Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Heliyon ; 10(14): e34031, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100467

RESUMO

Bladder cancer (BC), a highly prevalent malignancy of the urinary system, necessitates further investigation into its progression mechanisms. N6-methyladenosine (m6A) RNA methylation, a prevalent modification in cellular RNA, has been implicated in the tumorigenesis and metastasis of various cancers. In this study, the upregulation of FTO in human BC samples and its association with poor prognosis were demonstrated using immunohistochemistry (IHC) on tissue sections collected from BC patients. The functional role of FTO in promoting the proliferation and metastasis abilities of BC cells was determined using a combination of in vitro and in vivo assays. In vitro, we conducted cell proliferation assays, such as the Cell Counting Kit-8 (CCK-8) assay, and metastasis assays, including the wound healing assay and transwell invasion assay. In vivo, we employed xenograft models to assess tumor growth and metastasis. Furthermore, our investigation into potential FTO targets in BC cells revealed that FTO modifies PTPN6 mRNA, leading to increased stability and expression of PTPN6, thereby enhancing proliferation and metastasis abilities. In conclusion, our findings indicate that FTO serves as an oncogenic factor in BC, suggesting its potential utility as a diagnostic or prognostic biomarker for bladder cancer.

2.
Mol Cell Biol ; 44(7): 261-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828991

RESUMO

The protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) plays an important role in modulating glucose and lipid homeostasis. We previously suggested a potential role of SHP-1 in the regulation of peroxisome proliferator-activated receptor γ2 (PPARγ2) expression and activity but the mechanisms were unexplored. PPARγ2 is the master regulator of adipogenesis, but how its activity is regulated by tyrosine phosphorylation is largely unknown. Here, we found that SHP-1 binds to PPARγ2 primarily via its N-terminal SH2-domain. We confirmed the phosphorylation of PPARγ2 on tyrosine-residue 78 (Y78), which was reduced by SHP-1 in vitro resulting in decreased PPARγ2 stability. Loss of SHP-1 led to elevated, agonist-induced expression of the classical PPARγ2 targets FABP4 and CD36, concomitant with increased lipid content in cells expressing PPARγ2, an effect blunted by abrogation of PPARγ2 phosphorylation. Collectively, we discovered that SHP-1 affects the stability of PPARγ2 through dephosphorylation thereby influencing adipogenesis.


Assuntos
Adipogenia , PPAR gama , Proteína Tirosina Fosfatase não Receptora Tipo 6 , PPAR gama/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fosforilação , Humanos , Animais , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Células HEK293 , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Estabilidade Proteica , Células 3T3-L1 , Domínios de Homologia de src , Ligação Proteica
3.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474775

RESUMO

Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 µM) and PTPN9 (IC50 = 1.7 µM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insulina/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
4.
J Leukoc Biol ; 115(6): 1154-1164, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38289832

RESUMO

YTHDC1 has been confirmed to mediate osteoporosis (OP) progression by regulating osteogenic differentiation. However, whether YTHDC1 mediates osteoclast differentiation and its molecular mechanism remains unclear. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the levels of YTHDC1, PTPN6, NFATc1, TRAP, RUNX2, alkaline phosphatase, and HUR. YTHDC1 knockout mice was constructed by CRISPR/Cas9 system, and the OP mice model was established by ovariectomy. Hematoxylin and eosin staining and micro-computed tomography were used to evaluate bone formation and bone mass. Mouse primary bone marrow macrophage cells were isolated and induced into osteoclasts. TRAP-positive cells were detected using TRAP staining. MeRIP-qPCR, RIP-qPCR assay, RNA affinity isolation assay, and co-immunoprecipitation assay were used to confirm the interactions among YTHDC1, PTPN6, and HUR. YTHDC1 expression was reduced and positively correlated with lumbar bone mineral density in OP patients. In the ovariectomy model of YTHDC1 knockout mice, bone formation was reduced, bone histomorphology was changed, and osteoclastic-related factor (NFATc1 and TRAP) levels were enhanced. Overexpression YTHDC1 inhibited osteoclast differentiation. YTHDC1 increased PTPN6 messenger RNA stability in an m6A-dependent manner. Moreover, YTHDC1 interacted with HUR to positively regulate PTPN6 expression. PTPN6 knockdown promoted osteoclast differentiation, and this effect was reversed by overexpressing HUR or YTHDC1. YTHDC1 was involved in regulating OP progression through inhibiting osteoclast differentiation by enhancing PTPN6 messenger RNA stability in an m6A-HUR-dependent manner.


Assuntos
Diferenciação Celular , Osteoclastos , Osteoporose , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Fatores de Processamento de RNA , Estabilidade de RNA , RNA Mensageiro , Animais , Feminino , Humanos , Camundongos , Adenosina/análogos & derivados , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Camundongos Knockout , Osteoclastos/metabolismo , Osteogênese , Osteoporose/patologia , Osteoporose/genética , Osteoporose/metabolismo , Ovariectomia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
5.
Ocul Immunol Inflamm ; 32(3): 336-341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745681

RESUMO

PURPOSE: To explore the association of the polymorphisms in PTPN6 and LncRNA C1RL-AS1 genes with ocular BD in Han Chinese patients. METHODS: Correlation study was performed using the iPLEX system on a cohort of ocular BD patients andcontrols. The genotyping of 7 SNPs for LncRNA C1RL-AS1 and PTPN6 genes in ocular BD patients was performed using the iPLEX Gold genotype. RESULTS: The frequencies of rs4013722 AG genotype/A allele in LncRNA C1RL-AS1 were significantly decreased in BD patients, and the frequency of GG genotype was significantly increased in BD patients. The rs4013722 was associated with ocular BD in male patients, but not in female patients. The AG and GG genotype of rs4013722 were associated with skin lesions in male patients. The gene polymorphisms of PTPN6 were not associated with BD patients. CONCLUSIONS: The LncRNA C1RL-AS1/rs4013722 polymorphism conferred susceptibility to ocular BD in Han Chinese patients, which was influenced by sex.Abbreviations: LncRNA: Long Non-coding RNA; BD: Behcet's disease; SNP: single nucleotide polymorphism; PBMCs: peripheral blood mononuclear cells; PTPs: Protein tyrosine phosphatases; PTPN6: protein tyrosine phosphatase non-receptor 6; GWAS: genome-wide association study; HWE: Hardy-Weinberg equilibrium; LD: linkage disequilibrium; OR: odds ratio; CI: confidence interval; eQTL: expression quantitative trait loci; IBD: inflammatory bowel disease; RA: rheumatoid arthritis; Padj: Bonferroni corrected P value; NS: non-significant.


Assuntos
Síndrome de Behçet , RNA Longo não Codificante , Humanos , Masculino , Feminino , RNA Longo não Codificante/genética , Síndrome de Behçet/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Leucócitos Mononucleares , Genótipo , Polimorfismo de Nucleotídeo Único , China/epidemiologia , Frequência do Gene , Estudos de Casos e Controles , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Serina Endopeptidases/genética
6.
J Biol Chem ; 299(9): 105164, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595871

RESUMO

We previously reported that the protein-tyrosine phosphatase SHP-1 (PTPN6) negatively regulates insulin signaling, but its impact on hepatic glucose metabolism and systemic glucose control remains poorly understood. Here, we use co-immunoprecipitation assays, chromatin immunoprecipitation sequencing, in silico methods, and gluconeogenesis assay, and found a new mechanism whereby SHP-1 acts as a coactivator for transcription of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene to increase liver gluconeogenesis. SHP-1 is recruited to the regulatory regions of the PCK1 gene and interacts with RNA polymerase II. The recruitment of SHP-1 to chromatin is dependent on its association with the transcription factor signal transducer and activator of transcription 5 (STAT5). Loss of SHP-1 as well as STAT5 decrease RNA polymerase II recruitment to the PCK1 promoter and consequently PCK1 mRNA levels leading to blunted gluconeogenesis. This work highlights a novel nuclear role of SHP-1 as a key transcriptional regulator of hepatic gluconeogenesis adding a new mechanism to the repertoire of SHP-1 functions in metabolic control.

7.
Korean J Physiol Pharmacol ; 27(4): 417-426, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394239

RESUMO

The TRPM4 gene encodes a Ca2+-activated monovalent cation channel called transient receptor potential melastatin 4 (TRPM4) that is expressed in various tissues. Dysregulation or abnormal expression of TRPM4 has been linked to a range of diseases. We introduced the hemagglutinin (HA) tag into the extracellular S6 loop of TRPM4, resulting in an HA-tagged version called TRPM4-HA. This TRPM4-HA was developed to investigate the purification, localization, and function of TRPM4 in different physiological and pathological conditions. TRPM4-HA was successfully expressed in the intact cell membrane and exhibited similar electrophysiological properties, such as the current-voltage relationship, rapid desensitization, and current size, compared to the wild-type TRPM4. The presence of the TRPM4 inhibitor 9-phenanthrol did not affect these properties. Furthermore, a wound-healing assay showed that TRPM4-HA induced cell proliferation and migration, similar to the native TRPM4. Co-expression of protein tyrosine phosphatase, non-receptor type 6 (PTPN6 or SHP-1) with TRPM4-HA led to the translocation of TRPM4-HA to the cytosol. To investigate the interaction between PTPN6 and tyrosine residues of TRPM4 in enhancing channel activity, we generated four mutants in which tyrosine (Y) residues were substituted with phenylalanine (F) at the N-terminus of TRPM4. The YF mutants displayed properties and functions similar to TRPM4-HA, except for the Y256F mutant, which showed resistance to 9-phenanthrol, suggesting that Y256 may be involved in the binding site for 9-phenanthrol. Overall, the creation of HA-tagged TRPM4 provides researchers with a valuable tool to study the role of TRPM4 in different conditions and its potential interactions with other proteins, such as PTPN6.

8.
Life (Basel) ; 13(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37374154

RESUMO

Several protein tyrosine phosphatases (PTPs), particularly PTPN1, PTPN2, PTPN6, PTPN9, PTPN11, PTPRS, and DUSP9, are involved in insulin resistance. Therefore, these PTPs could be promising targets for the treatment of type 2 diabetes. Our previous studies revealed that PTPN2 and PTPN6 are potential antidiabetic targets. Therefore, the identification of dual-targeting inhibitors of PTPN2 and PTPN6 could be a potential therapeutic strategy for the treatment or prevention of type 2 diabetes. In this study, we demonstrate that methyl syringate inhibits the catalytic activity of PTPN2 and PTPN6 in vitro, indicating that methyl syringate acts as a dual-targeting inhibitor of PTPN2 and PTPN6. Furthermore, methyl syringate treatment significantly increased glucose uptake in mature 3T3-L1 adipocytes. Additionally, methyl syringate markedly enhanced phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in 3T3L1 adipocytes. Taken together, our results suggest that methyl syringate, a dual-targeting inhibitor of PTPN2 and PTPN6, is a promising therapeutic candidate for the treatment or prevention of type 2 diabetes.

9.
J Cancer Res Clin Oncol ; 149(5): 2243-2258, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36107246

RESUMO

In response to prolonged stimulation by tumour antigens, T cells gradually become exhausted. There is growing evidence that exhausted T cells not only lose their potent effector functions but also express multiple inhibitory receptors. Checkpoint blockade (CPB) therapy can improve cancer by reactivating exhausted effector cell function, leading to durable clinical responses, but further improvements are needed given the limited number of patients who benefit from treatment, even with autoimmune complications. Here, we suggest, based on recent advances that tumour antigens are the primary culprits of exhaustion, followed by some immune cells and cytokines that also play an accomplice role in the exhaustion process, and we also propose that chronic stress-induced hypoxia and hormones also play an important role in promoting T-cell exhaustion. Understanding the classification of exhausted CD8+ T-cell subpopulations and their functions is important for the effectiveness of immune checkpoint blockade therapies. We mapped the differentiation of T-cell exhausted subpopulations by changes in transcription factors, indicating that T-cell exhaustion is a dynamic developmental process. Finally, we summarized the novel immune checkpoints associated with depletion in recent years and combined them with bioinformatics to construct a web of exhaustion-related immune checkpoints with the aim of finding novel therapeutic targets associated with T-cell exhaustion in malignant tumours, aiming to revive the killing ability of exhausted T cells and restore anti-tumour immunity through combined targeted immunotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Linfócitos T CD8-Positivos , Imunoterapia , Antígenos de Neoplasias , Diferenciação Celular
10.
Kidney360 ; 3(10): 1710-1719, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36514736

RESUMO

Background: Diabetic kidney disease (DKD) remains the leading cause of end stage kidney disease worldwide. Despite significant advances in kidney care, there is a need to improve noninvasive techniques to predict the progression of kidney disease better for patients with diabetes. After injury, podocytes are shed in urine and may be used as a biologic tool. We previously reported that SHP-1 is upregulated in the kidney of diabetic mice, leading to podocyte dysfunction and loss. Our objective was to evaluate the expression levels of SHP-1 in urinary podocytes and kidney tissues of patients with diabetes. Methods: In this prospective study, patients with and without diabetes were recruited for the quantification of SHP-1 in kidney tissues, urinary podocytes, and peripheral blood monocytes. Immunochemistry and mass spectrometry techniques were applied for kidney tissues. Urinary podocytes were counted, and expression of SHP-1 and podocyte markers were measured by quantitative PCR. Results: A total of 66 participants (diabetic n=48, nondiabetic n=18) were included in the analyses. Diabetes was associated with increased SHP-1 expression in kidney tissues (P=0.03). Nephrin and podocin mRNA was not significantly increased in urinary podocytes from patients with diabetes compared with those without diabetes, whereas levels of SHP-1 mRNA expression significantly correlated with HbA1c and estimated glomerular filtration rate (eGFR). Additionally, follow-up (up to 2 years post recruitment) evaluation indicated that SHP-1 mRNA expression continued to increase with eGFR decline. Conclusions: Levels of SHP-1 in urinary podocytes may serve as an additional marker of glomerular disease progression in this population.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Rim/metabolismo , Podócitos/metabolismo , Estudos Prospectivos , Humanos
11.
EMBO Rep ; 23(11): e55399, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36194675

RESUMO

Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD-1. Blockade of PD-1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP-2) is essential for PD-1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP-1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell-mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti-PD1 treatment. In vitro results show that Ptpn6/11-deleted CD8+ T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis-related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches.


Assuntos
Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais
12.
Front Immunol ; 13: 895762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844542

RESUMO

In kidney transplantation, deteriorated progression of rejection is considered to be a leading course of postoperative mortality. However, the conventional histologic diagnosis is limited in reading the rejection status at the molecular level, thereby triggering mismatched pathogenesis with clinical phenotypes. Here, by applying uniform manifold approximation and projection and Leiden algorithms to 2,611 publicly available microarray datasets of renal transplantation, we uncovered six rejection states with corresponding signature genes and revealed a high-risk (HR) state that was essential in promoting allograft loss. By identifying cell populations from single-cell RNA sequencing data that were associated with the six rejection states, we identified a T-cell population to be the pathogenesis-triggering cells associated with the HR rejection state. Additionally, by constructing gene regulatory networks, we identified that activated STAT4, as a core transcription factor that was regulated by PTPN6 in T cells, was closely linked to poor allograft function and prognosis. Taken together, our study provides a novel strategy to help with the precise diagnosis of kidney allograft rejection progression, which is powerful in investigating the underlying molecular pathogenesis, and therefore, for further clinical intervention.


Assuntos
Transplante de Rim , Insuficiência Renal , Fator de Transcrição STAT4 , Linfócitos T , Aloenxertos , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Humanos , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/imunologia , Linfócitos T/imunologia , Transplante Homólogo
13.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563411

RESUMO

The emergence of the high correlation between type 2 diabetes and obesity with complicated conditions has led to the coinage of the term "diabesity". AMP-activated protein kinase (AMPK) activators and peroxisome proliferator-activated receptor (PPARγ) antagonists have shown therapeutic activity for diabesity, respectively. Hence, the discovery of compounds that activate AMPK as well as antagonize PPARγ may lead to the discovery of novel therapeutic agents for diabesity. In this study, the knockdown of PTPN6 activated AMPK and suppressed adipogenesis in 3T3-L1 cells. By screening a library of 1033 natural products against PTPN6, we found ethyl gallate to be the most selective inhibitor of PTPN6 (Ki = 3.4 µM). Subsequent assay identified ethyl gallate as the best PPARγ antagonist (IC50 = 5.4 µM) among the hit compounds inhibiting PTPN6. Ethyl gallate upregulated glucose uptake and downregulated adipogenesis in 3T3-L1 cells as anticipated. These results strongly suggest that ethyl gallate, which targets both PTPN6 and PPARγ, is a potent therapeutic candidate to combat diabesity.


Assuntos
Diabetes Mellitus Tipo 2 , Ácido Gálico , PPAR gama , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Adipogenia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
14.
Biochem Biophys Rep ; 27: 101081, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34307909

RESUMO

SARS-CoV-2 viral contagion has given rise to a worldwide pandemic. Although most children experience minor symptoms from SARS-CoV-2 infection, some have severe complications including Multisystem Inflammatory Syndrome in Children. Neuroblastoma patients may be at higher risk of severe infection as treatment requires immunocompromising chemotherapy and SARS-CoV-2 has demonstrated tropism for nervous cells. To date, there is no sufficient epidemiological data on neuroblastoma patients with SARS-CoV-2. Therefore, we evaluated datasets of non-SARS-CoV-2 infected neuroblastoma patients to assess for key genes involved with SARS-CoV-2 infection as possible neuroblastoma prognostic and infection biomarkers. We hypothesized that ACE2, CD147, PPIA and PPIB, which are associated with viral-cell entry, are potential biomarkers for poor prognosis neuroblastoma and SARS-CoV-2 infection. We have analysed three publicly available neuroblastoma gene expression datasets to understand the specific molecular susceptibilities that high-risk neuroblastoma patients have to the virus. Gene Expression Omnibus (GEO) GSE49711 and GEO GSE62564 are the microarray and RNA-Seq data, respectively, from 498 neuroblastoma samples published as part of the Sequencing Quality Control initiative. TARGET, contains microarray data from 249 samples and is part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. ACE2, CD147, PPIA and PPIB were identified through their involvement in both SARS-CoV-2 infection and cancer pathogenesis. In-depth statistical analysis using Kaplan-Meier, differential gene expression, and Cox multivariate regression analysis, demonstrated that overexpression of ACE2, CD147, PPIA and PPIB is significantly associated with poor-prognosis neuroblastoma samples. These results were seen in the presence of amplified MYCN, unfavourable tumour histology and in patients older than 18 months of age. Previously, we have shown that high levels of the nerve growth factor receptor NTRK1 together with low levels of the phosphatase PTPN6 and TP53 are associated with increased relapse-free survival of neuroblastoma patients. Interestingly, low levels of expression of ACE2, CD147, PPIA and PPIB are associated with this NTRK1-PTPN6-TP53 module, suggesting that low expression levels of these genes are associated with good prognosis. These findings have implications for clinical care and therapeutic treatment. The upregulation of ACE2, CD147, PPIA and PPIB in poor-prognosis neuroblastoma samples suggests that these patients may be at higher risk of severe SARS-CoV-2 infection. Importantly, our findings reveal ACE2, CD147, PPIA and PPIB as potential biomarkers and therapeutic targets for neuroblastoma.

15.
Front Oncol ; 11: 682859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295818

RESUMO

RNA binding proteins act as essential modulators in cancers by regulating biological cellular processes. Heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1), as a key member of the heterogeneous nuclear ribonucleoproteins family, is frequently upregulated in multiple cancer cells and involved in tumorigenesis. However, the function of HNRNPH1 in chronic myeloid leukemia (CML) remains unclear. In the present study, we revealed that HNRNPH1 expression level was upregulated in CML patients and cell lines. Moreover, the higher level of HNRNPH1 was correlated with disease progression of CML. In vivo and in vitro experiments showed that knockdown of HNRNPH1 inhibited cell proliferation and promoted cell apoptosis in CML cells. Importantly, knockdown of HNRNPH1 in CML cells enhanced sensitivity to imatinib. Mechanically, HNRNPH1 could bind to the mRNA of PTPN6 and negatively regulated its expression. PTPN6 mediated the regulation between HNRNPH1 and PI3K/AKT activation. Furthermore, the HNRNPH1-PTPN6-PI3K/AKT axis played a critical role in CML tumorigenesis and development. The present study first investigated the deregulated HNRNPH1-PTPN6-PI3K/AKT axis moderated cell growth and apoptosis in CML cells, whereby targeting this pathway may be a therapeutic CML treatment.

16.
Glia ; 69(6): 1393-1412, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33539598

RESUMO

Genome-wide association studies demonstrated that polymorphisms in the CD33/sialic acid-binding immunoglobulin-like lectin 3 gene are associated with late-onset Alzheimer's disease (AD). CD33 is expressed on myeloid immune cells and mediates inhibitory signaling through protein tyrosine phosphatases, but the exact function of CD33 in microglia is still unknown. Here, we analyzed CD33 knockout human THP1 macrophages and human induced pluripotent stem cell-derived microglia for immunoreceptor tyrosine-based activation motif pathway activation, cytokine transcription, phagocytosis, and phagocytosis-associated oxidative burst. Transcriptome analysis of the macrophage lines showed that knockout of CD33 as well as knockdown of the CD33 signaling-associated protein tyrosine phosphatase, nonreceptor type 6 (PTPN6) led to constitutive activation of inflammation-related pathways. Moreover, deletion of CD33 or expression of Exon 2-deleted CD33 (CD33ΔE2 /CD33m) led to increased phosphorylation of the kinases spleen tyrosine kinase (SYK) and extracellular signal-regulated kinase 1 and 2 (ERK1 and 2). Transcript analysis by quantitative real-time polymerase chain reaction confirmed increased levels of interleukin (IL) 1B, IL8, and IL10 after knockout of CD33 in macrophages and microglia. In addition, upregulation of the gene transcripts of the AD-associated phosphatase INPP5D was observed after knockout of CD33. Functional analysis of macrophages and microglia showed that phagocytosis of aggregated amyloid-ß1-42 and bacterial particles were increased after knockout of CD33 or CD33ΔE2 expression and knockdown of PTPN6. Furthermore, the phagocytic oxidative burst during uptake of amyloid-ß1-42 or bacterial particles was increased after CD33 knockout but not in CD33ΔE2 -expressing microglia. In summary, deletion of CD33 or expression of CD33ΔE2 in human macrophages and microglia resulted in putative beneficial phagocytosis of amyloid ß1-42 , but potentially detrimental oxidative burst and inflammation, which was absent in CD33ΔE2 -expressing microglia.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Estudo de Associação Genômica Ampla , Humanos , Inflamação , Microglia , Fenótipo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética
17.
Cell Biochem Funct ; 39(3): 392-400, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33615510

RESUMO

The abnormal expression of protein tyrosine phosphatase nonreceptor type 6 (PTPN6) has been proved to be associated with the progression of colorectal cancer. However, its role in chemosensitivity and related molecular mechanism have not been clarified. It has been reported that PTPN6 was down-regulated in colorectal cancer cells compared with the normal colorectal cells. To evaluate the effects of PTPN6 on the proliferation and survival of colorectal cancer cells, PTPN6 was overexpressed in colorectal cancer cells in the present study. We found that cell proliferation and viability were both decreased after overexpression of PTPN6. The IC50 of 5-Fu against colorectal cells was also declined in PTPN6 transfected cells. And further, we verified that PTPN6 could down-regulate the expression of P-gp and MRP-1. Moreover, SP1 was the target protein of PTPN6 predicated by ChIPBase software and confirmed through Co-immunoprecipitation assay and it was negatively regulated by PTPN6. To further verify the effect of SP1 on chemoresistance, SP1 was overexpressed. SP1 overexpression enhanced the drug-resistance to 5-Fu and abrogated the effects of PTPN6 upregulation on 5-Fu resistance. All the above changes were associated with the down-regulation of proteins related to MAPK signalling pathway, such as phosphorylation of extracellular regulated protein kinases (ERK) and p38. In summary, PTPN6 promoted chemosensitivity of colorectal cancer cells by targeting SP1 and inhibiting the activation of MAPK signalling pathway. SIGNIFICANCE OF THE STUDY: It has been demonstrated that the abnormal expression of PTPN6 was related to the progression of colorectal cancer. However, the chemosensitivity of PTPN6 and its molecular mechanisms were still unclear. Here, we identified that PTPN6 was down-regulated in colorectal cancer cells. Moreover, PTPN6 overexpression not only reduced cell proliferation and viability, but decreased the resistance of colorectal cells to 5-Fu. In our research, we found that the SP1 was the target protein of PTPN6 and it was negatively regulated by PTPN6. In addition, SP1 could increase the resistance of colorectal cells to 5-Fu. Molecular mechanism studies have shown that PTPN6 promoted the chemosensitivity of colorectal cancer cells by inhibiting the activation of MAPK signalling pathway.


Assuntos
Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição Sp1/metabolismo , Células CACO-2 , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Células HT29 , Humanos
18.
Cell Mol Immunol ; 18(7): 1798-1808, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32203187

RESUMO

The SHP-1 protein encoded by the Ptpn6 gene has been extensively studied in hematopoietic cells in the context of inflammation. A point mutation in this gene (Ptpn6spin) causes spontaneous inflammation in mice, which has a striking similarity to neutrophilic dermatoses in humans. Recent findings highlighted the role of signaling adapters and kinases in promoting inflammation in Ptpn6spin mice; however, the underlying transcriptional regulation is poorly understood. Here, we report that SYK is important for driving neutrophil infiltration and initiating wound healing responses in Ptpn6spin mice. Moreover, we found that deletion of the transcription factor Ets2 in myeloid cells ameliorates cutaneous inflammatory disease in Ptpn6spin mice through transcriptional regulation of its target inflammatory genes. Furthermore, Ets-2 drives IL-1α-mediated inflammatory signaling in neutrophils of Ptpn6spin mice. Overall, in addition to its well-known role in driving inflammation in cancer, Ets-2 plays a major role in regulating IL-1α-driven Ptpn6spin-mediated neutrophilic dermatoses. Model for the role of ETS-2 in neutrophilic inflammation in Ptpn6spin mice. Mutation of the Ptpn6 gene results in SYK phosphorylation which then sequentially activates MAPK signaling pathways and activation of ETS-2. This leads to activation of ETS-2 target genes that contribute to neutrophil migration and inflammation. When Ets2 is deleted in Ptpn6spin mice, the expression of these target genes is reduced, leading to the reduced pathology in neutrophilic dermatoses.


Assuntos
Interleucina-1alfa/metabolismo , Neutrófilos , Mutação Puntual , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteína Proto-Oncogênica c-ets-2/genética , Animais , Inflamação/patologia , Camundongos , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
19.
Cancer Lett ; 501: 105-113, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33290866

RESUMO

Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.


Assuntos
Mieloma Múltiplo/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Animais , Humanos
20.
Autophagy ; 17(9): 2273-2289, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917126

RESUMO

Macrophage derived foam cells in atherosclerotic plaques are the major factor responsible for the pathogenesis of atherosclerosis (AS). During advanced AS, macrophage-specific macroautophagy/autophagy is dysfunctional. 1, 25-dihydroxy vitamin D3 (VitD3) and its receptor VDR (vitamin D receptor) are reported to inhibit foam cell formation and induce autophagy; however, the role of VitD3-VDR-induced autophagy and foam cell formation in AS has not been explored. Here we find that VitD3 significantly recovered oxidized low-density lipoprotein-impaired autophagy, as well as increased autophagy-mediated lipid breakdown in mouse bone marrow-derived macrophages and human monocyte-derived macrophages, thus inhibiting the conversion of macrophages into foam cells. Importantly, VitD3 functions through its receptor VDR to upregulate autophagy and attenuate the accumulation of lipids in macrophages. Moreover, this study is the first occasion to report the interesting link between VitD3 signaling and PTPN6/SHP-1 (protein tyrosine phosphatase non-receptor type 6) in macrophages. VitD3-induced autophagy was abrogated in the presence of the PTPN6/Ptpn6 shRNA or inhibitor. VDR along with RXRA (retinoid X receptor alpha), and NCOA1 (nuclear receptor coactivator 1), are recruited to a specific response element located on the gene promoter and induce PTPN6 expression. PTPN6 contributes to VitD3-mediated autophagy by regulating autophagy-related genes via activation of MAPK1 (mitogen-activated protein kinase 1) and CEBPB (CCAAT enhancer binding protein beta). Furthermore, expression of PTPN6 is also crucial for VitD3-mediated inhibition of macrophage foam cell formation through autophagy. Thus, VitD3-VDR-PTPN6 axis-regulated autophagy attenuates foam cell formation in macrophages.


Assuntos
Autofagia , Colecalciferol , Células Espumosas , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Receptores de Calcitriol , Animais , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Calcitriol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA