Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 39(5): 915-928, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836947

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease globally, with a fast-growing prevalence. The etiology of PD exhibits a multifactorial complex nature and remains challenging. Herein, we described clinical, molecular, and integrative bioinformatics findings from a Brazilian female affected by Early-Onset PD (EOPD) harboring a recurrent homozygous pathogenic deletion in the parkin RBR E3 ubiquitin protein ligase gene (PRKN; NM_004562.3:c.155delA; p.Asn52Metfs*29; rs754809877), along with a novel heterozygous variant in the synaptojanin 1 gene (SYNJ1; NM_003895.3:c.62G > T; p.Cys21Phe; rs1486511197) found by Whole Exome Sequencing. Uncommon or unreported PRKN-related clinical features in the patient include cognitive decline, auditory and visual hallucinations, REM sleep disorder, and depression, previously observed in SYNJ1-related conditions. Moreover, PRKN interacts with endophilin A1, which is a major binding partner of SYNJ1. This protein plays a pivotal role in regulating the dynamics of synaptic vesicles, particularly in the context of endocytosis and recycling processes. Altogether, our comprehensive analyses underscore a potential synergistic effect between the PRKN and SYNJ1 variants over the pathogenesis of EOPD.


Assuntos
Doença de Parkinson , Ubiquitina-Proteína Ligases , Humanos , Doença de Parkinson/genética , Feminino , Ubiquitina-Proteína Ligases/genética , Adulto , Idade de Início , Proteínas do Tecido Nervoso/genética , Monoéster Fosfórico Hidrolases
2.
Mov Disord ; 39(1): 6-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921246

RESUMO

BACKGROUND: Identifying hereditary parkinsonism is valuable for diagnosis, genetic counseling, patient prioritization in trials, and studying the disease for personalized therapies. However, most studies were conducted in Europeans, and limited data exist on admixed populations like those from Latin America. OBJECTIVES: This study aims to assess the frequency and distribution of genetic parkinsonism in Latin America. METHODS: We conducted a systematic review and meta-analysis of the frequency of parkinsonian syndromes associated with genetic pathogenic variants in Latin America. We defined hereditary parkinsonism as those caused by the genes outlined by the MDS Nomenclature of Genetic Movement Disorders and heterozygous carriers of GBA1 pathogenic variants. A systematic search was conducted in PubMed, Web of Science, Embase, and LILACS in August 2022. Researchers reviewed titles and abstracts, and disagreements were resolved by a third researcher. After this screening, five researchers reanalyzed the selection criteria and extracted information based on the full paper. The frequency for each parkinsonism-related gene was determined by the presence of pathogenic/likely pathogenic variants among screened patients. Cochran's Q and I2 tests were used to quantify heterogeneity. Meta-regression, publication bias tests, and sensitivity analysis regarding study quality were also used for LRRK2-, PRKN-, and GBA1-related papers. RESULTS: We included 73 studies involving 3014 screened studies from 16 countries. Among 7668 Latin American patients, pathogenic variants were found in 19 different genes. The frequency of the pathogenic variants in LRRK2 was 1.38% (95% confidence interval [CI]: 0.52-2.57), PRKN was 1.16% (95% CI: 0.08-3.05), and GBA1 was 4.17% (95% CI: 2.57-6.08). For all meta-analysis, heterogeneity was high and publication bias tests were negative, except for PRKN, which was contradictory. Information on the number of pathogenic variants in the other genes is further presented in the text. CONCLUSIONS: This study provides insights into hereditary and GBA1-related parkinsonism in Latin America. Lower GBA1 frequencies compared to European/North American cohorts may result from limited access to gene sequencing. Further research is vital for regional prevalence understanding, enabling personalized care and therapies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Parkinsonianos , Humanos , América Latina/epidemiologia , Transtornos Parkinsonianos/epidemiologia , Transtornos Parkinsonianos/genética
3.
Biochem Pharmacol ; 190: 114650, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111426

RESUMO

Parkin is a cytosolic E3 ubiquitin ligase that plays an important role in neuroprotection by targeting several proteins to be degraded by the 26S proteasome. Its dysfunction has been associated not only with Parkinson's disease (PD) but also with other neurodegenerative pathologies, such as Alzheimer's disease and Huntington's disease. More recently, Parkin has been identified as a tumor suppressor gene implicated in cancer development. Due to the important roles that this E3 ubiquitin ligase plays in cellular homeostasis, its expression, activity, and turnover are tightly regulated. Several reviews have addressed Parkin regulation; however, genetic and epigenetic regulation have been excluded. In addition to posttranslational modifications (PTMs), this review examines the regulatory mechanisms that control Parkin function through gene expression, epigenetic regulation, and degradation. Furthermore, the consequences of disrupting these regulatory processes on human health are discussed.


Assuntos
Sobrevivência Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Neoplasias/metabolismo , Neurônios/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA