Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110409

RESUMO

The executive control process of monitoring information in working memory depends on the mid-dorsolateral prefrontal cortical region (cytoarchitectonic areas 46 and 9/46) in interaction with the hippocampal memory system. Anatomical studies demonstrated strong connectivity between the mid-dorsolateral prefrontal cortex and the medial parietal area PGm that lies on the precuneus. Area PGm is also strongly connected with the attentional system on the lateral inferior parietal lobule (area PG) and the limbic retrosplenial/posterior cingulate region that interacts with the hippocampal memory system. Thus, in terms of anatomical connectivity, area PGm appears to be a critical node for the integration of executive control processing from the prefrontal cortex with the online attentional and memory related processing. This hypothesis was tested in macaque monkeys with the crossed unilateral lesion methodology. A unilateral lesion in the mid-dorsolateral prefrontal cortex was combined with a unilateral lesion in area PGm in the opposite hemisphere. The results demonstrated an impairment on the externally ordered working memory task that assesses the monitoring of information in working memory. Thus, the medial parietal area PGm is a critical node in mediating the functional interaction between the prefrontal region for the executive control process of monitoring information and the memory system.


Assuntos
Memória de Curto Prazo , Lobo Parietal , Animais , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Masculino , Vias Neurais/fisiologia , Macaca mulatta , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal/fisiologia
2.
Biotechniques ; 76(7): 333-341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185784

RESUMO

MicroRNA (miRNA) has garnered considerable attention due to its diagnostic capabilities, such as in hypoxic cognitive impairment and cancers. However, the existing miRNA detection methods are commonly criticized for the drawbacks of low sensitivity and false-positive detection derived from interfering molecules. Here, we provide a novel, sensitive and portable method for miRNA detection by combining target identification based cyclization of padlocks, immobilized primer-based signal amplification and a personal glucose meter. The proposed method exhibits several advantages, including precise identification of specific sites, exceptional sensitivity and instrument-free feature. These attributes hold great promise for the diagnosis and clinical investigation of various diseases, such as cancer and hypoxic cognitive impairment, enabling a deeper understanding of their pathological and physiological aspects.


With miRNA-155 as detective target, the feasibility of the method has been demonstrated. The padlock sequences are cyclized by miRNA-155, which subsequently hybridize with primer sequence that is immobilized on the surface of a 96-well plate, and the interfering molecules are removed. This DNA polymerase triggers a chain extension process on the terminus of primer sequence, activating DNAzyme based cleavage. Consequently, a multitude of linker sequences are generated to facilitate the formation of the 'e/linker/f/sucrase' on magnetic bead, thereby enabling the catalysis of sucrose into glucose. This enzymatic reaction may be identified and measured using the personal glucose meter.


Assuntos
MicroRNAs , MicroRNAs/análise , MicroRNAs/genética , Humanos , Técnicas Biossensoriais/métodos , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Glucose/análise , Primers do DNA/genética
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167475, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159700

RESUMO

Acute lung injury (ALI) is a severe lung damage characterized by acute hypoxemia, increased pulmonary vascular permeability, and inflammatory reactions. Despite current treatments, mortality from ALI remains high. This study found that Sec13 is highly expressed in ALI and regulates it by glycolysis and epithelial-mesenchymal transition (EMT). In an ALI mouse model and cell model, Sec13 expression increased, accompanied by enhanced glycolysis, EMT, and inflammation. Sec13 knockdown suppressed these effects, alleviating ALI. Sec13 forms a protein complex with Pgm1, an enzyme regulating glucose-6-phosphate (G6P) production, and Ubqln1, an ubiquitin ligase. Sec13 inhibits Ubqln1-mediated Pgm1 ubiquitination, thereby stabilizing Pgm1. In ALI, Pgm1 binding to Sec13 increased but binding to Ubqln1 decreased. Sec13 knockdown decreased lactate, G6P, EMT markers, and inflammatory cytokines. Pgm1 knockdown produced similar effects. Ubqln1 overexpression suppressed inflammation but decreased Pgm1 expression. In conclusion, Sec13 plays a key role in ALI by inhibiting Ubqln1-mediated Pgm1 ubiquitination, affecting glycolysis and EMT. Sec13 and Pgm1 may be new targets for treating ALI.

4.
Materials (Basel) ; 17(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124473

RESUMO

Dry reforming of methane (DRM) is considered one of the most promising technologies for efficient greenhouse gas management thanks to the fact that through this reaction, it is possible to reduce CO2 and CH4 to obtain syngas, a mixture of H2 and CO, with a suitable ratio for the Fischer-Tropsch production of long-chain hydrocarbons. Two other main processes can yield H2 from CH4, i.e., Steam Reforming of Methane (SRM) and Partial Oxidation of Methane (POM), even though, not having CO2 as a reagent, they are considered less green. Recently, scientists' challenge is to overcome the many drawbacks of DRM reactions, i.e., the use of precious metal-based catalysts, the high temperatures of the process, metal particle sintering and carbon deposition on the catalysts' surfaces. To overcome these issues, one proposed solution is to implement photo-thermal dry reforming of methane in which irradiation with light is used in combination with heating to improve the efficiency of the process. In this paper, we review the work of several groups aiming to investigate the pivotal promoting role of light radiation in DRM. Focus is also placed on the catalysts' design and the progress needed for bringing DRM to an industrial scale.

5.
J Inflamm Res ; 17: 4187-4197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973995

RESUMO

Purpose: Diffuse large B-cell lymphoma (DLBCL) is a prevalent malignant condition with a dismal prognosis. LncRNA PGM5 antisense RNA 1 (PGM5-AS1) appears to be intricately involved in the progression of DLBCL, yet the modulatory mechanism remains unclear. The purpose of this study was to explore the expression of lncRNA PGM5-AS1 in DLBCL and its effect on the disease progression of DLBCL, as well as to explore its mechanisms. Patients and Methods: A total of 35 patients were included in the study. The expression levels of PGM5-AS1 and miR-503-5p in DLBCL tumor tissues and cell lines were detected by RT-qPCR. Cell proliferation was assessed using CCK8. Apoptosis rate was determined by flow cytometry. Cell invasion was examined by transwell assays. The specific interaction between PGM5-AS1 and miR-503-5p was verified through dual luciferase reporter gene assays. The immune related factors were detected by ELASA kits. The CD8+ T cells cytotoxicity was evaluated by LDH cytotoxicity kit. Results: In DLBCL tumor tissues and cells, upregulated PGM5-AS1 expression, downregulated miR-503-5p expression, and elevated PD-L1 expression were observed. PGM5-AS1 functioned as a regulator in controlling DLBCL cell proliferation, apoptosis, and invasion by downregulating miR-503-5p expression. When CD8+ T cells were co-cultured with cells transfected with si-PGM5-AS1, the secretion of immunoregulatory factors increased, and the cytotoxicity of CD8+ T cells increased. These effects were mitigated by miR-503-5p inhibitors. Conclusion: PGM5-AS1 accelerated DLBCL development and facilitated tumor immune escape through the miR-503-5p. Our discoveries offered an insight into lncRNA PGM5-AS1 serving as a prospective therapeutic target for DLBCL.

6.
ACS Appl Mater Interfaces ; 16(29): 37379-37389, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38981038

RESUMO

Effective management of volatile organic compounds (VOCs) and carbon monoxide (CO) is critical to human health and the ecological environment. Catalytic oxidation is one of the most promising technologies for achieving efficient VOCs and CO emission control. Platinum group metal (PGM)-free catalysts are recently receiving sustainable attention in catalyzing VOCs and CO removal due to their low cost, superior catalytic activity, and excellent stability, but PGM-free catalysts face challenges in low-temperature catalytic efficiency. In this mini-review, starting with discussing the catalytic mechanism of VOCs and CO oxidation, we summarize the surface/interface modulation strategies of PGM-free catalysts to promote oxygen and VOCs/CO molecule activation for enhanced low-temperature oxidation activity, including oxygen vacancy engineering, heteroatom doping, surface acidity modification, and active interface construction. We highlight the currently remaining challenges and prospects of advanced PGM-free catalyst development for highly efficient VOCs and CO emission control in practical applications.

7.
Anal Biochem ; 693: 115593, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38885872

RESUMO

MicroRNA (miRNA) is a pivotal biomarker in the diagnosis of various cancers, including bladder cancer (BCa). Despite their significance, the low abundance of miRNA presents a substantial challenge for sensitive and reliable detection. We introduce an innovative, highly sensitive assay for miRNA expression quantification that is both enzyme-free and portable. This method leverages the synergy of target recycling and entropy-driven assembly (EDA) for enhanced sensitivity and specificity. The proposed method possesses several advantages, including i) dual signal amplification through target recycling and EDA, which significantly boosts sensitivity with a lower limit of detection of 2.54 fM; ii) elimination of enzyme requirements, resulting in a cost-effective and stable signal amplification process; and iii) utilization of a personal glucose meter (PGM) for signal recording, rendering the method portable and adaptable to diverse settings. In summary, this PGM-based approach holds promising potential for clinical molecular diagnostics, offering a practical and efficient solution for miRNA analysis in cancer detection.


Assuntos
Entropia , MicroRNAs , MicroRNAs/análise , MicroRNAs/genética , Humanos , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Limite de Detecção , Técnicas Biossensoriais/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise
8.
ACS Nano ; 18(18): 11598-11630, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669279

RESUMO

The membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cells (PEMFCs), which is the place where the reaction occurrence, the multiphase material transfer and the energy conversion, and the development of MEA with high activity and long stability are crucial for the practical application of PEMFCs. Currently, efforts are devoted to developing the regulation of MEA nanostructure engineering, which is believed to have advantages in improving catalyst utilization, maximizing three-phase boundaries, enhancing mass transport, and improving operational stability. This work reviews recent research progress on platinum group metal (PGM) and PGM-free catalysts with multidimensional nanostructures, catalyst layers (CLs), and nano-MEAs for PEMFCs, emphasizing the importance of structure-function relationships, aiming to guide the further development of the performance for PEMFCs. Then the design strategy of the MEA interface is summarized systematically. In addition, the application of in situ and operational characterization techniques to adequately identify current density distributions, hot spots, and water management visualization of MEAs is also discussed. Finally, the limitations of nanostructured MEA research are discussed and future promising research directions are proposed. This paper aims to provide valuable insights into the fundamental science and technical engineering of efficient MEA interfaces for PEMFCs.

9.
Heliyon ; 10(7): e29290, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601636

RESUMO

The incidence of lung cancer, especially lung adenocarcinoma (LUAD), has recently increased. Targeted therapy and immunotherapy combined with conventional treatment have shown surprising benefits in enhancing the LUAD patient's prognosis. For the purpose of guiding treatment planning and the prognosis of LUAD, more research is required. The particular aim of this work was to establish a purine metabolism scoring (PMS) model for the purpose of individually forecasting treatment outcomes and overall survival for patients who have LUAD. Clinical and whole genome data were obtained from the TCGA-LUAD cohort via "UCSC". The 25 driver purine metabolism-related prognostic genes were determined founded on univariate Cox regression. Then PMS was developed through stepwise LASSO Cox regression. Survival analysis indicated that patients who have PMS experienced worse outcomes. We validated the PGM2 effect on lung adenocarcinoma malignancy in in vitro experiments. Univariate as well as multivariate Cox regression suggested that PMS was an independent prognostic indicator for LUAD patients, which was confirmed in subgroup analysis. Functional assay demonstrated that immune response as well as cytotoxicity pathways have a connection with lower PMS, and patients who have low PMS possess an active immune microenvironment. Moreover, the LUAD patients who have low PMS showed greater sensitivity to immunotherapy, targeted therapy, as well as chemotherapy. Knockdown of PGM2 was discovered to decrease the proliferation, invasion, as well as migration of lung adenocarcinoma cells in an in vitro assay. Pertaining to this particular research, we created a PMS model and conducted a thorough analysis of purine metabolism in LUAD in order to determine prognosis and offer recommendations for treatment. This finding offered a fresh concept for the clinical management of LUAD and novel therapy protocols.

10.
Small ; 20(30): e2312011, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431933

RESUMO

Recently, coupling the conventional low Pt-group-metal (low-PGM, LP) and emerging PGM-free (PF) moiety to form a composite LP/PF catalyst is proposed to be an advanced strategy to improve the intrinsic activity and stability of oxygen reduction reaction (ORR) catalysts. Milestones in terms of ORR mass activity are created by this type of catalyst. However, the specific synergy between LP and PF moieties has not been well elucidated. Herein, two model catalysts are synthesized, i.e., atomically dispersed Co/N/C supporting Pt single atoms (Co/N/C@Pt-SAs) and PtCo nanoparticles (Co/N/C@PtCo-NPs). Interestingly, the Co/N/C@PtCo-NPs catalyst presents higher ORR mass activity prior to Co/N/C@Pt-SAs. This is theoretically due to the dual "built-in electric field" in Co/N/C@PtCo-NPs: one electric field with a direction from Pt to Co in NPs and another from Pt to Co/N/C; that is, Pt gains higher electron density in Co/N/C@PtCo-NPs than that in Co/N/C@Pt-SAs, thus forming an asymmetric electron cloud, and regulating the adsorption and activation of oxygen-containing species. In addition, the existence of Co significantly decreases the average valence state of PtCo NPs, indicating a stronger affinity between PtCo NPs and Co/N/C substrate, to account for the enhanced stability.

11.
Heliyon ; 10(5): e26244, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434308

RESUMO

We have showcased the potential of polymerized hydrogels (PGMs) with uniform-sized stimuli-responsive microgel particles as promising alternatives to prevent aggregation in solution based nanoparticle systems. In the current work, we implemented the PGM concept by embedding anionic stimuli-responsive microgels (PNIPAM-co-AAc)-silver (Ag) hybrids within a hydrogel matrix. These PGM@AgNP hybrid materials are used as catalysts for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of sodium borohydride. UV-VIS spectroscopy is used for studying catalytic activity. In the solution based system, the complete reduction of 4-NP to 4-AP took 30 minutes with pure Ag nanoparticles, 24 minutes with PNIPAM-Ag hybrid (Neutral) microgels and 15 minutes with PNIPAM-co-AAc-Ag (Anionic) hybrid microgels. In contrast PGM containing PNIPAM-co-AAc-Ag hybrids achieved full reduction in just 15 minutes, along with a 3-minute induction period. For pure Ag nanoparticles, the first-order rate constant is found to be 0.25 min-1, for PNIPAM-Ag hybrid (Neutral), it is 0.21 min-1 and for PNIPAM-co-AAc-Ag (Anionic), it is 0.5 min-1 where as for PGM containing anionic microgel hybrids it is found to be 0.8 min-1. Furthermore, the reusability of the PGM-Ag (anionic) materials for catalytic activity remains unaltered even after several washings. In summary, our study highlights the effectiveness of PGM@AgNP materials as efficient catalysts for the reduction of 4-nitrophenol to 4-aminophenol, indicating their versatile potential in various catalytic applications.

12.
J Colloid Interface Sci ; 664: 389-399, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479275

RESUMO

Electrochemical water electrolysis is a promising method for sustainable hydrogen production while transiting towards hydrogen economy. Among many, the Anion Exchange Membrane (AEM) based water electrolyzer is an emerging yet potentially affordable technology on maturity for producing large-scale hydrogen accommodating the usage of Non-Platinum Group Metal (non-PGM) based inexpensive electrocatalysts. Herein, we demonstrate the excellent performance of a bifunctional Nickel Copper Phosphide-Nickel sulphide (NCP-NS) electrocatalyst with a unique tensile nanostructure obtained via a facile, controlled ambient galvanic displacement route. An AEM electrolyzer with a larger active area of 10 cm2 stacked with the symmetric NCP-NS electrodes and a membrane demonstrates scalability with a requirement of a mere 1.66 V to reach a current density of 10 mA cm-2. The nickel-copper phosphide boosts the kinetics of charge transfer between the electrode and electrolyte interface, while a unique combination of a few nickel sulphide phases present in the catalyst provides sufficiently appropriate active sites for the overall water electrolysis. For the first time, we report a room temperature performance of âˆ¼ 230 mA cm-2 at 2 V for a non-PGM-based bifunctional electrocatalyst with exceptional durability for over 300 h of operation in an AEM water electrolyser with a retention rate of 95 %-97 % at a current density range of 80-800 mA cm-2.

13.
Chemphyschem ; 25(14): e202300865, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391116

RESUMO

For oxygen reduction reaction (ORR), the surface adsorption energies of O and OH* intermediates are key descriptors for catalytic activity. In this work, we investigate anion-substituted zirconia catalyst surfaces and determine that adsorption energies of O and OH* intermediates is governed by both structural and electronic effects. When the adsorption energies are not influenced by the structural effects of the catalyst surface, they exhibit a linear correlation with integrated crystal orbital Hamiltonian population (ICOHP) of the adsorbate-surface bond. The influence of structural effects, due to the re-optimisation slab geometry after adsorption of intermediate species, leads to stronger adsorption of intermediates. Our calculations show that there is a change in the bond order to accommodate the incoming adsorbate species which leads to stronger adsorption when both structural and electronic effects influence the adsorption phenomena. The insights into the catalyst-adsorbate interactions can guide the design of future ORR catalysts.

14.
Heliyon ; 10(3): e25283, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327460

RESUMO

Platinum group metals (PGMs) assume an important role within the chemistry and chemical engineering due to their exceptional chemical stability in high temperatures and various environmental conditions. Their unique attributes make them highly demanded materials across an array of industries. Nevertheless, the gradual depletion of PGM reserves underscores necessitates of recycling PGM-containing waste as a means to ensure the reasonable utilization of resources. Recycling of catalytic waste, in particular, presents a more cost-effective and environmentally sustainable approach acquiring these metals, in contrast to the conventional practice of mining from natural ores. Of particular importance are spent automotive catalysts, which represent a valuable source of platinum group metals, featuring substantially higher PGM concentrations than their naturally occurring counterparts. Conventionally, the recovering of PGMs from waste materials predominantly employs hydrometallurgical and pyrometallurgical processes. Unfortunately, these established techniques entail the utilization of potent oxidizing acidic solutions, including aqua regia and hydrochloric acid with chlorine gas, which exert adverse ecological consequences. In recent years, there has been a growing focus on the development of alternative methodologies that are both environmentally friendly and economically viable for the recovery of PGMs from spent catalysts. Notable among these emerging techniques are solvometallurgy, molecular recognition technology, and magnetic separation. This comprehensive review endeavors to study and assess the latest advancements in the recovery of platinum group metals from spent catalysts, meticulously evaluating their respective advantages and disadvantages. Through an analysis, this review aspires to identify the most promising method - one that combines environmental friendliness and economic feasibility.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38401042

RESUMO

In the field of neonatal infections nursing, methicillin-resistant Staphylococcus aureus (MRSA) is a major bacterial pathogen. Here, we present a portable biosensor for MRSA detection that is both highly sensitive and portable, owing to its implementation on the personal glucose meter (PGM) platform. The H probe was fixed on the magnetic bead for mecA gene analysis. A blunt 3' terminus appeared in the MBs-H probe when the mecA gene was present. Exonuclease-III (Exo-III) recognized the blunt terminus and cleaved it, freeing the mecA gene and so facilitating target recycling. In the meantime, the remaining H probe-initiated hybridization chain reaction (HCR) led to the desired signal amplification. Portable quantitative detection of mecA gene is possible because PGM can read the quantity of invertase tagged on HCR product. After optimizing several experimental parameters, such as the concentration of Exo-III and incubation time, the constructed sensor is extremely sensitive, with a detection limit of 2 CFU/mL. The results from this sensitive PGM-based sensor are in agreement with those obtained from plate counting methods, suggesting that it can be used to accurately assess the MRSA content in artificial clinical samples. In addition, the PGM sensor can significantly cut down on time spent compared to plate counting techniques. The manufactured sensor provides a promising option for accurate identification of pathogenic bacteria.

16.
Materials (Basel) ; 17(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255534

RESUMO

Before a new type of engine is introduced into civil aviation, it must comply with various safety regulations. These regulations include the analysis of secondary damage caused by the re-ingestion of a tooth fragment. The purpose is to prevent crack propagation through the gear rim, which would lead to catastrophic failure. In this context, identification of the initial crack location is crucial to determine the crack propagation path. Therefore, this paper presents a technique to determine and validate a constitutive material model and fracture locus for case-hardened spur gears. As the modelling of the surface-hardened layer is computationally intensive, it is necessary to homogenise the model. This paper comprehensively reviews and discusses the associated effects and errors. To determine the plastic behaviour of the case-hardened external gear (30CrNiMo8) and the nitrided internal gear (35CrAlNi7-10), the widely acknowledged Johnson-Cook material model is implemented using compression and Vickers indenter tests to define the necessary parameters. The fracture locus implementation is also based on the Johnson-Cook method and an axial shift of the fracture locus based on the hardness profile of the spur gears is determined by quasi-static pulsator tests. For validation, a project-specific gearbox test rig is used, enabling consistent ingestion of defined fragments. In addition, to check the likelihood of a tooth flank crack and to validate the results, a simplified ingestion experiment is performed.

17.
J Allergy Clin Immunol ; 153(1): 55-66, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717626

RESUMO

While glycans are among the most abundant macromolecules on the cell with widespread functions, their role in immunity has historically been challenging to study. This is in part due to difficulties assimilating glycan analysis into routine approaches used to interrogate immune cell function. Despite this, recent developments have illuminated fundamental roles for glycans in host immunity. The growing field of glycoimmunology continues to leverage new tools and approaches to uncover the function of glycans and glycan-binding proteins in immunity. Here we utilize clinical vignettes to examine key roles of glycosylation in allergy, inborn errors of immunity, and autoimmunity. We will discuss the diverse functions of glycans as epitopes, as modulators of antibody function, and as regulators of immune cell function. Finally, we will highlight immune modulatory therapies that harness the critical role of glycans in the immune system.


Assuntos
Hipersensibilidade , Humanos , Glicosilação , Hipersensibilidade/metabolismo , Sistema Imunitário , Anticorpos/metabolismo , Polissacarídeos
18.
Biochem Biophys Rep ; 37: 101593, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38074999

RESUMO

Here, the protective mechanism of Codonopsis pilosula polysaccharide (CpP) against mouse brain organoids (mBO) damage was analyzed, and the rotenone affected the genomic epigenetic modifications and physiological activity of mouse brain organoids was examined. Pathological experiments have shown that rotenone significantly damaged the subcellular organelles of mouse brain organoids. According to RRBS-Seq, rotenone significantly promoted gene body hypermethylation modifications in mouse brain organoids. Molecular biology experiments have confirmed that rotenone significantly promoted the hypermethylation modification of Zic4, Pgm5, and Camta1 gene bodies in mouse brain organoids, and their expression levels were significantly lower than those of the control group. Bioinformatic analysis suggested that multiple binding motif of transcription factors ZIC4 (Zinc finger protein of the cerebellum 4) were present at the promoters of both the Pgm5 (Phosphoglucomutase 5) and Camta1 (Calmodulin binding transcription activator 1) genes. When the expression of Zic4 was silenced, the proliferation of mouse brain organoids was significantly reduced and the expression level of PGM5 was also significantly decreased. In addition, Codonopsis pilosula polysaccharide treatment of mouse brain organoids significantly reduced the cytotoxicity of rotenone, promoted cell cycle progression, increased intracellular glutathione activity, significantly induced the demethylation modification of the Zic4, Pgm5, and Camta1 gene bodies, and promoted the high expression of ZIC4 and PGM5. Therefore, the study confirmed that Codonopsis pilosula polysaccharide alleviated rotenone-induced mouse brain organoids death by downregulating DNA gene bodies methylation modification of the Zic4/Pgm5/Camta1 axis.

19.
Zhonghua Nan Ke Xue ; 29(2): 144-150, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-37847086

RESUMO

OBJECTIVE: To explore the feasibility of Ion Torrent PGM sequencing in detection of Y chromosome microdeletion. METHODS: We enrolled 87 infertility patients with non-obstructive azoospermia (NOA) in this study and analyzed their routine semen parameters, reproductive hormone levels and chromosomal karyotypes. We detected Y chromosome microdeletion in the patients by Ion Torrent PGM sequencing and multiplex PCR, and compared the detection rates between the two methods. RESULTS: Ion Torrent PGM sequencing achieved a significantly higher detection rate of Y chromosome microdeletion than multiplex PCR (49.4% vs 12.6%, P < 0.05). The cases of AZF deletion detected by Ion Torrent PGM sequencing included all those detected by multiplex PCR, and the deletion sites were completely consistent. In addition, 14 male infertility-related gene mutations were detected in 24 of the 87 patients, with a total positive rate of 27.59%. CONCLUSION: Ion Torrent PGM sequencing can significantly improve the detection rate of Y chromosome microdeletion in infertility patients with NOA, detect a variety of male infertility-related gene mutations, and therefore contribute to the diagnosis of azoospermia.


Assuntos
Azoospermia , Infertilidade Masculina , Oligospermia , Humanos , Masculino , Azoospermia/genética , Azoospermia/diagnóstico , Infertilidade Masculina/genética , Deleção Cromossômica , Aberrações dos Cromossomos Sexuais , Cromossomos Humanos Y/genética , Oligospermia/genética
20.
Biochem Biophys Res Commun ; 679: 175-178, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37703760

RESUMO

The MIZ1 play an important role in root hydrotropism. However, the relationship between MIZ1-regulated hydrotropism and amyloplast-mediated gravitropism remain largely unclear. Here, we generated the miz1/pgm1 double mutants by crossing the non-hydrotropic miz1 mutant with the amyloplast-defective pgm1 mutant, which lacks gravitropic response. Our results showed that the miz1/pgm1 mutants exhibited a significant reduction in amyloplast and gravitropic bending, while maintaining a similar ahydrotropic phenotype as the miz1 single mutant. These findings suggest that MIZ1 plays a role in hydrotropism downstream of PGM1. Understanding the mechanisms of interaction between hydrotropism and gravitropism is crucial for comprehending the rooting patterns of plants in natural conditions. The counteracting relationship between root hydrotropism and gravitropism in the miz1 mutant should receive attention in this field, particularly considering the interference from gravitropism on Earth.


Assuntos
Arabidopsis , Arabidopsis/genética , Água , Raízes de Plantas/genética , Tropismo/genética , Gravitropismo/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA