Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12383, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811772

RESUMO

Mesotrypsin, encoded by the PRSS3 gene, is a distinctive trypsin isoform renowned for its exceptional resistance to traditional trypsin inhibitors and unique substrate specificity. Within the skin epidermis, this protein primarily expresses in the upper layers of the stratified epidermis and plays a crucial role in processing pro-filaggrin (Pro-FLG). Although prior studies have partially elucidated its functions using primary cultured keratinocytes, challenges persist due to these cells' differentiation-activated cell death program. In the present study, HaCaT keratinocytes, characterized by minimal endogenous mesotrypsin expression and sustained proliferation in differentiated states, were utilized to further scrutinize the function of mesotrypsin. Despite the ready degradation of the intact form of active mesotrypsin in these cells, fusion with Venus, flanked by a peptide linker, enables evasion from the protein elimination machinery, thus facilitating activation of the Pro-FLG processing system. Inducing Venus-mesotrypsin expression in the cells resulted in a flattened phenotype and reduced proliferative capacity. Moreover, these cells displayed altered F-actin assembly, enhanced E-cadherin adhesive activity, and facilitated tight junction formation without overtly influencing epidermal differentiation. These findings underscore mesotrypsin's potentially pivotal role in shaping the characteristic cellular morphology of upper epidermal layers.


Assuntos
Caderinas , Diferenciação Celular , Proliferação de Células , Proteínas Filagrinas , Queratinócitos , Tripsina , Queratinócitos/metabolismo , Humanos , Tripsina/metabolismo , Proteínas Filagrinas/metabolismo , Caderinas/metabolismo , Epiderme/metabolismo , Actinas/metabolismo , Células HaCaT , Junções Íntimas/metabolismo , Adesão Celular , Linhagem Celular , Células Epidérmicas/metabolismo
2.
Adv Sci (Weinh) ; 10(25): e2301059, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395651

RESUMO

When circulating tumor cells (CTCs) travel in circulation, they can be killed by detachment-induced anoikis and fluidic shear stress (SS)-mediated apoptosis. Circulatory treatment, which can make CTCs detached but also generate SS, can increase metastasis of cancer cells. To identify SS-specific mechanosensors without detachment impacts, a microfluidic circulatory system is used to generate arteriosus SS and compare transcriptome profiles of circulating lung cancer cells with suspended cells. Half of the cancer cells can survive SS damage and show higher invasion ability. Mesotrypsin (PRSS3), protease-activated receptor 2 (PAR2), and the subunit of activating protein 1, Fos-related antigen 1 (FOSL1), are upregulated by SS, and their high expression is responsible for promoting invasion and metastasis. SS triggers PRSS3 to cleave the N-terminal inhibitory domain of PAR2 within 2 h. As a G protein-coupled receptor, PAR2 further activates the Gαi protein to turn on the Src-ERK/p38/JNK-FRA1/cJUN axis to promote the expression of epithelial-mesenchymal transition markers, and also PRSS3, which facilitates metastasis. Enriched PRSS3, PAR2, and FOSL1 in human tumor samples and their correlations with worse outcomes reveal their clinical significance. PAR2 may serve as an SS-specific mechanosensor cleavable by PRSS3 in circulation, which provides new insights for targeting metastasis-initiating CTCs.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Receptor PAR-2 , Receptores Acoplados a Proteínas G , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA