Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Inflammation ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110363

RESUMO

Diabetic kidney disease (DKD) is the most significant complication in diabetic patients, ultimately leading to renal fibrosis. The most important manifestation of DKD is the epithelial-mesenchymal transition (EMT) of renal tubular cells, which can lead to renal fibrosis and inflammatory injury in special situations. Sphingosine 1-phosphate (S1P) is involved in various signal transduction pathways and plays a role through G protein-coupled receptors. Research has demonstrated that blocking the S1P / S1PR2 pathway inhibits inflammation and fibrosis. However, the interaction between S1P/S1PR1 and the pathophysiology of EMT remains ambiguous. The purpose of this study was to investigate the mechanism of S1P/S1PR1 on high glucose (HG)-induced renal EMT. We found that HG markedly increased the S1P and EMT marker levels in renal tubular epithelial cells. At the same time, HG could stimulate NF-κB/ROS/NLRP3 expression, but these phenomena were reversed after blocking S1PR1. In mice models of DKD, FTY720 (S1P antagonist) could significantly improve renal function and reduce the infiltration of inflammatory cells. ROS, as well as NLPR3 inflammasome, were markedly decreased in the treatment group. FTY720 inhibits extracellular matrix synthesis and improves renal fibrosis. In brief, the HG stimulates S1P/S1PR1 synthesis and activates the S1P/S1PR1 pathway. Through the S1P/S1PR1 pathway, activates NF-κB, promotes ROS generation and NLRP3 inflammasome activation, and ultimately causes EMT.

2.
Drugs Context ; 132024.
Artigo em Inglês | MEDLINE | ID: mdl-39131603

RESUMO

Psoriasis is a chronic inflammatory skin disease affecting 2-3% of the global population. Traditional systemic treatments, such as methotrexate, cyclosporine, acitretin and fumaric acid esters, have limited efficacy and are associated with significant adverse effects, necessitating regular monitoring and posing risks of long-term toxicity. Recent advancements have introduced biologic drugs that offer improved efficacy and safety profiles. However, their high cost and the inconvenience of parenteral administration limit their accessibility. Consequently, there is a growing interest in developing new, targeted oral therapies. Small molecules, such as phosphodiesterase 4 inhibitors (e.g. apremilast) and TYK2 inhibitor (e.g. deucravacitinib), have shown promising results with favourable safety profiles. Additionally, other novel oral agents targeting specific pathways, including IL-17, IL-23, TNF, S1PR1 and A3AR, are under investigation. These treatments aim to combine the efficacy of biologics with the convenience and accessibility of oral administration, addressing the limitations of current therapies. This narrative review synthesizes the emerging oral therapeutic agents for psoriasis, focusing on their mechanisms of action, stages of development and clinical trial results.

3.
Cancer Lett ; 600: 217158, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39111385

RESUMO

Acute myeloid leukemia (AML) arises from leukemia stem cells (LSCs) and is maintained by cells which have acquired features of stemness. We compared transcription profiles of AML cells with/without stem cell features defined as in vitro clonogenicity and serial engraftment in immune-deficient mice xenograft model. We used multi-parameter flow cytometry (MPFC) to separate CD34+ bone marrow-derived leukemia cells into sphingosine-1 phosphate receptor 1 (S1PR1)+ and S1PR1- fractions. Cells in the S1PR1+ fraction demonstrated significantly higher clonogenicity and higher engraftment potential compared with those in the S1PR1- fraction. In contrast, CD34+ bone marrow cells from normal samples showed reduced clonogenicity in the S1PR1+ fraction compared with the S1PR1- fraction. Inhibition of S1PR1 expression in an AML cell line reduced the colony-forming potential of KG1 cells. Transcriptomic analyses and rescue experiments indicated PI3K/AKT pathway and MYBL2 are downstream mediators of S1PR1-associated stemness. These findings implicate S1PR1 as a functional biomarker of LSCs and suggest its potential as a therapeutic target in AML treatment.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Receptores de Esfingosina-1-Fosfato , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Humanos , Animais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , Linhagem Celular Tumoral , Transdução de Sinais , Masculino , Feminino , Camundongos Endogâmicos NOD , Regulação Leucêmica da Expressão Gênica
4.
Front Pharmacol ; 15: 1407347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045057

RESUMO

Background: Pain is a complex perception involving unpleasant somatosensory and emotional experiences. However, the underlying mechanisms that mediate its different components remain unclear. Sphingosine-1-phosphate (S1P), a metabolite of sphingomyelin and a potent lipid mediator, initiates signaling via G protein-coupled receptors (S1PRs) on cell surfaces. It serves as a second messenger in cellular processes such as proliferation and apoptosis. Nevertheless, the neuropharmacology of sphingolipid signaling in pain conditions within the central nervous system remains largely unexplored and controversial. Methods: Chronic nociceptive pain models were induced in vivo by intraplantar injection of 20 µL complete Freund's adjuvant (CFA) into the left hind paws. We assessed S1P and S1PR1 expression in the spinal cords of CFA model mice. Functional antagonists of S1PR1 or S1PR1-specific siRNA were administered daily following CFA model establishment. Paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL) were measured to evaluate mechanical allodynia and thermal hyperalgesia, respectively. RT-PCR assessed interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α levels. Western blotting and immunofluorescence were used to analyze glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), STAT3, ERK, and p38 MAPK protein expression. Results: In the chronic nociceptive pain model induced by CFA, S1P and S1PR1 expression levels were significantly elevated, leading to activation of spinal cord glial cells. S1PR1 activation also promoted MMP2-mediated cleavage of mature IL-1ß. Additionally, S1PR1 activation upregulated phosphorylation of STAT3, ERK, and p38 MAPK in glial cells, profoundly impacting downstream signaling pathways and contributing to chronic nociceptive pain. Conclusion: The S1P/S1PR1 axis plays a pivotal role in the cellular and molecular mechanisms underlying nociceptive pain. This signaling pathway modulates glial cell activation and the expression of pain-related genes (STAT3, ERK, p38 MAPK) and inflammatory factors in the spinal dorsal horn. These findings underscore the potential of targeting the S1P system for developing novel analgesic therapies.

5.
Cytotherapy ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39033444

RESUMO

BACKGROUND AIMS: Hu8F4 is a T-cell receptor-like antibody with high affinity for the leukemia-associated antigen PR1/HLA-A2 epitope. Adapted into a chimeric antigen receptor (CAR) format, Hu8F4-CAR is composed of the Hu8F4 single-chain variable fragment, the human IgG1 CH2CH3 extracellular spacer domain, a human CD28 costimulatory domain and the human CD3ζ signaling domain. We have demonstrated high efficacy of Hu8F4-CAR-T cells against PR1/HLA-A2-expressing cell lines and leukemic blasts from patients with acute myeloid leukemia in vitro. Previous studies have shown that modification of the Fc domains of IgG4 CH2CH3 spacer regions can eliminate activation-induced cell death and off-target killing mediated by mouse Fc gamma receptor-expressing cells. METHODS: We generated Hu8F4-CAR(PQ) with mutated Fc receptor binding sites on the CH2 domain of Hu8F4-CAR to prevent unwanted interactions with Fc gamma receptor-expressing cells in vivo. RESULTS: The primary human T cells transduced with Hu8F4-CAR(PQ) can specifically lyse HLA-A2+ PR1-expressing leukemia cell lines in vitro. Furthermore, both adult donor-derived and cord blood-derived Hu8F4-CAR(PQ)-T cells are active and can eliminate U937 leukemia cells in NSG mice. CONCLUSIONS: Herein, we demonstrate that modification of the IgG1-based spacer can eliminate Fc receptor binding-induced adverse effects and Hu8F4-CAR(PQ)-T cells can kill leukemia in vivo.

6.
Cell Rep ; 43(6): 114297, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38824643

RESUMO

The mechanical environment generated through the adhesive interaction of endothelial cells (ECs) with the matrix controls nuclear tension, preventing aberrant gene synthesis and the transition from restrictive to leaky endothelium, a hallmark of acute lung injury (ALI). However, the mechanisms controlling tension transmission to the nucleus and EC-restrictive fate remain elusive. Here, we demonstrate that, in a kinase-independent manner, focal adhesion kinase (FAK) safeguards tension transmission to the nucleus to maintain EC-restrictive fate. In FAK-depleted ECs, robust activation of the RhoA-Rho-kinase pathway increased EC tension and phosphorylation of the nuclear envelope protein, emerin, activating DNMT3a. Activated DNMT3a methylates the KLF2 promoter, impairing the synthesis of KLF2 and its target S1PR1 to induce the leaky EC transcriptome. Repleting FAK (wild type or kinase dead) or inhibiting RhoA-emerin-DNMT3a activities in damaged lung ECs restored KLF2 transcription of the restrictive EC transcriptome. Thus, FAK sensing and control of tension transmission to the nucleus govern restrictive endothelium to maintain lung homeostasis.


Assuntos
Núcleo Celular , Células Endoteliais , Fatores de Transcrição Kruppel-Like , Transcriptoma , Proteína rhoA de Ligação ao GTP , Animais , Humanos , Camundongos , Núcleo Celular/metabolismo , DNA Metiltransferase 3A , Células Endoteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Fosforilação , Regiões Promotoras Genéticas/genética , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Transcriptoma/genética , Masculino , Feminino
7.
Chem Biol Interact ; 398: 111085, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823539

RESUMO

Sepsis-induced acute lung injury (SALI) is the common complication of sepsis, resulting in high incidence and mortality rates. The primary pathogenesis of SALI is the interplay between acute inflammation and endothelial barrier damage. Studies have shown that kaempferol (KPF) has anti-sepsis properties. Sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway's significance in acute lung damage and S1P receptor 1 (S1PR1) agonists potential in myosin light chain 2 (MLC2) phosphorylation are documented. Whether KPF can regulate the SphK1/S1P/S1PR1/MLC2 signaling pathway to protect the lung endothelial barrier remains unclear. This study investigates the KPF's therapeutic effects and molecular mechanisms in repairing endothelial cell barrier damage in both LPS-induced sepsis mice and human umbilical vein endothelial cells (HUVECs). KPF significantly reduced lung tissue damage and showed anti-inflammatory effects by decreasing IL-6 and TNF-α synthesis in the sepsis mice model. Further, KPF administration can reduce the high permeability of the LPS-induced endothelial cell barrier and alleviate lung endothelial cell barrier injury. Mechanistic studies showed that KPF pretreatment can suppress MLC2 hyperphosphorylation and decrease SphK1, S1P, and S1PR1 levels. The SphK1/S1P/S1PR1/MLC2 signaling pathway controls the downstream proteins linked to endothelial barrier damage, and the Western blot (WB) showed that KPF raised the protein levels. These proteins include zonula occludens (ZO)-1, vascular endothelial (VE)-cadherin and Occludin. The present work revealed that in mice exhibiting sepsis triggered by LPS, KPF strengthened the endothelial barrier and reduced the inflammatory response. The SphK1/S1P/S1PR1/MLC2 pathway's modulation is the mechanism underlying this impact.


Assuntos
Lesão Pulmonar Aguda , Miosinas Cardíacas , Células Endoteliais da Veia Umbilical Humana , Quempferóis , Pulmão , Lisofosfolipídeos , Camundongos Endogâmicos C57BL , Cadeias Leves de Miosina , Sepse , Transdução de Sinais , Esfingosina , Animais , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Humanos , Cadeias Leves de Miosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Lisofosfolipídeos/metabolismo , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia , Masculino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Miosinas Cardíacas/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Lipopolissacarídeos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Interleucina-6/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
8.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928169

RESUMO

Plant resistance against biotic stressors is significantly influenced by pathogenesis-related 1 (PR1) proteins. This study examines the systematic identification and characterization of PR1 family genes in sugarcane (Saccharum spontaneum Np-X) and the transcript expression of selected genes in two sugarcane cultivars (ROC22 and Zhongtang3) in response to Ustilago scitaminea pathogen infection. A total of 18 SsnpPR1 genes were identified at the whole-genome level and further categorized into four groups. Notably, tandem and segmental duplication occurrences were detected in one and five SsnpPR1 gene pairs, respectively. The SsnpPR1 genes exhibited diverse physio-chemical attributes and variations in introns/exons and conserved motifs. Notably, four SsnpPR1 (SsnpPR1.02/05/09/19) proteins displayed a strong protein-protein interaction network. The transcript expression of three SsnpPR1 (SsnpPR1.04/06/09) genes was upregulated by 1.2-2.6 folds in the resistant cultivar (Zhongtang3) but downregulated in the susceptible cultivar (ROC22) across different time points as compared to the control in response to pathogen infection. Additionally, SsnpPR1.11 was specifically upregulated by 1.2-3.5 folds at 24-72 h post inoculation (hpi) in ROC22, suggesting that this gene may play an important negative regulatory role in defense responses to pathogen infection. The genetic improvement of sugarcane can be facilitated by our results, which also establish the basis for additional functional characterization of SsnpPR1 genes in response to pathogenic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Saccharum , Estresse Fisiológico , Ustilago , Saccharum/genética , Saccharum/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ustilago/genética , Ustilago/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Estresse Fisiológico/genética , Resistência à Doença/genética , Família Multigênica , Filogenia
9.
Exp Cell Res ; 439(1): 114071, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729336

RESUMO

Atherosclerosis preferentially occurs in areas with low shear stress (LSS) and oscillatory flow. LSS has been demonstrated to correlate with the development of atherosclerosis. The sphingosine 1-phosphate receptor 1 (S1PR1), involving intravascular blood flow sensing, regulates vascular development and vascular barrier function. However, whether LSS affects atherosclerosis via regulating S1PR1 remains incompletely clear. In this study, immunostaining results of F-actin, ß-catenin, and VE-cadherin indicated that LSS impaired endothelial barrier function in human umbilical vein endothelial cells (HUVECs). Western blot analysis showed that LSS resulted in blockage of autophagic flux in HUVECs. In addition, autophagy agonist Rapamycin (Rapa) antagonized LSS-induced endothelial barrier dysfunction, whereas autophagic flux inhibitor Bafilomycin A1 (BafA1) exacerbated it, indicating that LSS promoted endothelial barrier dysfunction by triggering autophagic flux blockage. Notably, gene expression analysis revealed that LSS downregulated S1PR1 expression, which was antagonized by Rapa. Selective S1PR1 antagonist W146 impaired endothelial barrier function of HUVECs under high shear stress (HSS) conditions. Moreover, our data showed that expression of GAPARAPL2, a member of autophagy-related gene 8 (Atg8) proteins, was decreased in HUVECs under LSS conditions. Autophagic flux blockage induced by GAPARAPL2 knockdown inhibited S1PR1, aggravated endothelial barrier dysfunction of HUVECs in vitro, and promoted aortic atherosclerosis in ApoE-/- mice in vivo. Our study demonstrates that autophagic flux blockage induced by LSS downregulates S1PR1 expression and impairs endothelial barrier function. GABARAPL2 inhibition is involved in LSS-induced autophagic flux blockage, which impairs endothelial barrier function via downregulation of S1PR1.


Assuntos
Aterosclerose , Autofagia , Células Endoteliais da Veia Umbilical Humana , Receptores de Esfingosina-1-Fosfato , Estresse Mecânico , Animais , Autofagia/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/efeitos dos fármacos
10.
Phytomedicine ; 130: 155720, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38763010

RESUMO

BACKGROUND: Ilex pubescens Hook. et Arn (IP), traditionally known for its properties of promoting blood circulation, swelling and pain relief, heat clearing, and detoxification, has been used in the treatment of thromboangiitis obliterans (TAO). Despite its traditional applications, the specific mechanisms by which IP exerts its therapeutic effects on TAO remain unclear. AIM OF THE STUDY: This study aims to uncover the underlying mechanisms in the therapeutic effects of IP on TAO, employing network pharmacology and metabolomic approaches. METHODS: In this study, a rat TAO model was established by injecting sodium laurate through the femoral artery, followed by the oral administration of IP for 7 days. Plasma coagulation parameters were measured to assess the therapeutic effects of IP. The potential influence on the femoral artery and gastrocnemius muscle was histopathologically evaluated. Network pharmacology was employed to predict relevant targets and model pathways for TAO. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was used for the metabolic profile analysis of rat plasma. Immunohistochemistry (IHC) was used to verify the mechanisms by which IP promotes blood circulation in TAO. RESULTS: The study revealed that IP improved blood biochemical function in TAO and played a significant role in vascular protection and maintaining normal blood vessels and gastrocnemius morphologies. Network pharmacology showed that IP compounds play a therapeutic role in modulating lipids and atherosclerosis. Metabolomic analysis revealed that the pathways involved in sphingolipid metabolism and steroid biosynthesis were significantly disrupted. The joint analysis showed a strong correlation between lysophosphatidylcholine and IP components, including triterpenoid and iridoid components, which support the curative action of IP through the modulation of sphingolipid metabolism. Furthermore, decreased expression levels of SPHK1/S1PR1, TNF-α, IL-1ß, and IL-6 were observed in the IP-treated group, suggesting that IP exerts a protective effect on the vasculature primarily by regulating of the SPHK1/S1PR1 signaling pathway. CONCLUSION: In this study, we found that IP protects the vasculature against injury and treats TAO by regulating the steady-state disturbance of the sphingolipid pathway. These findings suggest that IP promotes vasculature by modulating sphingolipid metabolism and SPHK1/S1PR1 signaling pathway and reduce levels of inflammatory factors, offering new insights into its therapeutic potential.


Assuntos
Ilex , Metabolômica , Farmacologia em Rede , Extratos Vegetais , Ratos Sprague-Dawley , Tromboangiite Obliterante , Animais , Tromboangiite Obliterante/tratamento farmacológico , Masculino , Ilex/química , Ratos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Modelos Animais de Doenças , Artéria Femoral/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Espectrometria de Massas em Tandem
11.
Curr Biol ; 34(10): 2049-2065.e6, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38677281

RESUMO

Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autofagia , Proteínas Ativadoras de GTPase , Imunidade Vegetal , Autofagia/fisiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Transporte Proteico
12.
ACS Chem Neurosci ; 15(9): 1882-1892, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634759

RESUMO

The sphingosine-1-phosphate receptor 1 (S1PR1) radiotracer [11C]CS1P1 has shown promise in proof-of-concept PET imaging of neuroinflammation in multiple sclerosis (MS). Our HPLC radiometabolite analysis of human plasma samples collected during PET scans with [11C]CS1P1 detected a radiometabolite peak that is more lipophilic than [11C]CS1P1. Radiolabeled metabolites that cross the blood-brain barrier complicate quantitative modeling of neuroimaging tracers; thus, characterizing such radiometabolites is important. Here, we report our detailed investigation of the metabolite profile of [11C]CS1P1 in rats, nonhuman primates, and humans. CS1P1 is a fluorine-containing ligand that we labeled with C-11 or F-18 for preclinical studies; the brain uptake was similar for both radiotracers. The same lipophilic radiometabolite found in human studies also was observed in plasma samples of rats and NHPs for CS1P1 labeled with either C-11 or F-18. We characterized the metabolite in detail using rats after injection of the nonradioactive CS1P1. To authenticate the molecular structure of this radiometabolite, we injected rats with 8 mg/kg of CS1P1 to collect plasma for solvent extraction and HPLC injection, followed by LC/MS analysis of the same metabolite. The LC/MS data indicated in vivo mono-oxidation of CS1P1 produces the metabolite. Subsequently, we synthesized three different mono-oxidized derivatives of CS1P1 for further investigation. Comparing the retention times of the mono-oxidized derivatives with the metabolite observed in rats injected with CS1P1 identified the metabolite as N-oxide 1, also named TZ82121. The MS fragmentation pattern of N-oxide 1 also matched that of the major metabolite in rat plasma. To confirm that metabolite TZ82121 does not enter the brain, we radiosynthesized [18F]TZ82121 by the oxidation of [18F]FS1P1. Radio-HPLC analysis confirmed that [18F]TZ82121 matched the radiometabolite observed in rat plasma post injection of [18F]FS1P1. Furthermore, the acute biodistribution study in SD rats and PET brain imaging in a nonhuman primate showed that [18F]TZ82121 does not enter the rat or nonhuman primate brain. Consequently, we concluded that the major lipophilic radiometabolite N-oxide [11C]TZ82121, detected in human plasma post injection of [11C]CS1P1, does not enter the brain to confound quantitative PET data analysis. [11C]CS1P1 is a promising S1PR1 radiotracer for detecting S1PR1 expression in the CNS.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Humanos , Tomografia por Emissão de Pósitrons/métodos , Ratos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Masculino , Receptores de Esfingosina-1-Fosfato/metabolismo , Ratos Sprague-Dawley , Radioisótopos de Flúor , Radioisótopos de Carbono
13.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599633

RESUMO

AIMS: This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS: The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION: The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.


Assuntos
Botrytis , Doenças das Plantas , Pseudomonas putida , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Pseudomonas putida/fisiologia , Pseudomonas putida/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Sideróforos/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Agentes de Controle Biológico/farmacologia , Folhas de Planta/microbiologia , Resistência à Doença
14.
Res Sq ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464203

RESUMO

Hu8F4 is a T cell receptor (TCR)-like antibody with high affinity for leukemia-associated antigen PR1/HLA-A2 epitope. Adapted into a chimeric antigen receptor (CAR) format, Hu8F4-CAR is comprised of the Hu8F4 scFv, the human IgG1 CH2CH3 extracellular spacer domain, a human CD28 costimulatory domain, and the human CD3ζ signaling domain. We have demonstrated high efficacy of Hu8F4-CAR-T cells against PR1/HLA-A2-expressing cell lines and leukemic blasts from AML patients in vitro. Previous studies have shown that modification of the Fc domains of IgG4 CH2CH3 spacer regions can eliminate activation-induced cell death and off-target killing mediated by mouse Fc gamma receptor (FcgR)-expressing cells. We generated Hu8F4-CAR(PQ) with mutated Fc receptor binding sites on the CH2 domain of Hu8F4-CAR to prevent unwanted interactions with FcgR-expressing cells in vivo. The primary human T cells transduced with Hu8F4-CAR(PQ) can specifically lyse HLA-A2+ PR1-expressing leukemia cell lines in vitro. Furthermore, both adult donor-derived and cord blood-derived Hu8F4-CAR(PQ)-T cells are active and can eliminate U937 leukemia cells in NSG mice. Herein, we demonstrate that modification of the IgG1-based spacer can eliminate Fc receptor-binding-induced adverse effects and Hu8F4-CAR(PQ)-T cells can kill leukemia in vivo.

15.
Discov Oncol ; 15(1): 66, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446289

RESUMO

Serum amyloid A1 (SAA1), an inflammation-related molecule, is associated with the malignant progression of many tumors. This study aimed to investigate the role of SAA1 in the progression of esophageal squamous cell carcinoma (ESCC) and its molecular mechanisms. The expression of SAA1 in ESCC tissues and cell lines was analyzed using bioinformatics analysis, western blotting, and reverse transcription-quantitative PCR (RT‒qPCR). SAA1-overexpressing or SAA1-knockdown ESCC cells were used to assess the effects of SAA1 on the proliferation, migration, apoptosis of cancer cells and the growth of xenograft tumors in nude mice. Western blotting, immunofluorescence and RT‒qPCR were used to investigate the relationship between SAA1 and ß-catenin and SAA1 and sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 1 (S1PR1). SAA1 was highly expressed in ESCC tissues and cell lines. Overexpression of SAA1 significantly promoted the proliferation, migration and the growth of tumors in nude mice. Knockdown of SAA1 had the opposite effects and promoted the apoptosis of ESCC cells. Moreover, SAA1 overexpression promoted the phosphorylation of ß-catenin at Ser675 and increased the expression levels of the ß-catenin target genes MYC and MMP9. Knockdown of SAA1 had the opposite effects. S1P/S1PR1 upregulated SAA1 expression and ß-catenin phosphorylation at Ser675 in ESCC cells. In conclusion, SAA1 promotes the progression of ESCC by increasing ß-catenin phosphorylation at Ser675, and the S1P/S1PR1 pathway plays an important role in its upstream regulation.

16.
ESC Heart Fail ; 11(3): 1580-1593, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369950

RESUMO

AIMS: Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. METHODS AND RESULTS: To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 µM). A rat model of ISO-induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO-treated H9c2 cells. Moreover, CGA inhibited ISO-induced up-regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and ß-myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R-like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase-12/9/3) but increased the expression of anti-apoptosis marker bcl-2 in a dose-dependent way (0, 10, 50, and 100 µM). Knockdown of sphingosine-1-phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P < 0.05). CGA also restored ISO-induced inhibition on the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA-induced effects (P < 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P < 0.05). CONCLUSIONS: CGA treatment attenuated ISO-induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.


Assuntos
Cardiomegalia , Ácido Clorogênico , Estresse do Retículo Endoplasmático , Receptores de Esfingosina-1-Fosfato , Regulação para Cima , Animais , Ratos , Apoptose/efeitos dos fármacos , Western Blotting , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Células Cultivadas , Ácido Clorogênico/farmacologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptores de Esfingosina-1-Fosfato/efeitos dos fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo
17.
Clin Exp Pharmacol Physiol ; 51(3): e13839, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302080

RESUMO

Epilepsy is a prevalent neurological disorder characterized by neuronal hypersynchronous discharge in the brain, leading to central nervous system (CNS) dysfunction. Despite the availability of anti-epileptic drugs (AEDs), resistance to AEDs is the greatest challenge in treating epilepsy. The role of sphingosine-1-phosphate-receptor 1 (S1PR1) in drug-resistant epilepsy is unexplored. This study investigated the effects of SEW2871, a potent S1PR1 agonist, on a phenobarbitone (PHB)-resistant pentylenetetrazol (PTZ)-kindled Wistar rat model. We measured the messenger ribonucleic acid (mRNA) expression of multi-drug resistance 1 (MDR1) and multi-drug resistance protein 5 (MRP5) as indicators for drug resistance. Rats received PHB + PTZ for 62 days to develop a drug-resistant epilepsy model. From day 48, SEW2871 (0.25, 0.5, 0.75 mg/kg, intraperitoneally [i.p.]) was administered for 14 days. Seizure scoring, behaviour, oxidative markers like reduced glutathione, catalase, superoxide dismutase, inflammatory markers like interleukin 1 beta tumour necrosis factor alpha, interferon gamma and mRNA expression (MDR1 and MRP5) were assessed, and histopathological assessments were conducted. SEW2871 demonstrated dose-dependent improvements in seizure scoring and neurobehavioral parameters with a reduction in oxidative and inflammation-induced neuronal damage. The S1PR1 agonist also downregulated MDR1 and MRP5 gene expression and significantly decreased the number of dark-stained pyknotic nuclei and increased cell density with neuronal rearrangement in the rat brain hippocampus. These findings suggest that SEW2871 might ameliorate epileptic symptoms by modulating drug resistance through downregulation of MDR1 and MRP5 gene expression.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Oxidiazóis , Tiofenos , Ratos , Animais , Pentilenotetrazol/efeitos adversos , Fenobarbital/efeitos adversos , Receptores de Esfingosina-1-Fosfato , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , RNA Mensageiro
18.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339325

RESUMO

BACKGROUND: A total of 30-40% of diffuse large B cell lymphoma (DLBCL) patients will either not respond to the standard therapy or their disease will recur. The first-line treatment for DLBCL is rituximab and combination chemotherapy. This treatment involves the chemotherapy-induced recruitment of tumor-associated macrophages that recognize and kill rituximab-opsonized DLBCL cells. However, we lack insights into the factors responsible for the recruitment and functionality of macrophages in DLBCL tumors. METHODS: We have studied the effects of the immunomodulatory lipid sphingosine-1-phosphate (S1P) on macrophage activity in DLBCL, both in vitro and in animal models. RESULTS: We show that tumor-derived S1P mediates the chemoattraction of both monocytes and macrophages in vitro and in animal models, an effect that is dependent upon the S1P receptor S1PR1. However, S1P inhibited M1 macrophage-mediated phagocytosis of DLBCL tumor cells opsonized with the CD20 monoclonal antibodies rituximab and ofatumumab, an effect that could be reversed by an S1PR1 inhibitor. CONCLUSIONS: Our data show that S1P signaling can modulate macrophage recruitment and tumor cell killing by anti-CD20 monoclonal antibodies in DLBCL. The administration of S1PR1 inhibitors could enhance the phagocytosis of tumor cells and improve outcomes for patients.

19.
Top Companion Anim Med ; 60: 100847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38182045

RESUMO

Sphingosine-1-phosphate (S1P) is a signaling lipid mediator that is involved in multiple biological processes. The S1P/S1P receptor (S1PR) signaling pathway has an important role in the central nervous system. It contributes to physiologic cellular homeostasis and is also associated with neuroinflammation. Therefore, this study was performed to evaluate the expression of S1PR in dogs with meningoencephalitis of unknown etiology (MUE) and experimental autoimmune encephalomyelitis (EAE). The analysis used 12 brain samples from three neurologically normal dogs, seven dogs with MUE, and two canine EAE models. Anti-S1PR1 antibody was used for immunohistochemistry. In normal brain tissues, S1PR1s were expressed on neurons, astrocytes, oligodendrocytes, and endothelial cells. In MUE and EAE lesions, there was positive staining of S1PR1 on leukocytes. Furthermore, the expression of S1PR1 on neurons, astrocytes, oligodendrocytes, and endothelial cells was upregulated compared to normal brains. This study shows that S1PR1s are expressed in normal brain tissues and leukocytes in inflammatory lesions, and demonstrates the upregulation of S1PR1 expression on nervous system cells in inflammatory lesions of MUE and EAE. These findings indicate that S1P/S1PR signaling pathway might involve physiologic homeostasis and neuroinflammation and represent potential targets for S1PR modulators to treat MUE.


Assuntos
Encéfalo , Doenças do Cão , Encefalomielite Autoimune Experimental , Receptores de Esfingosina-1-Fosfato , Animais , Cães , Doenças do Cão/metabolismo , Encefalomielite Autoimune Experimental/veterinária , Encefalomielite Autoimune Experimental/metabolismo , Encéfalo/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Feminino , Masculino , Meningoencefalite/veterinária , Meningoencefalite/metabolismo , Doenças Neuroinflamatórias/veterinária , Doenças Neuroinflamatórias/metabolismo , Astrócitos/metabolismo
20.
J Nutr Biochem ; 126: 109587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262562

RESUMO

Calorie restriction (CR) mimetic, resveratrol (RSV), has the capacity of promoting phagocytosis. However, its role in hepatic ischemia and reperfusion injury (HIRI) remains poorly understood. This study aimed to investigate the effect of RSV on alleviating HIRI and explore the underlying mechanisms. RSV was intraperitoneally injected in mice HIRI model, while RSV was co-incubated with culture medium for 24 h in RAW 264.7 cells and kupffer cells. Macrophage efferocytosis was assessed by immunostaining of PI and F4/80. The clearance of apoptotic neutrophils in the liver was determined by immunostaining of Ly6-G and cleaved-caspase-3. HE staining, Suzuki's score, serum levels of ALT, AST, TNF-α and IL-1ß were analyzed to evaluate HIRI. The efferocytosis inhibitor, Cytochalasin D, was utilized to investigate the effect of RSV on HIRI. Western blot was employed to measure the levels of AMPKα, phospho-AMPKα, STAT3, phospho-STAT3 and S1PR1. SiSTAT3 and inhibitors targeting AMPK, STAT3 and S1PR1, respectively, were used to confirm the involvement of AMPK/STAT3/S1PR1 pathway in RSV-mediated efferocytosis and HIRI. RSV facilitated the clearance of apoptotic neutrophils and attenuated HIRI, which was impeded by Cytochalasin D. RSV boosted macrophage efferocytosis by up-regulating the levels of phospho-AMPKα, phospho-STAT3 and S1PR1, which was reversed by AMPK, STAT3 and S1PR1 inhibitors, respectively. Inhibition of STAT3 suppressed RSV-induced clearance of apoptotic neutrophils and exacerbated HIRI. CR mimetic, RSV, alleviates HIRI by promoting macrophages efferocytosis through AMPK/STAT3/S1PR1 pathway, providing valuable insights into the mechanisms underlying the protective effects of CR on attenuating HIRI.


Assuntos
Proteínas Quinases Ativadas por AMP , Traumatismo por Reperfusão , Camundongos , Animais , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Eferocitose , Restrição Calórica , Citocalasina D/metabolismo , Fígado/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Macrófagos/metabolismo , Isquemia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA