Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 115(7): 2254-2268, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38746998

RESUMO

Esophageal squamous cell carcinoma (ESCC) represents a frequently seen malignancy with high prevalence worldwide. Although current studies have shown that Wilms' tumor 1-associated protein (WTAP), a major part in the methyltransferase complex, is involved in various tumor pathological processes, its specific role in ESCC remains unclear. Therefore, the present work focused on exploring WTAP's function and mechanism in ESCC progression using clinical ESCC specimens, ESCC cells, and mammalian models. Firstly, we proved WTAP was significantly upregulated within ESCC, and WTAP mRNA expression showed a good diagnostic performance for ESCC. Functionally, WTAP positively regulated in-vivo and in-vitro ESCC cells' malignant phenotype through the AKT-mTOR signaling pathway. Meanwhile, WTAP positively regulated the N6-methyladenosine (m6A) modification levels in ESCC cells. Protein tyrosine phase type IVA member 1 (PTP4A1) was confirmed to be the m6A target of WTAP, and WTAP positively regulated the expression of PTP4A1. Further study revealed that PTP4A1 showed high expression within ESCC. Silencing PTP4A1 inhibited the AKT-mTOR signaling pathway to suppress ESCC cells' proliferation. Rescue experiments showed that silencing PTP4A1 partially reversed the WTAP-promoting effect on ESCC cells' proliferation ability. Mechanistically, WTAP regulated PTP4A1 expression to activate the AKT-mTOR pathway, promoting the proliferation of ESCC cells. Our study demonstrated that WTAP regulates the progression of ESCC through the m6A-PTP4A1-AKT-mTOR signaling axis and that WTAP is a potential target for diagnosing and treating ESCC.


Assuntos
Adenosina , Proteínas de Ciclo Celular , Proliferação de Células , Epigênese Genética , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Processamento de RNA , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Regulação para Cima
2.
Methods Mol Biol ; 2743: 211-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147218

RESUMO

The formation of a reversible disulfide bond between the catalytic cysteine and a spatially neighboring cysteine (backdoor) in protein tyrosine phosphatases (PTPs) serves as a critical regulatory mechanism for maintaining the activity of protein tyrosine phosphatases. The failure of such protection results in the formation of irreversibly oxidized cysteines into sulfonic acid in a highly oxidative cellular environment in the presence of free radicals. Hence, it is important to develop methods to interconvert PTPs into reduced and oxidized forms to understand their catalytic function in vitro. Protein tyrosine phosphatase 4A type 1 (PTP4A1), a dual-specificity phosphatase, is catalytically active in the reduced form. Unexpectedly, also its oxidized form performs a key biological function in systemic sclerosis (SSc) by forming a kinase-phosphatase complex with Src kinases. Thus, we developed simple and efficient protocols for producing oxidized and reduced PTP4A1 to elucidate their biological function, which can be extended to study other protein tyrosine phosphatases and other recombinantly produced proteins.


Assuntos
Cisteína , Fosfatases de Especificidade Dupla , Catálise , Citoplasma , Domínios Proteicos
3.
Theranostics ; 13(3): 1076-1090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793871

RESUMO

Precise regulation of kinases and phosphatases is crucial for human metabolic homeostasis. This study aimed to investigate the roles and molecular mechanisms of protein tyrosine phosphatase type IVA1 (PTP4A1) in regulating hepatosteatosis and glucose homeostasis. Method: Ptp4a1-/- mice, adeno-associated virus encoding Ptp4a1 under liver-specific promoter, adenovirus encoding Fgf21, and primary hepatocytes were used to evaluate PTP4A1-mediated regulation in the hepatosteatosis and glucose homeostasis. Glucose tolerance test, insulin tolerance test, 2-deoxyglucose uptake assay, and hyperinsulinemic-euglycemic clamp were performed to estimate glucose homeostasis in mice. The staining, including oil red O, hematoxylin & eosin, and BODIPY, and biochemical analysis for hepatic triglycerides were performed to assess hepatic lipids. Luciferase reporter assays, immunoprecipitation, immunoblots, quantitative real-time polymerase chain reaction, and immunohistochemistry staining were conducted to explore the underlying mechanism. Results: Here, we found that deficiency of PTP4A1 aggravated glucose homeostasis and hepatosteatosis in mice fed a high-fat (HF) diet. Increased lipid accumulation in hepatocytes of Ptp4a1-/- mice reduced the level of glucose transporter 2 on the plasma membrane of hepatocytes leading to a diminution of glucose uptake. PTP4A1 prevented hepatosteatosis by activating the transcription factor cyclic adenosine monophosphate-responsive element-binding protein H (CREBH)/fibroblast growth factor 21 (FGF21) axis. Liver-specific PTP4A1 or systemic FGF21 overexpression in Ptp4a1-/- mice fed an HF diet restored the disorder of hepatosteatosis and glucose homeostasis. Finally, liver-specific PTP4A1 expression ameliorated an HF diet-induced hepatosteatosis and hyperglycemia in wild-type mice. Conclusions: Hepatic PTP4A1 is critical for regulating hepatosteatosis and glucose homeostasis by activating the CREBH/FGF21 axis. Our current study provides a novel function of PTP4A1 in metabolic disorders; hence, modulating PTP4A1 may be a potential therapeutic strategy against hepatosteatosis-related diseases.


Assuntos
Dieta Hiperlipídica , Hiperglicemia , Humanos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hiperglicemia/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Pathol Res Pract ; 238: 154078, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36049439

RESUMO

Increasing data indicate that long noncoding RNA (lncRNA) DLEU2 is implicated in carcinogenesis in multiple malignancies including hepatocellular carcinoma (HCC). However, the role and molecular mechanism by which lncRNA DLEU2 contributes to HCC remain unknown. The association of lncRNA DLEU2 with clinicopathological characteristics and prognosis in patients with HCC was analyzed by qRT-PCR, and public TCGA dataset. CCK-8, colony formation and Transwell assays were performed to verify the role of lncRNA DLEU2 in HCC. RNA immunoprecipitation (RIP), luciferase gene report and qRT-PCR assays were employed to uncover lncRNA DLEU2-spevific binding with miR-30a-5p. The effect of lncRNA DLEU2 and (or) miR-30a-5p on PTP4A1 expression was examined by Western blot analysis. As a consequence, we found that lncRNA DLEU2 was upregulated in HCC tissue samples and associated with distant metastasis and poor survival in patients with HCC. Knockdown of lncRNA DLEU2 impaired HCC cell proliferation, colony formation and invasion, but ectopic expression of lncRNA DLEU2 abolished these effects. Furthermore, lncRNA DLEU2 harbored a negative correlation and specific binding with miR-30a-5p in HCC cells. Knockdown of lncRNA DLEU2 upregulated miR-30a-5p, but downregulated its target PTP4A1, and miR-30a-5p abrogated lncRNA DLEU2-induced tumor-promoting effects and PTP4A1 upregulation. Taken together, our findings demonstrate that lncRNA DLEU2 promotes growth and invasion of HCC cells by regulating miR-30a-5p/ PTP4A1 axis.

5.
Acta Biochim Biophys Sin (Shanghai) ; 54(2): 209-219, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35538027

RESUMO

Ovarian cancer (OC) is a fatal gynecological malignancy that is difficult to diagnose at early stages. Various long non-coding RNAs (lncRNAs) are aberrantly expressed in OC and exert regulatory effects on OC; however, the underlying mechanism requires in-depth investigation. This work is designed to explore the molecular regulatory axis of a newly identified lncRNA in OC, that is, lncRNA RP5-1148A21.3 (lncRP5). RT-qPCR shows lncRP5 is significantly upregulated in OC patients and cell lines, and it is mainly located in the cytoplasm of OC cells. The results of CCK-8, colony formation, and transwell assays demonstrate that overexpression of lncRP5 greatly contributes to malignant behaviors of OC cells, while inhibition of lncRP5 shows the opposite effects. Moreover, the binding relationship between lncRP5 and miR-545-5p is predicted by bioinformatics and is further verified by luciferase assay. Functionally, the regulatory effects of lncRP5 and miR-545-3p are negatively related; miR-545-5p serves as a tumor suppressor in OC. Further studies demonstrate that PTP4A1 is the target gene of miR-545-5p. Overexpression of PTP4A1 abrogates the inhibitory function of miR-545-5p on OC cell growth and metastasis. The lncRP5/miR-545-5p/PTP4A1 axis is subsequently demonstrated in vivo, and knockdown of lncRP5 notably inhibits tumor growth. This study provides a novel regulatory mechanism of OC, which may contribute to the diagnosis and therapy of OC.


Assuntos
Carcinoma Epitelial do Ovário , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Carcinogênese/genética , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Int J Cancer ; 150(10): 1690-1705, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35020952

RESUMO

Hepatocellular carcinoma (HCC) is the second most common cancer worldwide, demonstrating aggressiveness and mortality more frequently in men than in women. Despite reports regarding the inhibitory ability of estrogen receptor alpha (ERα, ESR1) in certain cancer progression, targets and the basis of underlying gender disparity in HCC worsening remain elusive. Here, we report the ability of ERα to transcriptionally inhibit G protein subunit alpha 12 (Gα12) responsible for HCC worsening. First, using human samples and public database, the expression of ERα and Gα12 in HCC was examined. Then, quantitative real-time PCR, chromatin immunoprecipitation-assay, luciferase assay and immunoblottings of liver cancer cell lines confirmed the inhibitory ability of ERα on Gα12 and HCC progression. Gα12 promoted mesenchymal characteristics and amoeboidal movement, which was antagonized by ERα overexpression. Additionally, we found microRNA-141 and microRNA-200a as downstream targets of the Gα12 signaling axis for cancer malignancy regulation under the control of ERα. As for in-depth mechanism, PTP4A1 was found to be directly inhibited by microRNA-141 and microRNA-200a. Moreover, we found the inhibitory effect of ERα on amoeboidal movement by analyzing the morphology and blebbing of liver cancer cells and the active form of MLC levels. The identified targets and ESR1 levels are inversely correlated with human specimens, as well as with sex-biased survival rates of HCC patients. Collectively, ERα-dependent repression of Gα12 and consequent changes in the Gα12 signaling may explain the gender disparity in HCC, providing pharmacological clues for the control of metastatic HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/metabolismo
7.
Kaohsiung J Med Sci ; 37(5): 379-391, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33502823

RESUMO

Cholangiocarcinoma (CCA) is a highly aggressive and malignant tumor. In this study, the effect and molecular mechanism of nuclear enriched abundant transcript 1 (NEAT1) in CCA were elucidated. The expressions of NEAT1, microRNA-186-5p (miR-186-5p), and PTP4A1 were measured by quantitative real-time PCR. The protein levels were measured by Western blotting. Kaplan-Meier analysis was performed to create survival curves. The interactions between NEAT1, miR-186-5p, and PTP4A1 were assessed through the dual luciferase reporter assay. Additionally, the cell proliferation, apoptosis, migration, and invasion were measured by colony formation, flow cytometry, the Transwell assay, and the wound healing assay, respectively. NEAT1 and PTP4A1 were significantly upregulated in CCA tissues and cells, but miR-186-5p was downregulated. NEAT1 expression was negatively correlated with the survival of CCA patients and has remarkable correlation with serum CA199 levels and lymph node metastasis. Besides, NEAT1 could act as a molecular sponge for miR-186-5p to upregulate PTP4A1 expression. More importantly, the knockdown of NEAT1 or overexpression of miR-186-5p inhibited the proliferation, migration and invasion of CCA cells, and the inhibition of miR-186-5p reversed the effects of the knockdown of NEAT1. In addition, NEAT1 could also activate the PI3K/AKT signaling pathway and regulate the epithelial-mesenchymal transition (EMT) through the miR-186-5p/PTP4A1 axis. In conclusion, NEAT1 was involved in cell proliferation, migration and invasion in CCA, and the NEAT1/miR-186-5p/PTP4A1/PI3K/AKT axis indicated novel regulatory mechanisms and therapeutics for the treatment of CCA.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Proteínas Tirosina Fosfatases/metabolismo , RNA Longo não Codificante/metabolismo , Idoso , Antígenos Glicosídicos Associados a Tumores/biossíntese , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Longo não Codificante/genética , Transdução de Sinais , Cicatrização
8.
J Biomol Struct Dyn ; 37(18): 4840-4851, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30661451

RESUMO

Ectopic overexpression of protein tyrosine phosphatase of liver regeneration-1 (PTP4A1, also called PRL-1) markedly enhanced hepatocellular carcinoma (HCC) cells migration and invasion. The PTP4A1 trimerization played a vital role in mediating cell proliferation and motility. Biochemical and structural studies have proved that the compound 4AX, a well-known inhibitor for PRL1, directly binds to the PTP4A1 trimer interface and obstructs trimer formation of PTP4A1. However, the molecular basis of the ligand-4AX inhibition on PTP4A1 trimer conformations remains unclear. In this study, the docking analysis and the molecular dynamics simulation (MD simulation) study were performed to investigate how the molecule binding at each interface disrupted the trimer formation. The results suggested that the ligand-4AX attaching to the binding site changed the conformation of A:Q131, A:Q135 in the AC interface, C:R18, C:P96 in the CA interface and B:Q131 in the BA interface, leading to the weak interactions between subunits and thus resulting in the disruption of the PTP4A1 trimerization.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Inibidores Enzimáticos/química , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/química , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Movimento (Física) , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Termodinâmica
9.
Mol Ther ; 26(11): 2658-2668, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30274785

RESUMO

Long noncoding RNAs (lncRNAs) have been demonstrated to play a role in carcinogenesis, but their mechanisms of function remain elusive. We explored the mechanisms of the oncogenic role of GCAWKR in gastric cancer (GC) using human tissues and cell lines. The in situ hybridization analysis was utilized to determine GCAWKR levels in samples from 42 GC patients and real-time qPCR in tissues from 123 patients. The GCAWKR levels were modulated in GC cell lines, and relevant biological and molecular analyses were performed. Levels of the GCAWKR were upregulated in GC tissues compared with normal tissues and associated with tumor size, lymph node metastasis, TNM stage, and patient outcomes. GCAWKR affected cell proliferation and cell invasion in multiple GC models. Mechanistically, GCAWKR bound WDR5 and KAT2A and acted as a molecular scaffold of WDR5/KAT2A complexes, modulating the affinity for WDR5/KAT2A complexes in the target gene's promoter region. Thus, our data defined a mechanism of lncRNA-mediated carcinogenesis in GC, suggesting new therapeutic targets in GC.


Assuntos
Histona Acetiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metástase Linfática , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/patologia
10.
Int J Clin Exp Pathol ; 11(7): 3583-3590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31949737

RESUMO

OBJECTIVE: We aimed to analyze the phosphatases of regenerating liver 1 (PTP4A1) expression and its relationship with tumor invasion, metastasis, and prognosis of non-small cell lung cancer (NSCLC). METHODS: The retrospective study enrolled 150 cases who underwent radical resection for primary NSCLC during the period from January 2006 to January 2014. Baseline characteristics of patients included age, gender, smoking history, pathological type, histological grade, clinical stage, and lymphatic metastasis. Lung cancer tissues collected from 150 cases and precancerous tissues, and normal lung tissues collected from 20 cases were used for PTP4A1 detection by immunohistochemistry. RESULTS: The expression of PTP4A1 was significantly different in different tissue samples (P = 0.025). The expression level of PTP4A1 was associated with clinical stage (P = 0.022), and lymphatic metastasis (P = 0.011). Survival analysis showed the total survival rate of overexpressed PTP4A1 group was significantly lower than that of the low expressed PTP4A1 group (P = 0.006), while the recurrence rate of overexpressed PTP4A1 was significantly higher than that of the low expressed PTP4A1 group (P = 0.014). In addition, the OS was affected by lymphatic metastasis, and disease-free survival was influenced by pathological type and lymphatic metastasis. CONCLUSION: The PTP4A1 expression level is a potential prognostic biomarker for NSCLC, and overexpression of PTP4A1 suggested a high risk of poor DFS during follow-up. Also, lymphatic metastasis had an adverse effect on survival time.

11.
Oncotarget ; 7(46): 75210-75220, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27655691

RESUMO

The protein tyrosine phosphatase PTP4A1 is a key molecule that activates tyrosine phosphorylation, which is important for cancer progression and metastasis. However, the clinical implications and biological function of PTP4A1 in intrahepatic cholangiocarcinoma (ICC) remains unknown. Here, we showed that PTP4A1 was frequently overexpressed in ICC versus adjacent non-tumor tissues. This overexpression significantly correlated with aggressive tumor characteristics like the presence of lymph node metastasis and advanced tumor stages. Survival analysis further indicated that high PTP4A1 expression was significantly and independently associated with worse survival and increased recurrence in ICC patients. Moreover, through forced overexpression and knock-down of PTPT4A1, we demonstrated that PTP4A1 could significantly promote ICC cells proliferation, colony formation, migration, and invasion in vitro, and markedly enhance tumor progression in vivo. Mechanistically, PTP4A1 was involved in PI3K/AKT signaling and its downstream molecules, such as phosphorylation level of GSK3ß and up-regulation of CyclinD1, in ICC cells to promote proliferation. Importantly, PTP4A1 induced ICC cells invasion was through activating PI3K/AKT signaling controlled epithelial-mesenchymal transition (EMT) process by up-regulating Zeb1 and Snail. Thus, PTP4A1 may serve as a potential oncogene that was a valuable prognostic biomarker and therapeutic target for ICC.


Assuntos
Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Proteínas de Ciclo Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Transição Epitelial-Mesenquimal/genética , Proteínas de Membrana/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Neoplasias dos Ductos Biliares/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Prognóstico , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais
12.
BMC Cancer ; 16: 379, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27377268

RESUMO

BACKGROUND: Aberrant expression of microRNAs has been associated with migration of tumor cells. In this study, we aimed to investigate the biological significance of miR-944 whose function is unknown in breast cancer. METHODS: MiR-944 expression in breast cancer cells and tumors was evaluated by Taqman qRT-PCR assays. Transcriptional profiling of MDA-MB-231 cells expressing miR-944 was performed using DNA microarrays. Cell viability, migration and invasion were assessed by MTT, scratch/wound-healing and transwell chamber assays, respectively. The luciferase reporter assay was used to evaluate targeting of SIAH1, PTP4A1 and PRKCA genes by miR-944. SIAH1 protein levels were measured by Western blot. Silencing of SIAH1 gene was performed by RNA interference using shRNAs. RESULTS: Our data showed that miR-944 expression was severely repressed in clinical specimens and breast cancer cell lines. Suppression of miR-944 levels was independent of hormonal status and metastatic potential of breast cancer cells. Gain-of-function analysis indicated that miR-944 altered the actin cytoskeleton dynamics and impaired cell migration and invasion. Genome-wide transcriptional profiling of MDA-MB-231 cells that ectopically express miR-944 showed that 15 genes involved in migration were significantly repressed. Notably, luciferase reporter assays confirmed the ability of miR-944 to bind the 3´UTR of SIAH1 and PTP4A1 genes, but not PRKCA gene. Congruently, an inverse correlation between miR-944 and SIAH1 protein expression was found in breast cancer cells. Moreover, SIAH1 was upregulated in 75 % of miR-944-deficient breast tumors. Finally, SIAH1 gene silencing by RNA interference significantly impaired cell migration of breast cancer cells. CONCLUSIONS: Our results pointed out that miR-944 is a novel upstream negative regulator of SIAH1 and PTP4A1 genes and provided for the first time evidence for its functional role in migration and invasion of breast cancer cells. They also suggest that miR-944 restoration may represent a potential strategy for breast cancer therapy.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Ubiquitina-Proteína Ligases/genética , Regiões 3' não Traduzidas , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Tirosina Fosfatases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
Biomed Pharmacother ; 79: 247-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27044835

RESUMO

MicroRNAs (miRNA) play important roles in the initiation and progression of breast cancer. Here, we investigated the role of miR-601 in breast cancer and found that its expression was significantly down-regulated in breast cancer tissues compared with matched adjacent non-cancerous breast tissues. Moreover, we found that down-regulation of miR-601 was closely associated with distant metastasis and poor distant metastasis-free survival in breast cancer. In addition, miR-601 levels were inversely correlated with metastatic potential of human breast cancer cell lines. Further experiments showed that ectopic overexpression of miR-601 suppressed breast cancer cell proliferation, migration and invasion, whereas miR-601 knockdown promoted breast cancer cell proliferation, migration and invasion. Furthermore, protein tyrosine phosphatase type IVA 1 (PTP4A1) was identified as a direct target of miR-601. Overexpression of miR-601 repressed PTP4A1 mRNA and protein expression. Conversely, inhibition of miR-601 increased PTP4A1 mRNA and protein expression. Taken together, our data suggest that miR-601 inhibits growth and invasion of breast cancer cells by targeting PTP4A1 and that miR-601 is a potential biomarker for prognosis and therapeutic target in breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Intervalo Livre de Doença , Regulação para Baixo , Feminino , Humanos , MicroRNAs/genética , Invasividade Neoplásica , Prognóstico , Ensaio Tumoral de Célula-Tronco
14.
Urol Oncol ; 32(6): 769-78, 2014 08.
Artigo em Inglês | MEDLINE | ID: mdl-24968948

RESUMO

OBJECTIVES: Although chemotherapy for castration-resistant prostate cancer (CRPC) has been applied clinically in recent years, the effects are not sufficient. It is urgently necessary to develop novel therapeutics for CRPC. We previously generated Escherichia coli ampicillin secretion trap libraries of 2 prostate cancer (PCa) cell lines and normal prostate. By comparing the E. coli ampicillin secretion trap libraries of CRPC cell lines with those of androgen-sensitive PCa cell lines and normal prostate, we focused on the protein-tyrosine-phosphatase of regenerating liver 1 (PRL1) gene and analyzed its expression and biological function. MATERIALS AND METHODS: The expression of PRL1 was examined by quantitative reverse transcription polymerase chain reaction and immunohistochemistry in clinical PCa samples. The effects of PRL1 on PCa cells were evaluated by cell growth, migration, and invasion assays. To investigate the effect of PRL1 on epidermal growth factor receptor (EGFR) signaling, PRL1 knockdown PC3 cells were examined by Western blot and immunohistochemical analyses. RESULTS: Quantitative reverse transcription polymerase chain reaction revealed that PRL1 was expressed much more highly in PCa than in nonneoplastic prostate samples. High expression of PRL1 detected by immunohistochemistry correlated with poor prognosis after prostatectomy and combined androgen blockade therapy. Functional analysis indicated that PRL1 stimulated cell growth, migration, and invasion in PCa cell lines. Expression EGFR and matrix metalloproteinase 9 was reduced by knockdown of PRL1 in the PC3 cell line. CONCLUSIONS: PRL1 regulates expression of EGFR and modulates downstream targets. PRL1 has potential as a therapeutic target in PCa including CRPC.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Membrana/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/terapia , Proteínas Tirosina Fosfatases/genética , Idoso , Resistência a Ampicilina/genética , Antagonistas de Androgênios/uso terapêutico , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Terapia Combinada , Receptores ErbB/genética , Receptores ErbB/metabolismo , Escherichia coli/genética , Regulação Neoplásica da Expressão Gênica , Biblioteca Gênica , Humanos , Imuno-Histoquímica , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Prostatectomia/métodos , Neoplasias de Próstata Resistentes à Castração/diagnóstico , Proteínas Tirosina Fosfatases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA