in the INT group than in the ET and HYP group. Activity levels of citrate synthase were significantly greater in the INT group than in the HYP group in soleus (SOL) and red gastrocnemius muscles. In SOL, nuclear N-terminal PGC1α levels were considerably increased by the INT training (95% confidence interval [CI]: 1.09-1.79). The INT significantly increased pyruvate dehydrogenase complex activity levels in left ventricle (LV). Monocarboxylate transporter-4 protein levels were significantly increased after the INT training in LV. Capillary-to-fiber ratio values were significantly increased in SOL and were substantially increased in LV (CI: 1.10-1.22) after the INT training. These results suggest that exercise training under intermittent hypoxia represents a beneficial strategy for increasing endurance performance via improving metabolic properties and capillary profiles in several hind-leg muscles and the heart.


Assuntos
Consumo de Oxigênio , Condicionamento Físico Animal , Camundongos , Masculino , Animais , Consumo de Oxigênio/fisiologia , Adaptação Fisiológica/fisiologia , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resistência Física/fisiologia
10.
Antioxidants (Basel) ; 11(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36358527

RESUMO

Ischemic heart disease affects millions of people around the world. Current treatment options, including coronary artery bypass grafting, do not result in full functional recovery, highlighting the need for novel adjunctive therapeutic approaches. Hibernation describes the myocardial response to prolonged ischemia and involves a set of complex cytoprotective metabolic and functional adaptations. PGC1-alpha, a key regulator of mitochondrial energy metabolism and inhibitor of oxidant-stress-inflammatory signaling, is known to be downregulated in hibernating myocardium. PGC1-alpha is a critical component of cellular stress responses and links cellular metabolism with inflammation in the ischemic heart. While beneficial in the acute setting, a chronic state of hibernation can be associated with self-perpetuating oxidant stress-inflammatory signaling which leads to tissue injury. It is likely that incomplete functional recovery following revascularization of chronically ischemic myocardium is due to persistence of metabolic changes as well as prooxidant and proinflammatory signaling. Enhancement of PGC1-alpha signaling has been proposed as a possible way to improve functional recovery in patients with ischemic heart disease. Adjunctive mesenchymal stem cell therapy has been shown to induce PGC1-alpha signaling in hibernating myocardium and could help improve clinical outcomes for patients undergoing bypass surgery.

11.
EXCLI J ; 21: 524-539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110558

RESUMO

Irisin is a hormone that is offered to be a hopeful remedial target in obesity and type 2 diabetes. It has received striking attention recently, whereas, the interactions between exercise training and irisin are still unclear. Therefore, this systematic review and meta-analysis investigated the impacts of exercise interventions on circulating irisin in adults. A systematic search was conducted in PubMed, CINAHL, MEDLINE, Cochrane, Google Scholar, and Scopus up to July 15, 2021. Twenty-four studies, which assessed a total of 921 participants were included and analyzed using a random-effects model to estimate weighted mean differences (MD) with 95 % confidence intervals (CI). Overall, data revealed that exercise training significantly increased circulating irisin (MD: 0.01, 95 % CI: 0.00, 0.01, p = 0.005), and declined insulin (MD: -2.09, 95 % CI: -2.81, -1.37, p < 0.00001), glucose (MD: -12.89, 95 % CI: -16.52, -9.26, p < 0.00001), and insulin resistance (MD: -0.89, 95 % CI: -1.15, -0.62, p < 0.00001). Subgroup analysis revealed that irisin raised significantly when resistance training (p = 0.04) and combined training (p = 0.002) were applied, and for the type 2 diabetes and prediabetes (p = 0.002 for both) groups. Moreover, subgroup analysis by the type of intervention demonstrated that insulin reduced when aerobic training (p < 0.00001) and combined training (p = 0.0003) were employed, but glucose and HOMA-IR reduced after all three types of exercise training. These findings demonstrate that exercise interventions may produce ameliorations in circulating irisin. Further long-term studies are required to confirm these findings.

12.
Front Endocrinol (Lausanne) ; 13: 883092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757410

RESUMO

Background: The association of high serum prolactin and increased body weight is positive but controversial, therefore we hypothesized that additional factors such as diets and the impact of prolactin on brown adipose tissue may condition its metabolic effects. Methods: We used LacDrd2KO females with lifelong severe hyperprolactinemia due dopamine-D2 receptor deletion from lactotropes, and slow onset of metabolic disturbances, and compared them to their respective controls (Drd2 loxP/loxP ). Food intake, and binge eating was evaluated. We then challenged mice with a High Fat (HFD) or a Control Diet (CD) for 8 weeks, beginning at 3 months of age, when no differences in body weight are found between genotypes. At the end of the protocol brown and white adipose tissues were weighed, and thermogenic and lipogenic markers studied, using real time PCR (Ucp1, Cidea, Pgc1a, Lpl, adiponectin, Prlr) or immunohistochemistry (UCP1). Histochemical analysis of brown adipose tissue, and glucose tolerance tests were performed. Results: Hyperprolactinemic mice had increased food intake and binge eating behavior. Metabolic effects induced by a HFD were exacerbated in lacDrd2KO mice. Hyperprolactinemia aggravated HFD-induced body weight gain and glucose intolerance. In brown adipose tissue pronounced cellular whitening as well as decreased expression of the thermogenic markers Ucp1 and Pgc1a were observed in response to high prolactin levels, regardless of the diet, and furthermore, hyperprolactinemia potentiated the decrease in Cidea mRNA expression induced by HFD. In subcutaneous white adipose tissue hyperprolactinemia synergistically increased tissue weight, while decreasing Prlr, Adiponectin and Lpl mRNA levels regardless of the diet. Conclusions: Pathological hyperprolactinemia has a strong impact in brown adipose tissue, lowering thermogenic markers and evoking tissue whitening. Furthermore, it modifies lipogenic markers in subcutaneous white adipose, and aggravates HFD-induced glucose intolerance and Cidea decrease. Therefore, severe high prolactin levels may target BAT function, and furthermore represent an adjuvant player in the development of obesity induced by high fat diets.


Assuntos
Intolerância à Glucose , Hiperprolactinemia , Adiponectina/farmacologia , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Intolerância à Glucose/metabolismo , Hiperprolactinemia/metabolismo , Hiperprolactinemia/patologia , Camundongos , Obesidade/metabolismo , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Aumento de Peso
13.
Front Physiol ; 13: 902031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547572

RESUMO

Circadian rhythms regulate a host of physiological processes in a time-dependent manner to maintain homeostasis in response to various environmental stimuli like day and night cycles, food intake, and physical activity. Disruptions in circadian rhythms due to genetic mutations, shift work, exposure to artificial light sources, aberrant eating habits, and abnormal sleep cycles can have dire consequences for health. Importantly, exercise training efficiently ameliorates many of these adverse effects and the role of skeletal muscle in mediating the benefits of exercise is a topic of great interest. However, the molecular and physiological interactions between the clock, skeletal muscle function and exercise are poorly understood, and are most likely a combination of molecular clock components directly acting in muscle as well as in concordance with other peripheral metabolic organ systems like the liver. This review aims to consolidate existing experimental evidence on the involvement of molecular clock factors in exercise adaptation of skeletal muscle and to highlight the existing gaps in knowledge that need to be investigated to develop therapeutic avenues for diseases that are associated with these systems.

14.
Arh Hig Rada Toksikol ; 73(1): 71-82, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35390239

RESUMO

Valproate is a common antiepileptic drug whose adverse effects include liver steatosis and dyslipidaemia. The aim of our study was to see how natural flavonoid antioxidant naringin would interact with valproate and attenuate these adverse effects. For this reason we treated male C57BL6 mice with a combination of 150 mg/kg of valproate and 25 mg/kg naringin every day for 10 days and compared their serum triglycerides, cholesterol, LDL, HDL, VLDL, and liver PPAR-alpha, PGC-1 alpha, ACOX1, Nrf2, SOD, CAT, GSH, and histological signs of steatosis. Valproate increased lipid peroxidation parameters and caused pronounced microvesicular steatosis throughout the hepatic lobule in all acinar zones, but naringin co-administration limited steatosis to the lobule periphery. In addition, it nearly restored total serum cholesterol, LDL, and triglycerides and liver ACOX1 and MDA to control levels. and upregulated PPAR-alpha and PGC-1 alpha, otherwise severely downregulated by valproate. It also increased SOD activity. All these findings suggest that naringin modulates key lipid metabolism regulators and should further be investigated in this model, either alone or combined with other lipid regulating drugs or molecules.


Assuntos
Dislipidemias , Fígado Gorduroso , Animais , LDL-Colesterol/metabolismo , LDL-Colesterol/farmacologia , Dislipidemias/induzido quimicamente , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Flavanonas , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Triglicerídeos/metabolismo , Triglicerídeos/farmacologia , Ácido Valproico/metabolismo , Ácido Valproico/toxicidade
15.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408868

RESUMO

In the last few years, the muscular system has gained attention due to the discovery of the muscle-secretome and its high potency for retaining or regaining health. These cytokines, described as myokines, released by the working muscle, are involved in anti-inflammatory, metabolic and immunological processes. These are able to influence human health in a positive way and are a target of research in metabolic diseases, cancer, neurological diseases, and other non-communicable diseases. Therefore, different types of exercise training were investigated in the last few years to find associations between exercise, myokines and their effects on human health. Particularly, resistance training turned out to be a powerful stimulus to enhance myokine release. As there are different types of resistance training, different myokines are stimulated, depending on the mode of training. This narrative review gives an overview about resistance training and how it can be utilized to stimulate myokine production in order to gain a certain health effect. Finally, the question of why resistance training is an important key regulator in human health will be discussed.


Assuntos
Treinamento Resistido , Citocinas/metabolismo , Exercício Físico/fisiologia , Humanos , Músculo Esquelético/metabolismo
16.
Antioxidants (Basel) ; 11(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35204143

RESUMO

Age-related decline in mitochondrial function and oxidative stress plays a critical role in neurodegeneration. Lactate dehydrogenase-B (LDHB) is a glycolytic enzyme that catalyzes the conversion of lactate, an important brain energy substrate, into pyruvate. It has been reported that the LDHB pattern changes in the brain during ageing. Yet very little is known about the effect of LDHB deficiency on brain pathology. Here, we have used Ldhb knockout (Ldhb-/-) mice to test the hypothesis that LDHB deficiency plays an important role in oxidative stress-mediated neuroinflammation and neurodegeneration. LDHB knockout (Ldhb-/-) mice were generated by the ablation of the Ldhb gene using the Cre/loxP-recombination system in the C57BL/6 genetic background. The Ldhb-/- mice were treated with either osmotin (15 µg/g of the body; intraperitoneally) or vehicle twice a week for 5-weeks. After behavior assessments, the mice were sacrificed, and the cortical and hippocampal brain regions were analyzed through biochemical and morphological analysis. Ldhb-/- mice displayed enhanced reactive oxygen species (ROS) and lipid peroxidation (LPO) production, and they revealed depleted stores of cellular ATP, GSH:GSSG enzyme ratio, and downregulated expression of Nrf2 and HO-1 proteins, when compared to WT littermates. Importantly, the Ldhb-/- mice showed upregulated expression of apoptosis mediators (Bax, Cytochrome C, and caspase-3), and revealed impaired p-AMPK/SIRT1/PGC-1alpha signaling. Moreover, LDHB deficiency-induced gliosis increased the production of inflammatory mediators (TNF-α, Nf-ĸB, and NOS2), and revealed cognitive deficits. Treatment with osmotin, an adipoR1 natural agonist, significantly increased cellular ATP production by increasing mitochondrial function and attenuated oxidative stress, neuroinflammation, and neuronal apoptosis, probably, by upregulating p-AMPK/SIRT1/PGC-1alpha signaling in Ldhb-/- mice. In brief, LDHB deficiency may lead to brain oxidative stress-mediated progression of neurodegeneration via regulating p-AMPK/SIRT1/PGC-1alpha signaling, while osmotin could improve mitochondrial functions, abrogate oxidative stress and alleviate neuroinflammation and neurodegeneration in adult Ldhb-/- mice.

17.
Lipids Health Dis ; 20(1): 135, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34629057

RESUMO

BACKGROUND: Dysregulated lipid metabolism is critically involved in the development of hepatocellular carcinoma (HCC). The respective metabolic pathways affected in HCC can be identified using suitable experimental models. Mice injected with diethylnitrosamine (DEN) and fed a normal chow develop HCC. For the analysis of the pathophysiology of HCC in this model a comprehensive lipidomic analysis was performed. METHODS: Lipids were measured in tumor and non-tumorous tissues by direct flow injection analysis. Proteins with a role in lipid metabolism were analysed by immunoblot. Mann-Whitney U-test or paired Student´s t-test were used for data analysis. RESULTS: Intra-tumor lipid deposition is a characteristic of HCCs, and di- and triglycerides accumulated in the tumor tissues of the mice. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha, lipoprotein lipase and hepatic lipase protein were low in the tumors whereas proteins involved in de novo lipogenesis were not changed. Higher rates of de novo lipogenesis cause a shift towards saturated acyl chains, which did not occur in the murine HCC model. Besides, LDL-receptor protein and cholesteryl ester levels were higher in the murine HCC tissues. Ceramides are cytotoxic lipids and are low in human HCCs. Notably, ceramide levels increased in the murine tumors, and the simultaneous decline of sphingomyelins suggests that sphingomyelinases were involved herein. DEN is well described to induce the tumor suppressor protein p53 in the liver, and p53 was additionally upregulated in the tumors. CONCLUSIONS: Ceramides mediate the anti-cancer effects of different chemotherapeutic drugs and restoration of ceramide levels was effective against HCC. High ceramide levels in the tumors makes the DEN injected mice an unsuitable model to study therapies targeting ceramide metabolism. This model is useful for investigating how tumors evade the cytotoxic effects of ceramides.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ceramidas/metabolismo , Dietilnitrosamina/toxicidade , Lipogênese , Animais , Carcinoma Hepatocelular/induzido quimicamente , Colesterol/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Lipidômica , Masculino , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Triglicerídeos/metabolismo , Proteína Supressora de Tumor p53
18.
Front Physiol ; 12: 709807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456749

RESUMO

Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.

19.
FASEB J ; 35(9): e21752, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369602

RESUMO

Aging, obesity, and insulin resistance are associated with low levels of PGC1α and PGC1ß coactivators and defective mitochondrial function. We studied mice deficient for PGC1α and PGC1ß [double heterozygous (DH)] to investigate their combined pathogenic contribution. Contrary to our hypothesis, DH mice were leaner, had increased energy dissipation, a pro-thermogenic profile in BAT and WAT, and improved carbohydrate metabolism compared to wild types. WAT showed upregulation of mitochondriogenesis/oxphos machinery upon allelic compensation of PGC1α4 from the remaining allele. However, DH mice had decreased mitochondrial OXPHOS and biogenesis transcriptomes in mitochondria-rich organs. Despite being metabolically healthy, mitochondrial defects in DH mice impaired muscle fiber remodeling and caused qualitative changes in the hepatic lipidome. Our data evidence first the existence of organ-specific compensatory allostatic mechanisms are robust enough to drive an unexpected phenotype. Second, optimization of adipose tissue bioenergetics is sufficient to maintain a healthy metabolic phenotype despite a broad severe mitochondrial dysfunction in other relevant metabolic organs. Third, the decrease in PGC1s in adipose tissue of obese and diabetic patients is in contrast with the robustness of the compensatory upregulation in the adipose of the DH mice.


Assuntos
Tecido Adiposo/metabolismo , Mitocôndrias/genética , Proteínas Nucleares/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fatores de Transcrição/genética , Envelhecimento/genética , Animais , Modelos Animais de Doenças , Metabolismo Energético/genética , Heterozigoto , Resistência à Insulina/genética , Masculino , Camundongos , Obesidade/genética , Termogênese/genética , Transcriptoma/genética
20.
Stem Cell Res ; 55: 102496, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411972

RESUMO

Satellite cells represent the main myogenic population accounting for skeletal muscle homeostasis and regeneration. While our knowledge of the signaling pathways controlling satellite cell regenerative capability is increasing, the underlying epigenetic mechanisms are still not clear, especially in the case of human satellite cells. Here, by performing chromatin accessibility profiling (ATAC-seq) in samples isolated from human and murine muscles, we investigated the changes in the epigenetic landscape occurring during the transition from activated satellite cells to myoblasts. Our analysis identifies a compendium of putative regulatory elements defining human activated satellite cells and myoblasts, respectively. A subset of these differentially accessible loci is shared by both murine and human satellite cells, includes elements associated with known self-renewal regulators, and is enriched for motifs bound by transcription factors participating in satellite cell regulation. Integration of transcriptional and epigenetic data reveals that known regulators of metabolic gene expression, such as PPARGC1A, represent potential PAX7 targets. Through characterization of genomic networks and the underlying effectors, our data represent an important starting point for decoding and manipulating the molecular mechanisms underlying human satellite cell muscle regenerative potential.


Assuntos
Cromatina , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Humanos , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético , Fator de Transcrição PAX7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA