Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Biology (Basel) ; 13(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39056661

RESUMO

BACKGROUND: Human beings consume different chemical forms of iodine in their diet. These are transported by different mechanisms in the cell. The forms of iodine can be part of thyroid hormones, bind to lipids, be an antioxidant, or be an oxidant, depending on their chemical form. The excessive consumption of iodine has been associated with pancreatic damage and diabetes mellitus type 2, but the association between disease and the chemical form consumed in the diet is unknown. This research analyzes the effect of excessive iodine consumption as Lugol (molecular iodine/potassium iodide solution) and iodate on parameters of pancreatic function, thyroid and lipid profiles, antioxidant and oxidant status, the expression of IR/Akt/P-Akt/GLUT4, and transcription factors PPAR-γ and CEBP-ß. METHODS: Three groups of Wistar rats were treated with 300 µg/L of iodine in drinking water: (1) control, (2) KIO3, and (3) Lugol. RESULTS: Lugol and KIO3 consumption increased total iodine levels. Only KIO3 increased TSH levels. Both induced high serum glucose levels and increased oxidative stress and pancreatic alpha-amylase activity. Insulin levels and antioxidant status decreased significantly. PPAR-γ and C/EBP-ß mRNA expression increased. CONCLUSION: The pancreatic damage, hypertriglyceridemia, and oxidative stress were independent of the chemical form of iodine consumed. These effects depended on PPAR-γ, C/EBP-ß, GLUT-4, and IR.

2.
J Alzheimers Dis Rep ; 8(1): 903-922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910936

RESUMO

Background: Despite intense investigations, no effective treatment is yet available to reduce plaques and protect memory and learning in patients with Alzheimer's disease (AD), the most common neurodegenerative disorder. Therefore, it is important to identify a non-toxic, but effective, treatment option for AD. Objective: Cinnamein, a nontoxic compound, is naturally available in Balsam of Peru and Tolu Balsam. We examined whether cinnamein treatment could decrease plaques and improve cognitive functions in 5XFAD mouse model of AD. Methods: We employed in silico analysis, time-resolved fluorescence energy transfer assay, thermal shift assay, primary neuron isolation, western blot, immunostaining, immunohistochemistry, Barnes maze, T maze, and open field behavior. Results: Oral administration of cinnamein led to significant reduction in amyloid-ß plaque deposits in the brain and protection of spatial learning and memory in 5XFAD mice. Peroxisome proliferator-activated receptor alpha (PPARα), a nuclear hormone receptor, is involved in plaque lowering and increase in hippocampal plasticity. While investigating underlying mechanisms, we found that cinnamein served as a ligand of PPARα. Accordingly, oral cinnamein upregulated the level of PPARα, but not PPARß, in the hippocampus, and remained unable to decrease plaques from the hippocampus and improve memory and learning in 5XFAD mice lacking PPARα. While A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is one of the drivers of nonamyloidogenic pathway, transcription factor EB (TFEB) is considered as the master regulator of autophagy. Cinnamein treatment was found to upregulate both ADAM10 and TFEB in the brain of 5XFAD mice via PPARα. Conclusions: Our results suggest that this balsam component may have therapeutic importance in AD.

3.
Mol Cell Endocrinol ; 585: 112177, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373652

RESUMO

AIM: To evaluate the effects of PPARα and PPARγ activation (alone or in combination) on the gut-liver axis, emphasizing the integrity of the intestinal barrier and hepatic steatosis in mice fed a high saturated fat diet. METHODS: Male C57BL/6J were fed a control diet (C) or a high-fat diet (HF) for ten weeks. Then, a four-week treatment started: HF-α (WY14643), HF-γ (low-dose pioglitazone), and HF-αγ (combination). RESULTS: The HF caused overweight, insulin resistance, impaired gut-liver axis, and marked hepatic steatosis. Treatments reduced body mass, improved glucose homeostasis, and restored the gut microbiota diversity and intestinal barrier gene expression. Treatments also lowered the plasma lipopolysaccharide concentrations and favored beta-oxidation genes, reducing macrophage infiltration and steatosis in the liver. CONCLUSION: Treatment with PPAR agonists modulated the gut microbiota and rescued the integrity of the intestinal barrier, alleviating hepatic steatosis. These results show that these agonists can contribute to metabolic-associated fatty liver disease treatment.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , PPAR alfa/genética , PPAR alfa/metabolismo , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
4.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944523

RESUMO

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Assuntos
Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Caenorhabditis elegans , Ácido Oleico/farmacologia , Receptores Ativados por Proliferador de Peroxissomo , Sobrecarga de Ferro/tratamento farmacológico , Ferro , Éteres Fosfolipídicos
5.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);70(3): e20231000, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1558856

RESUMO

SUMMARY OBJECTIVE: Obesity is an increasingly prevalent global health problem, which is generally caused by the increase in body fat mass above normal and observed in all societies. If the blood glucose level is higher than normal but not high enough to diagnose diabetes, this condition is defined as prediabetes. Adiponectin increases fatty acid oxidation and insulin sensitivity and is closely associated with obesity. One of the nuclear receptor superfamily member peroxisome proliferator-activated receptors is shown to have an important role in various metabolic reactions. This study aimed to investigate the serum levels of adiponectin and peroxisome proliferator-activated receptors-gamma parameters, which are closely related to adipose tissue, energy metabolism, and insulin sensitivity, in obese patients with and without prediabetes. METHODS: For this purpose, 52 obese patients with prediabetes, 48 obese patients with non-prediabetes, and 76 healthy individuals were included in this study. Serum adiponectin and peroxisome proliferator-activated receptors-γ levels were analyzed by ELISA. RESULTS: Serum adiponectin levels were significantly higher in obese patients with prediabetes (18.15±15.99) compared with the control group (15.17±15.67; p=0.42). No significant difference was observed in both adiponectin and peroxisome proliferator-activated receptors-γ levels in the obese patients with the non-prediabetes group compared with the control group. However, no significant difference was observed in the obese patients with prediabetes group and obese patients with non-prediabetes group. CONCLUSION: Our results suggest that adiponectin may serve as an indicator of prediabetes. This implies that examining adiponectin levels in individuals diagnosed with prediabetes may enhance our understanding of the metabolic processes closely linked to prediabetes and related conditions.

6.
Nutrition ; 117: 112253, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944411

RESUMO

OBJECTIVE: The aim of this study was to investigate the role of peroxisome proliferator-activated receptor (PPAR) activation (single PPARα or PPARγ, and dual PPARα/γ) on UCP1-dependent and -independent thermogenic pathways and mitochondrial metabolism in the subcutaneous white adipose tissue of mice fed a high-fat diet. METHODS: Male C57BL/6 mice received either a control diet (10% lipids) or a high-fat diet (HF; 50% lipids) for 12 wk. The HF group was divided to receive the treatments for 4 wk: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS: The HF group was overweight, insulin resistant, and had subcutaneous white adipocyte dysfunction. Treatment with PPARα and PPARα/γ reduced body mass, mitigated insulin resistance, and induced browning with increased UCP1-dependent and -independent thermogenesis activation and improved mitochondrial metabolism to support the beige adipocyte phenotype. CONCLUSION: PPARα and dual PPARα/γ activation recruited UCP1+ beige adipocytes and favored UCP1-independent thermogenesis, yielding body mass and insulin sensitivity normalization. Preserved mitochondrial metabolism emerges as a potential target for obesity treatment using PPAR agonists, with possible clinical applications.


Assuntos
Adipócitos Bege , Resistência à Insulina , Animais , Masculino , Camundongos , Adipócitos Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , PPAR alfa/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo
7.
Biomolecules ; 13(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136661

RESUMO

Glucose and lipid metabolism regulation by the peroxisome proliferator-activated receptors (PPARs) has been extensively reported. However, the role of their polymorphisms remains unclear. OBJECTIVE: To determine the relation between PPAR-γ2 rs1801282 (Pro12Ala) and PPAR-ß/δ rs2016520 (+294T/C) polymorphisms and metabolic biomarkers in adults with type 2 diabetes (T2D). MATERIALS AND METHODS: We included 314 patients with T2D. Information on anthropometric, fasting plasma glucose (FPG), HbA1c and lipid profile measurements was taken from clinical records. Genomic DNA was obtained from peripheral blood. End-point PCR was used for PPAR-γ2 rs1801282, while for PPAR-ß/δ rs2016520 the PCR product was digested with Bsl-I enzyme. Data were compared with parametric or non-parametric tests. Multivariate models were used to adjust for covariates and interaction effects. RESULTS: minor allele frequency was 12.42% for PPAR-γ2 rs1801282-G and 13.85% for PPAR-ß/δ rs2016520-C. Both polymorphisms were related to waist circumference; they showed independent effects on HbA1c, while they interacted for FPG; carriers of both PPAR minor alleles had the highest values. Interactions between FPG and polymorphisms were identified in their relation to triglyceride level. CONCLUSIONS: PPAR-γ2 rs1801282 and PPAR-ß/δ rs2016520 polymorphisms are associated with anthropometric, glucose, and lipid metabolism biomarkers in T2D patients. Further research is required on the molecular mechanisms involved.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR delta , PPAR beta , Adulto , Humanos , PPAR gama/genética , PPAR delta/genética , Diabetes Mellitus Tipo 2/genética , PPAR beta/genética , Hemoglobinas Glicadas/genética , Polimorfismo de Nucleotídeo Único , Biomarcadores , Glucose
8.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760061

RESUMO

High ethanol consumption triggers neuroinflammation, implicated in sustaining chronic alcohol use. This inflammation boosts glutamate, prompting dopamine release in reward centers, driving prolonged drinking and relapse. Fibrate drugs, activating peroxisome proliferator-activated receptor alpha (PPAR-α), counteract neuroinflammation in other contexts, prompting investigation into their impact on ethanol-induced inflammation. Here, we studied, in UChB drinker rats, whether the administration of fenofibrate in the withdrawal stage after chronic ethanol consumption reduces voluntary intake when alcohol is offered again to the animals (relapse-type drinking). Furthermore, we determined if fenofibrate was able to decrease ethanol-induced neuroinflammation and oxidative stress in the brain. Animals treated with fenofibrate decreased alcohol consumption by 80% during post-abstinence relapse. Furthermore, fenofibrate decreased the expression of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukins IL-1ß and IL-6, and of an oxidative stress-induced gene (heme oxygenase-1), in the hippocampus, nucleus accumbens, and prefrontal cortex. Animals treated with fenofibrate showed an increase M2-type microglia (with anti-inflammatory proprieties) and a decrease in phagocytic microglia in the hippocampus. A PPAR-α antagonist (GW6471) abrogated the effects of fenofibrate, indicating that they are dependent on PPAR-α activation. These findings highlight the potential of fenofibrate, an FDA-approved dyslipidemia medication, as a supplementary approach to alleviating relapse severity in individuals with alcohol use disorder (AUD) during withdrawal.

9.
Viruses ; 15(6)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37376550

RESUMO

In recent years, the Zika Virus (ZIKV) has caused pandemic outbreaks associated with a high rate of congenital ZIKV syndrome (CZS). Although all strains associated with worldwide outbreaks derive from the Asian lineage, the reasons for their enhanced spread and severity are not fully understood. In this study, we conducted a comparative analysis of miRNAs (miRNA-155/146a/124) and their cellular targets (SOCS1/3, SHP1, TRAF6, IRAK1), as well as pro- and anti-inflammatory and anti-viral cytokines (IL-6, TNF-α, IFN-γ, IL-10, and IFN-ß) and peroxisome proliferator-activated receptor γ (PPAR-γ) expression in BV2 microglia cells infected with ZIKV strains derived from African and Asian lineages (ZIKVMR766 and ZIKVPE243). BV2 cells were susceptible to both ZIKV strains, and showed discrete levels of viral replication, with delayed release of viral particles without inducing significant cytopathogenic effects. However, the ZIKVMR766 strain showed higher infectivity and replicative capacity, inducing a higher expression of microglial activation markers than the ZIKVPE243 strain. Moreover, infection with the ZIKVMR766 strain promoted both a higher inflammatory response and a lower expression of anti-viral factors compared to the ZIKVPE243 strain. Remarkably, the ZIKKPE243 strain induced significantly higher levels of the anti-inflammatory nuclear receptor-PPAR-γ. These findings improve our understanding of ZIKV-mediated modulation of inflammatory and anti-viral innate immune responses and open a new avenue to explore underlining mechanisms involved in the pathogenesis of ZIKV-associated diseases.


Assuntos
MicroRNAs , Infecção por Zika virus , Zika virus , Humanos , Zika virus/fisiologia , Microglia/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Replicação Viral/fisiologia , Antivirais
10.
Biomolecules ; 13(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37189379

RESUMO

Since the removal of thiazolidinediones (TZDs) from the market, researchers have been exploring alternative anti-diabetic drugs that target PPARγ without causing adverse effects while promoting insulin sensitization by blocking serine 273 phosphorylation (Ser273 or S273). Nonetheless, the underlying mechanisms of the relationship between insulin resistance and S273 phosphorylation are still largely unknown, except for the involvement of growth differentiation factor (GDF3) regulation in the process. To further investigate potential pathways, we generated a whole organism knockin mouse line with a single S273A mutation (KI) that blocks the occurrence of its phosphorylation. Our observations of KI mice on different diets and feeding schedules revealed that they were hyperglycemic, hypoinsulinemic, presented more body fat at weaning, and presented an altered plasma and hepatic lipid profile, distinctive liver morphology and gene expression. These results suggest that total blockage of S273 phosphorylation may have unforeseen effects that, in addition to promoting insulin sensitivity, could lead to metabolic disturbances, particularly in the liver. Therefore, our findings demonstrate both the beneficial and detrimental effects of PPAR S273 phosphorylation and suggest selective modulation of this post translational modification is a viable strategy to treat type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Insulina/metabolismo , Fosforilação , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Fígado/metabolismo
11.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982395

RESUMO

Metabolic syndrome (MetS) is a cluster of factors that increase the risk of developing diabetes, stroke, and heart failure. The pathophysiology of injury by ischemia/reperfusion (I/R) is highly complex and the inflammatory condition plays an important role by increasing matrix remodeling and cardiac apoptosis. Natriuretic peptides (NPs) are cardiac hormones with numerous beneficial effects mainly mediated by a cell surface receptor named atrial natriuretic peptide receptor (ANPr). Although NPs are powerful clinical markers of cardiac failure, their role in I/R is still controversial. Peroxisome proliferator-activated receptor α agonists exert cardiovascular therapeutic actions; however, their effect on the NPs' signaling pathway has not been extensively studied. Our study provides important insight into the regulation of both ANP and ANPr in the hearts of MetS rats and their association with the inflammatory conditions caused by damage from I/R. Moreover, we show that pre-treatment with clofibrate was able to decrease the inflammatory response that, in turn, decreases myocardial fibrosis, the expression of metalloprotease 2 and apoptosis. Treatment with clofibrate is also associated with a decrease in ANP and ANPr expression.


Assuntos
Síndrome Metabólica , Traumatismo por Reperfusão , Ratos , Animais , Fator Natriurético Atrial/metabolismo , PPAR alfa/agonistas , Clofibrato/farmacologia , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Peptídeos Natriuréticos , Isquemia , Arritmias Cardíacas , Inflamação/tratamento farmacológico
12.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982692

RESUMO

Osteoarticular injury is the most common presentation of active brucellosis in humans. Osteoblasts and adipocytes originate from mesenchymal stem cells (MSC). Since those osteoblasts are bone-forming cells, the predilection of MSC to differentiate into adipocytes or osteoblasts is a potential factor involved in bone loss. In addition, osteoblasts and adipocytes can be converted into each other according to the surrounding microenvironment. Here, we study the incumbency of B. abortus infection in the crosstalk between adipocytes and osteoblasts during differentiation from its precursors. Our results indicate that soluble mediators present in culture supernatants from B. abotus-infected adipocytes inhibit osteoblast mineral matrix deposition in a mechanism dependent on the presence of IL-6 with the concomitant reduction of Runt-related transcription factor 2 (RUNX-2) transcription, but without altering organic matrix deposition and inducing nuclear receptor activator ligand kß (RANKL) expression. Secondly, B. abortus-infected osteoblasts stimulate adipocyte differentiation with the induction of peroxisome proliferator-activated receptor γ (PPAR-γ) and CCAAT enhancer binding protein ß (C/EBP-ß). We conclude that adipocyte-osteoblast crosstalk during B. abortus infection could modulate mutual differentiation from its precursor cells, contributing to bone resorption.


Assuntos
Reabsorção Óssea , Osteoblastos , Humanos , Linhagem Celular , Diferenciação Celular , Osteoblastos/metabolismo , Reabsorção Óssea/metabolismo , Adipócitos/metabolismo
13.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834679

RESUMO

Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Sinucleinopatias , Animais , Doença de Parkinson/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Fármacos Neuroprotetores/uso terapêutico , Neuroproteção , Modelos Animais de Doenças
14.
Mol Cell Endocrinol ; 562: 111839, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581062

RESUMO

AIM: To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS: Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS: The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION: PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.


Assuntos
Endotoxemia , PPAR alfa , Animais , Masculino , Camundongos , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica , Lipídeos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo
15.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36582744

RESUMO

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

16.
Braz. J. Pharm. Sci. (Online) ; 59: e21639, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439506

RESUMO

ABSTRACT Herein, we examined the protective effect of metoprolol combined with atractylenolide I (Atr I) in acute myocardial infarction (AMI) by regulating the SIRT3 (silent information regulator 3)/ß-catenin/peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway. Briefly, 50 rats were randomly divided into the sham operation, model, metoprolol, Atr I, and combination metoprolol with Atr I groups (combined treatment group). The AMI model was established by ligating the left anterior descending coronary artery. After treatment, infarct size, histopathological changes, and cell apoptosis were examined using 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, and the TUNEL assay. The left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), and left ventricular mass index (LVMI) were detected by echocardiography. Endothelin-1 (ET-1), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels were detected using enzyme-linked immunosorbent assays. Furthermore, we measured lactate dehydrogenase (LDH), creatine kinase (CK) isoenzyme (CK-MB), and CK levels. Western blotting was performed to determine the expression of SIRT3, ß-catenin, and PPAR-γ. Herein, the combined treatment group exhibited increased levels of LVEF, LVFS, and NO, whereas LVMI, ET-1, TNF-α, IL-6, LDH, CK-MB, and CK levels were decreased. Importantly, the underlying mechanism may afford protection against AMI by increasing the expression levels of SIRT3, ß-catenin, and PPAR-γ


Assuntos
Animais , Masculino , Feminino , Ratos , Sirtuína 3/farmacologia , Metoprolol/agonistas , Infarto do Miocárdio/induzido quimicamente , Ecocardiografia/instrumentação , Creatina Quinase/classificação , Cateninas/efeitos adversos
17.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1536162

RESUMO

A panel of 2,3-disubstituted thiazolidin-4-ones 4a-n was synthesised from Schiff bases 3a-n derived from sulfanilamide, by reaction with thioglycolic acid. The compounds were characterised by means of IR, NMR, and Mass spectral data. Compounds 4a-n were screened for DPPH scavenging assay and compounds 4e, 4h, 4i, and 4n exhibited moderate activity. Compounds 4e, 4h, and 4i were tested at 200 mg/kg and 4e at 50 mg/kg b.w. orally for antidiabetic activity in fructose induced diabetic rats. They exhibited significant antidiabetic activity compared to the control group. Pioglitazone was used as a standard drug. The tested compounds exhibited better and ignificant serum cholesterol lowering activity when compared with the control and standard groups. They also reduced the triglyceride level after the 21st day; however, it was insignificant when compared to the control group. Compound 4n displayed the highest binding energy when docked with PPAR-γ followed by compounds 4e, 4h, and 4i when compared to pioglitazone. The physicochemical, drug likeness and ADME properties of the title compounds were found to be satisfactory.


Se sintetizó un panel de tiazolidinas-4-onas 2,3-disustituidas 4a-n a partir de las bases de Schiff 3a-n derivadas de la sulfanilamida por reacción con ácido tioglicólico. Los compuestos se caracterizaron por IR, RMN y datos espectrales de masa. Los compuestos 4a-n se analizaron para DPPH y los compuestos 4e, 4h, 4i y 4n mostraron una actividad moderada. Los compuestos 4e, 4h y 4i se probaron a 200 mg/kg y 4e a 50 mg/kg b.w. oralmente para la actividad antidiabética en ratas diabéticas, inducida por fructosa. Los compuestos mostraron una actividad antidiabética muy significativa en comparación con el grupo control. La pioglitazona se utilizó como fármaco estándar. Los compuestos ensayados mostraron una mejor y significativa actividad reductora del colesterol sérico en comparación con los grupos control y estándar. Estos compuestos también redujeron el nivel de triglicéridos después del 21° día, aunque fue insignificante en comparación con el grupo control. El compuesto 4n mostró la mayor afinidad de unión cuando se acopló a PPAR-γ, seguido de 4e, 4h y 4i en comparación con la pioglitazona. Las propiedades fisicoquímicas, la similitud con el fármaco y las propiedades ADME de los compuestos fueron satisfactorias, lo que los convierte en útiles agentes antidiabéticos.


Um painel de 2,3-disubstituído thiazolidina-4-ones 4a-n foram sintetizados a partir de bases Schiff 3a-n derivado da sulfanilamida por reacção com ácido tioglicólico. Os compostos eram caracterizado por IR, NMR e dados espectrais de massa. Os compostos 4a-n foram rastreados para O ensaio DPPH de limpeza radical e os compostos 4e, 4h, 4i e 4n exibiram actividade moderada. Os compostos 4e, 4h e 4i foram testados a 200 mg/kg e 4e a 50 mg/kg de peso corporal por via oral para antidiabéticos. actividade em ratos diabéticos induzidos por frutose. Exibiram uma actividade antidiabética altamente significativa actividade em comparação com o controlo. A pioglitazona foi utilizada como droga padrão. Os compostos testados exibiu uma melhor e significativa actividade de redução do colesterol sérico quando comparado comde triglicéridos após o 21° dia; no entanto, foi insignificante quando comparado com o controlo. O composto 4n mostrou a maior afinidade de ligação quando acoplado com PPAR-γ seguido de 4e, 4h, 4i quando comparado com pioglitazona. O propriedades físico-químicas, de semelhança com drogas e ADME dos compostos do título de propriedade também foram encontrados paraser satisfatórios, tornando-os agentes antidiabéticos úteis.

18.
Plants (Basel) ; 11(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432875

RESUMO

Inhibition of systemic inflammation has been a beneficial strategy in treating several non-communicable diseases, which represent one of the major causes of mortality in the world. The Peroxisome Proliferator-Activated Receptors (PPAR) are interesting pharmacological targets, since they can act both through the metabolic and anti-inflammatory pathways. Morus nigra L. has flavonoids in its chemical composition with recognized anti-oxidant activity and often associated with anti-inflammatory activity. Therefore, this study aimed to evaluate the hydroethanolic extract of M. nigra leaves' ability to activate PPAR and promote anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage cells. The leaf extract was prepared by cold maceration, and the chemical profile was obtained by HPLC-DAD. Activation of PPAR α and γ was evaluated by the luciferase reporter assay. The anti-inflammatory activity was assessed by measuring the reactive oxygen species (ROS), nitric oxide (NO), and Tumor Necrosis Factor-α (TNF-α) in RAW 264.7 cells after stimulation with LPS from Escherichia coli. The HPLC-DAD analysis identified two major compounds: rutin and isoquercitrin. The extract showed agonist activity for the two types of PPAR, α and γ, although its major compounds, rutin and isoquercitrin, did not significantly activate the receptors. In addition, the extract significantly reduced the production of ROS, NO, and TNF-α. Treatment with the specific PPAR-α antagonist, GW 6471, was able to partially block the anti-inflammatory effect caused by the extract.

20.
Front Cell Infect Microbiol ; 12: 884237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909958

RESUMO

Patients with cutaneous leishmaniasis (CL) due to Leishmania braziliensis infection have an exacerbated inflammatory response associated with tissue damage and ulcer development. An increase in the rate of patients who fail therapy with pentavalent antimony has been documented. An adjuvant therapy with an anti-inflammatory drug with the potential of Leishmania killing would benefit CL patients. The aim of the present study was to investigate the contribution of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation by pioglitazone in the regulation of the inflammatory response and L. braziliensis killing by monocytes. Pioglitazone is an oral drug used in the treatment of diabetes, and its main mechanism of action is through the activation of PPAR-γ, which is expressed in many cell types of the immune response. We found that activation of PPAR-γ by pioglitazone decreases the inflammatory response in CL patients without affecting L. braziliensis killing by monocytes. Our data suggest that pioglitazone may serve as an adjunctive treatment for CL caused by L. braziliensis.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Monócitos , PPAR gama/uso terapêutico , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA