Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
2.
Front Genet ; 15: 1429336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015774

RESUMO

Background: To investigate whether the novel mutation of PKHD1 could cause polycystic kidney disease by affecting splicing with a recessive inheritance pattern. Methods: A nonconsanguineous Chinese couple with two recurrent pregnancies showed fetal enlarged echogenic polycystic kidney and oligoamnios were recruited. Pedigree WES, minigene splicing assay experiment and following bioinformatics analysis were performed to verify the effects, and inheritance pattern of diseasing-causing mutations. Results: WES revealed that both fetuses were identified as carrying the same novel mutation c.3592_3628 + 45del, p.? and c.11207 T>C, p.(Ile3736Thr) in the PKHD1 gene (NM_138694.4), which inherited from the father and mother respectively. Both bioinformatic method prediction and minigene splicing assay experience results supported the mutation c.3592_3628 + 45del, p.? affects the splicing of the PKHD1 transcript, resulting in exon 31 skipping. Another missense mutation c.11207 T>C, p.(Ile3736Thr) has a low frequency in populations and is predicted to be deleterious by bioinformatic methods. Conclusion: These findings provide a direct clinical and functional evidence that the truncating mutations of the PKHD1 gene could lead to more severe phenotypes, and cause ARPKD as a homozygous or compound heterozygous pattern. Our study broadens the variant spectrum of the PKHD1 gene and provides a basis for genetic counseling and diagnosis of ARPKD.

3.
Heliyon ; 10(13): e33898, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071699

RESUMO

Background: Autosomal recessive polycystic kidney disease (ARPKD), a rare genetic disorder characterized by kidney cysts, shows complex clinical and genetic heterogeneity. This study aimed to explore the genetic landscape of ARPKD in Kuwait and examine the intricate relationship between its genes and clinical presentation to enhance our understanding and contribute towards more efficient management strategies for ARPKD. Methods: This study recruited 60 individuals with suspected ARPKD from 44 different families in Kuwait. The participants were of different ethnicities and aged 0-70 years. Additionally, 33 were male, 15 were female, and 12 had indeterminant sex due to congenital anomalies. Comprehensive clinical data were collected. Mutations were identified by next-generation whole exome sequencing and confirmed using Sanger sequencing. Results: Of the 60 suspected ARPKD cases, 20 (33.3 %) died within hours of birth or by the end of the first month of life and one (1.7 %) within 12 months of birth. The remaining 39 (65.0 %) cases were alive, at the time of the study, and exhibited diverse clinical features related to ARPKD, including systematic hypertension (5.0 %), pulmonary hypoplasia (11.7 %), dysmorphic features (40.0 %), cardiac problems (8.3 %), cystic liver (5.0 %), Potter syndrome (13.3 %), developmental delay (8.3 %), and enlarged cystic kidneys (100 %). Twelve mutations, including novel truncating mutations, were identified in 31/60 cases (51.7 %) from 17/44 families (38.6 %). Additionally, 8/12 (66.7 %) mutations were in the PKHD1 gene, with the remaining four in different genes: NPHP3, VPS13P, CC2D2A, and ZNF423. Conclusions: This study highlights the spectrum of clinical features and genetic mutations of patients with ARPKD in Kuwait. It highlights the necessity for personalized approaches to improve ARPKD diagnosis and treatment, offering crucial insights into managing ARPKD.

4.
Gene ; 927: 148625, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830515

RESUMO

The orchestration of fetal kidney development involves the precise control of numerous genes, including HNF1A, HNF1B and PKHD1. Understanding the genetic factors influencing fetal kidney development is essential for unraveling the complexities of renal disorders. This study aimed to search for disease-causing variants in HNF1A, HNF1B, PKHD1 genes, among fetus and babies or via parental samples, using sanger sequencing, NGS technologie and MLPA. The study revealed an absence of gene deletions and disease-causing variants in the HNF1B gene. However, five previously SNPs in the HNF1A gene were identified in four patients (patients 1, 2, 3, and 4). These include c.51C > G (Exon1, p. Leu17=), c.79A > C (Exon1, p. Ile27Leu), c.1375C > T (Exon7, p. Leu459=), c.1460G > A (Exon7, p. Ser487Asn), and c.1501 + 7G > A (Intron7). Additionally, in addition to previously SNPs identified, a de novo heterozygous missense mutation (p.E508K) was detected in patient 4. Furthermore, a heterozygous mutation in exon 16 (p. Arg494*; c.1480C > T) was identified in both parents of patient 5, allowing predictions of fetal homozygosity. Bioinformatic analyses predicted the effects of the c.1522G > A mutation (p.E508K) on splicing processes, pre-mRNA structures, and protein instability and conformation. Similarly, the c.1480C > T mutation (p. Arg494*) was predicted to introduce a premature codon stop, leads to the production of a shorter protein with altered or impaired function. Identification of variants in the HNF1A and in PKHD1 genes provides valuable insights into the genetic landscape of renal abnormalities in affected patients. These findings underscore the heterogeneity of genetic variants contributing to renal disorders and emphasize the importance of genetic screening.


Assuntos
Fator 1-alfa Nuclear de Hepatócito , Rim , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Rim/metabolismo , Rim/embriologia , Fator 1-alfa Nuclear de Hepatócito/genética , Masculino , Receptores de Superfície Celular/genética , Fator 1-beta Nuclear de Hepatócito/genética , Mutação , Mutação de Sentido Incorreto , Feto/metabolismo
5.
Pediatr Nephrol ; 39(9): 2633-2636, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38502226

RESUMO

BACKGROUND: Nephrocalcinosis (NC) is characterized by an excessive accumulation of calcium deposits in the kidneys. In children, it is often incidentally discovered with an uncertain prognosis. CASE-DIAGNOSIS/TREATMENT: A 3-month-old girl suspected to have a milk protein allergy underwent an ultrasound that revealed increased echogenicity in the kidney pyramids suggestive of medullary NC. At the age of 18 months, imaging findings revealed not only hyperechogenicity in the medulla but also in the cortex. Over the course of a long follow-up, her kidneys maintained size within the upper limits but showed an increase by age 7. Genetic analysis identified PKHD1 variants, which required structural predictive tools to guide clinical diagnosis. Until the age of 7, her kidney function has remained intact; however, her prognosis is uncertain. CONCLUSIONS: NC in newborns is a rare condition, but its incidence is rising. Recurrent urinary infections or kidney stones may lead to kidney failure. A proactive approach in sporadic NC enables an early diagnosis to orientate clinical supervision and facilitates counseling to support family planning decisions.


Assuntos
Nefrocalcinose , Humanos , Feminino , Nefrocalcinose/genética , Nefrocalcinose/diagnóstico por imagem , Nefrocalcinose/diagnóstico , Lactente , Receptores de Superfície Celular/genética , Ultrassonografia/métodos , Rim/diagnóstico por imagem , Rim/anormalidades , Rim/patologia , Mutação
6.
Diagn Pathol ; 19(1): 36, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388441

RESUMO

Caroli's syndrome is a congenital disease characterized by dilation of intrahepatic bile ducts and congenital hepatic fibrosis. It is a rare condition in clinical work. Typically, the diagnosis of this disease is confirmed through medical imaging. Here, we report a case of atypical Caroli's syndrome in a patient who presented with recurrent upper gastrointestinal tract bleeding. The patient underwent imaging examinations, liver biopsy and whole exome sequencing. The results of the imaging examination were non-specific. However, with the aid of pathological examination, the patient was diagnosed with Caroli's syndrome. In conclusion, for cases where the imaging presentation of Caroli's syndrome is inconclusive, an accurate diagnosis should rely on pathology. By discussing this specific case, our aim is to enhance readers' understanding of this disease, provide valuable information that can aid in the early detection and appropriate management of Caroli's syndrome, ultimately improving patient outcomes.


Assuntos
Doença de Caroli , Doenças Genéticas Inatas , Humanos , Doença de Caroli/diagnóstico , Doença de Caroli/genética , Patologia Molecular , Cirrose Hepática/patologia , Ductos Biliares Intra-Hepáticos/patologia , Doenças Genéticas Inatas/patologia
7.
Am J Kidney Dis ; 83(6): 829-833, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38211685

RESUMO

The etiologies of newborn deaths in neonatal intensive care units usually remain unknown, even after genetic testing. Whole-genome sequencing, combined with artificial intelligence-based methods for predicting the effects of non-coding variants, provide an avenue for resolving these deaths. Using one such method, SpliceAI, we identified a maternally inherited deep intronic PKHD1 splice variant (chr6:52030169T>C), in trans with a pathogenic missense variant (p.Thr36Met), in a newborn who died of autosomal recessive polycystic kidney disease at age 2 days. We validated the deep intronic variant's impact in maternal urine-derived cells expressing PKHD1. Reverse transcription polymerase chain reaction followed by Sanger sequencing showed that the variant causes inclusion of 147bp of the canonical intron between exons 29 and 30 of PKHD1 into the mRNA, including a premature stop codon. Allele-specific expression analysis at a heterozygous site in the mother showed that the mutant allele completely suppresses canonical splicing. In an unrelated healthy control, there was no evidence of transcripts including the novel splice junction. We returned a diagnostic report to the parents, who underwent in vitro embryo selection.


Assuntos
Íntrons , Rim Policístico Autossômico Recessivo , Receptores de Superfície Celular , Humanos , Recém-Nascido , Masculino , Íntrons/genética , Mutação de Sentido Incorreto , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/diagnóstico , Receptores de Superfície Celular/genética
8.
Adv Kidney Dis Health ; 30(5): 468-476, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-38097335

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is the rare and usually early-onset form of polycystic kidney disease with a typical clinical presentation of enlarged cystic kidneys and liver involvement with congenital hepatic fibrosis or Caroli syndrome. ARPKD remains a clinical challenge in pediatrics, frequently requiring continuous and long-term multidisciplinary treatment. In this review, we aim to give an overview over clinical aspects of ARPKD and recent developments in our understanding of disease progression, risk patterns, and treatment of ARPKD.


Assuntos
Doença de Caroli , Rim Policístico Autossômico Recessivo , Criança , Humanos , Rim Policístico Autossômico Recessivo/diagnóstico , Receptores de Superfície Celular , Prognóstico , Cirrose Hepática/diagnóstico , Doença de Caroli/diagnóstico
9.
Genome Med ; 15(1): 114, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098057

RESUMO

BACKGROUND: Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS: In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS: Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS: Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.


Assuntos
Exoma , Padrões de Herança , Recém-Nascido , Humanos , Genes Recessivos , Mutação , Sequenciamento do Exoma , Linhagem , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
10.
Front Cell Dev Biol ; 11: 1270980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125876

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.

11.
BMC Infect Dis ; 23(1): 715, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872485

RESUMO

BACKGROUND: CHF (Congenital hepatic fibrosis) is a rare hereditary disease characterized by periportal fibrosis and ductal plate malformation. Little is known about the clinical presentations and outcome in CHF patients with an extraordinary complication with biliary sepsis. Our case described a 23-year-old female diagnosed as CHF combined with biliary sepsis. Her blood culture was positive for KP (Klebsiella pneumoniae), and with a high level of CA19-9 (> 1200.00 U/ml, ref: <37.00 U/ml). Meanwhile, her imaging examinations showed intrahepatic bile duct dilatation, portal hypertension, splenomegaly, and renal cysts. Liver pathology revealed periportal fibrosis and irregularly shaped proliferating bile ducts. Whole-exome sequencing identified two heterozygous missense variants c.3860T > G (p. V1287G) and c.9059T > C (p. L3020P) in PKHD1 gene. After biliary sepsis relieved, her liver function test was normal, and imaging examination results showed no significant difference with the results harvested during her biliary sepsis occurred. CONCLUSION: The diagnosis of CHF complicated with biliary sepsis in the patient was made. Severely biliary sepsis due to KP infection may not inevitably aggravate congential liver abnormality in young patients. Our case provides a good reference for timely treatment of CHF patients with biliary sepsis.


Assuntos
Doenças dos Ductos Biliares , Hepatopatias , Sepse , Feminino , Humanos , Adulto Jovem , Cirrose Hepática/complicações , Cirrose Hepática/genética , Sepse/complicações
12.
medRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37873491

RESUMO

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modelling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modelling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.

13.
J Mol Med (Berl) ; 101(9): 1141-1151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584738

RESUMO

Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype. In the current study, we characterized a spontaneous mouse Pkhd1 mutation that is transmitted as a recessive trait and causes cysticliver (cyli), similar to the hepato-biliary disease in ARPKD, but which is exacerbated by age, sex, and parity. We mapped the mutation to Chromosome 1 and determined that an insertion/deletion mutation causes a frameshift within Pkhd1 exon 48, which is predicted to result in a premature termination codon (UGA). Pkhd1cyli/cyli (cyli) mice exhibit a severe liver pathology but lack renal disease. Further analysis revealed that several alternatively spliced Pkhd1 mRNA, all containing exon 48, were expressed in cyli kidneys, but in lower abundance than in wild-type kidneys, suggesting that these transcripts escaped from nonsense-mediated decay (NMD). We identified an AAAAAT motif in exon 48 upstream of the cyli mutation which could enable ribosomal frameshifting, thus potentially allowing production of sufficient amounts of FPC for renoprotection. This mechanism, expressed in a species-specific fashion, may help explain the disparities in the renal phenotype observed between Pkhd1 mutant mice and patients with PKHD1-related disease. KEY MESSAGES: The Pkhd1cyli/cyli mouse expresses cystic liver disease, but no kidney phenotype. Pkhd1 mRNA expression is decreased in cyli liver and kidneys compared to wild-type. Ribosomal frameshifting may be responsible for Pkhd1 mRNA escape from NMD. Pkhd1 mRNA escape from NMD could contribute to the absent kidney phenotype.


Assuntos
Hepatopatias , Rim Policístico Autossômico Recessivo , Pré-Escolar , Camundongos , Humanos , Animais , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/patologia , Rim/metabolismo , Mutação , Fatores de Transcrição/genética , RNA Mensageiro/genética , Receptores de Superfície Celular/genética
14.
Front Genet ; 14: 1207772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456659

RESUMO

Objective: Variants of the polycystic kidney and hepatic disease 1 (PKHD1) gene are associated with autosomal recessive polycystic kidney disease (ARPKD). This study aimed to identify the genetic causes in a Chinese pedigree with ARPKD and design a minigene construct of the PKHD1 gene to investigate the impact of its variants on splicing. Methods: Umbilical cord samples from the proband and peripheral blood samples from his parents were collected, and genomic DNA was extracted for whole-exome sequencing (WES). Bioinformatic analysis was used to identify potential genetic causes, and Sanger sequencing confirmed the existence of variants within the pedigree. A minigene assay was performed to validate the effects of an intronic variant on mRNA splicing. Results: Two variants, c.9455del (p.N3152Tfs*10) and c.2408-13C>G, were identified in the PKHD1 gene (NM_138694.4) by WES; the latter has not been previously reported. In silico analysis predicted that this intronic variant is potentially pathogenic. Bioinformatic splice prediction tools revealed that the variant is likely to strongly impact splice site function. An in vitro minigene assay revealed that c.2408-13C>G can cause aberrant splicing, resulting in the retention of 12 bp of intron 23. Conclusion: A novel pathogenic variant of PKHD1, c.2408-13C>G, was found in a fetus with ARPKD, which enriches the variant spectrum of the PKHD1 gene and provides a basis for genetic counseling and the diagnosis of ARPKD. Minigenes are optimal to determine whether intron variants can cause aberrant splicing.

17.
J Neurogenet ; 37(3): 85-92, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36960824

RESUMO

Pkhd1l1 is predicted to encode a very large type-I transmembrane protein, but its function has largely remained obscure. Recently, it was shown that Pkhdl1l1 is a component of the coat that decorates stereocilia of outer hair cells in the mouse ear. Consistent with this localization, conditional deletion of Pkhd1l1 specifically from hair cells, was associated with progressive hearing loss. In the zebrafish, there are two paralogous pkhd1l1 genes - pkhd1l1α and pkhd1l1ß. Using CRISPR-Cas9 mediated gene editing, we generated loss-of-function alleles for both and show that the double mutants exhibit nonsense-mediated-decay (NMD) of the RNAs. With behavioural assays, we demonstrate that zebrafish pkhd1l1 genes also regulate hearing; however, in contrast to Pkhd1l1 mutant mice, which develop progressive hearing loss, the double mutant zebrafish exhibited statistically significant hearing loss even from the larval stage. Our data highlight a conserved function of Pkhd1l1 in hearing and based on these findings from animal models, we postulate that PKHD1L1 could be a candidate gene for sensorineural hearing loss (SNHL) in humans.

18.
J Clin Med ; 12(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835961

RESUMO

(1) Background: Autosomal recessive polycystic kidney disease (ARPKD) is a rare ciliopathy characterized by progressively enlarged kidneys with fusiform dilatation of the collecting ducts. Loss-of-function mutations in the PKHD1 gene, which encodes fibrocystin/polyductin, cause ARPKD; however, an efficient treatment method and drug for ARPKD have yet to be found. Antisense oligonucleotides (ASOs) are short special oligonucleotides which function to regulate gene expression and alter mRNA splicing. Several ASOs have been approved by the FDA for the treatment of genetic disorders, and many are progressing at present. We designed ASOs to verify whether ASOs mediate the correction of splicing further to treat ARPKD arising from splicing defects and explored them as a potential treatment option. (2) Methods: We screened 38 children with polycystic kidney disease for gene detection using whole-exome sequencing (WES) and targeted next-generation sequencing. Their clinical information was investigated and followed up. The PKHD1 variants were summarized and analyzed, and association analysis was carried out to analyze the relationship between genotype and phenotype. Various bioinformatics tools were used to predict pathogenicity. Hybrid minigene analysis was performed as part of the functional splicing analysis. Moreover, the de novo protein synthesis inhibitor cycloheximide was selected to verify the degraded pathway of abnormal pre-mRNAs. ASOs were designed to rescue aberrant splicing, and this was verified. (3) Results: Of the 11 patients with PKHD1 variants, all of them exhibited variable levels of complications of the liver and kidneys. We found that patients with truncating variants and variants in certain regions had a more severe phenotype. Two splicing variants of the PKHD1 genotypes were studied via the hybrid minigene assay: variants c.2141-3T>C and c.11174+5G>A. These cause aberrant splicing, and their strong pathogenicity was confirmed. We demonstrated that the abnormal pre-mRNAs produced from the variants escaped from the NMD pathway with the use of the de novo protein synthesis inhibitor cycloheximide. Moreover, we found that the splicing defects were rescued by using ASOs, which efficiently induced the exclusion of pseudoexons. (4) Conclusion: Patients with truncating variants and variants in certain regions had a more severe phenotype. ASOs are a potential drug for treating ARPKD patients harboring splicing mutations of the PKHD1 gene by correcting the splicing defects and increasing the expression of the normal PKHD1 gene.

19.
Clin Case Rep ; 11(2): e6692, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846174

RESUMO

We present a fetus with bilaterally enlarged and echogenic kidneys. Prenatal testing detected compound heterozygosity for a 0.676 Mb de novo deletion and an inherited pathogenic variant in PKHD1. This is the first case of autosomal recessive polycystic kidney disease (ARPKD) with a prenatally detected disease-causing PKHD1 deletion.

20.
Nephron ; : 1-14, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36657418

RESUMO

INTRODUCTION: Autosomal recessive polycystic kidney disease (ARPKD) is associated with pathogenic variants in the PKHD1 gene. Autosomal dominant polycystic kidney disease (ADPKD) is mainly associated with pathogenic variants in PKD1 or PKD2. The present study aimed to identify the clinical and genetic features of Turkish pediatric ARPKD and ADPKD patients. METHODS: This multicenter, retrospective cohort study included 21 genetically confirmed ARPKD and 48 genetically confirmed ADPKD patients from 7 pediatric nephrology centers. Demographic features, clinical, and laboratory findings at presentation and during 12-month intervals were recorded. RESULTS: The median age of the ARPKD patients at diagnosis was lower than the median age of ADPKD patients (10.5 months [range: 0-15 years] vs. 5.2 years [range: 0.1-16 years], respectively, [p = 0.014]). At the time of diagnosis, the median eGFR in the ARPKD patients was lower compared to that of ADPKD patients (81.6 [IQR: 28.7-110.5] mL/min/1.73 m2 and 118 [IQR: 91.2-139.8] mL/min/1.73 m2, respectively, [p = 0.0001]). In total, 11 (52.4%) ARPKD patients had malnutrition; 7 (33.3%) patients had growth retardation at presentation; and 4 (19%) patients had both malnutrition and growth retardation. At diagnosis, 8 (16.7%) of the ADPKD patients had malnutrition, and 5 (10.4%) patients had growth retardation. The malnutrition, growth retardation, and hypertension rates at diagnosis were higher in the ARPKD patients than the ADPKD patients (p = 0.002, p = 0.02, and p = 0.0001, respectively). ARPKD patients with malnutrition and growth retardation had worse renal survival compared to the patients without (p = 0.03 and p = 0.01). Similarly, ADPKD patients with malnutrition had worse renal survival compared to the patients without (p = 0.002). ARPKD patients with truncating variants had poorer 3- and 6-year renal outcome than those carrying non-truncating variants (p = 0.017). CONCLUSION: Based on renal survival analysis, type of genetic variant, growth retardation, and/or malnutrition at presentation were observed to be factors associated with progression to chronic kidney disease (CKD). Differentiation of ARPKD and ADPKD, and identification of the predictors of the development of CKD are vital for optimal management of patients with ARPKD or ADPKD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA