Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 7(5): 1722-37, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26008233

RESUMO

Advanced glycation end products (AGEs) are compounds classified as uremic toxins in patients with chronic kidney disease that have several pro-inflammatory effects and are implicated in the development of cardiovascular diseases. To explore the mechanisms of AGEs-endothelium interactions through the receptor for AGEs (RAGE) in the PKC-ß pathway, we evaluated the production of MCP-1 and VCAM-1 in human endothelial cells (HUVECs), monocytes, and a coculture of both. AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. The effect of AGEs on cell viability was assessed with an MTT assay. The cells were also treated with AGEs with and without a PKC-ß inhibitor. MCP-1 and VCAM-1 in the cell supernatants were estimated by ELISA, and RAGE was evaluated by immunocytochemistry. AGEs exposure did not affect cell viability, but AGEs induced RAGE, MCP-1, and VCAM-1 expression in HUVECs. When HUVECs or monocytes were incubated with AGEs and a PKC-ß inhibitor, MCP-1 and VCAM-1 expression significantly decreased. However, in the coculture, exposure to AGEs and a PKC-ß inhibitor produced no significant effect. This study demonstrates, in vitro, the regulatory mechanisms involved in MCP-1 production in three cellular models and VCAM-1 production in HUVECs, and thus mimics the endothelial dysfunction caused by AGEs in early atherosclerosis. Such mechanisms could serve as therapeutic targets to reduce the harmful effects of AGEs in patients with chronic kidney disease.


Assuntos
Quimiocina CCL2/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteína Quinase C beta/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células U937
2.
Pharmacol Biochem Behav ; 111: 37-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23958578

RESUMO

It is widely known that ionizing radiation is a physical agent broadly used to kill tumor cells during human cancer therapy. Unfortunately, adjacent normal tissues can concurrently undergo undesirable cell injury. Previous data of our laboratory demonstrated that exposure of developing rats to ionizing radiations induced a variety of behavioral differences respect to controls, including changes in associative memory and in anxiety state. However, there is a lack of data concerning modifications in different related pharmacological intermediaries. Therefore, the aim of the present study was to investigate whether the behavioral differences observed in young animals irradiated at birth might be underlain by early changes in PKCß1 levels which, in turn, could lead to changes in hippocampal GABAergic neurotransmission. Male Wistar rats were irradiated with 5Gy of X rays between 24 and 48 h after birth. Different pharmacological markers related to the affected behavioral tasks were assessed in control and irradiated hippocampus at 15 and 30 days, namely GABAA receptor, GAD65-67, ROS and PKCß1. Results showed that all measured parameters were increased in the hippocampus of 30-days-old irradiated animals. In contrast, in the hippocampus of 15-days-old irradiated animals only the levels of PKCß1 were decreased. These data suggest that PKCß1 might constitute a primary target for neonatal radiation damage on the hippocampus. Therefore, it could be hypothesized that an initial decrease in the levels of this protein can trigger a subsequent compensatory increase that, in turn, could be responsible for the plethora of biochemical changes that might underlie the previously observed behavioral alterations.


Assuntos
Ansiedade/etiologia , Memória/efeitos da radiação , Animais , Feminino , Hipocampo/enzimologia , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Masculino , Proteína Quinase C beta/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA-A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA